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Zinc silicate glass is an attractive host matrix for rare-earth ions because of its fine 

properties, primarily optical and mechanical properties, such as good chemical 

stability, high UV transparency, high surface damage threshold, large tensile fracture 

strength and good durability. Up to now most research has been carried out on soda 

lime silicate (SLS) glass doped with different ingredients and rare-earths, but a few 

researches have been carried out on willemite-based glass-ceramic prepared using 

waste material and doped with erbium oxide (Er2O3). However; using waste 

materials such as SLS glass as a main source for producing silicate will be 

economical, cheap and helpful for reducing the aggregation of waste materials from 

the landfill. 

The main objective of this study is to determine the effect of erbium oxide (Er2O3) 

addition on physical and optical properties of willemite-base glass ceramic sintered 

at different temperatures. The samples were produced via melt-quenching technique 

followed by powdering, pressing and sintering. In the first stage the SLS glasses 

were crushed, grounded, and sieved to gain the expected particle size. The prepared 

powder was mixed with ZnO followed by melting at the temperature of 1400 °C and 

quenching in water to obtain fritz glass. The prepared fritz glass was crushed using 

mortar and pestle to the size of 63 µm. After that the prepared powder was heat 

treated at the temperature of 1000 °C to produce willemite. The willemite-based 

glass ceramic was doped with trivalent erbium (Er
3+

) in the ([(ZnO)0.5(SLS)0.5]1-

x[Er2O3]x) composition where x = 1-5 wt.%. At the end, the powder was pressed and 

different pallets were prepared and finally sintered at different temperature ranged 

from 500 to1100 °C. The crystal (phase) changes with different contents of Er2O3 

and different sintering temperatures were investigated using X-ray diffraction 



© C
OPYRIG

HT U
PM

iii 

 

(XRD); the binding structure was explored by Fourier transform infrared 

spectroscopy (FTIR); the microstructure, morphology and chemical composition 

were be studied using Field emission scanning electron microscopy (FE-SEM) along 

with EDAX; and the optical properties was analyzed by UV-VIS spectroscopy.  

The XRD results show that well crystalline willemite (Zn2SiO4) with the 

contribution of dopant (Er
3+

) in the lattice can be achieved at the temperature of 900 

°C. The XRD results also shows that rhombohedra crystalline willemite was formed 

by mixing ZnO and SLS glass and optimum heat treatment of 1000 °C to produce 

willemite-based glass ceramics, the solid-state reaction between well crystallized 

willemite and Er
3+

 was obtained at 900 °C sintering temperature and Er
3+

 can be 

completely dissolved in the lattice at this temperature. FTIR results confirmed the 

appearance of the vibrations of SiO4 and ZnO4 groups which clearly suggests the 

formation of the Zn2SiO4 phase, the compositional evaluation of the FTIR properties 

of the [(ZnO)0.5(SLS)0.5]1-x[Er2O3]x system indicates that the presence of erbium ions 

affects the surrounding of the Si-O and trivalent erbium occupy their position, these 

agrees with the XRD data at the peak positioned at 20.29°. The most significant 

modification produced by the addition of erbium and the increase of the heat 

treatment temperature of the studied samples shows a drop in the intensity of FTIR 

band located at 513 cm
-1

, which indicates that the addition of erbium oxide and 

increase in the sintering temperature declines the presence of SiO4 group. The micro 

structure analysis of the samples using FESEM shows that the average grain size of 

samples tends to increase from 325.29 to 625.2 nm as the sintering temperature 

increases. Finally, the UV-VIS spectra of all doped glass-ceramics depict absorption 

band due to host matrix network and the presence of Er2O3. The results show that the 

intensity of the bands tends to grow by increasing the Er2O3 content in the range of 

1-5 wt.%, and the sintering temperature in the 500-900 °C range, followed by a drop 

at the temperatures of 1000 and 1100 °C. By adding the Er2O3 content to the host 

network and increasing the sintering temperature from 500-900 °C , the intensity of 

UV-VIS bands situated between 400-1800 nm increased due to the absorption of 

Er
3+

ions and the host crystal structure. The intensity of the UV bands were observed 

to have dropped when the sintering temperature was increased to 1000 and 1100 °C, 

which indicates that by going to the temperature of 1000 and 1100 °C the Er2O3 

particles tend to produce cluster that causes the decrease in the UV absorption bands. 

For the sample with x=5 wt.% Er2O3, two strong absorption bands situated at about 

1535 and 523 nm were observed. These bands were attributed to the optical 

transition from 
4
I15/2 to 

4
I13/2 and 

4
S3/2 state respectively. 
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Kaca zink silikat merupakan hos matrik yang menarik bagi ion nadir bumi kerana 

sifat-sifat optik dan mekanikal yang terperinci seperti kestabilan kimia yang baik, 

ketelusan UV yang tinggi, ambang kerosakan permukaan yang tinggi, tegangan 

kekuatan patah yang besar dan ketahanan yang baik. Sehingga kini, kebanyakan 

penyelidikan telah dilakukan pada kaca soda kapur silikat (SLS) yang didopkan 

dengan bahan-bahan yang berbeza dan juga bahan nadir bumi tetapi, hanya beberapa 

kajian sahaja yang telah dilakukan ke atas willemite berasaskan kaca seramik yang 

dihasilkan daripada bahan buangan dan didopkan dengan Erbium Oksida (Er2O3). 

Walau bagaimanapun, menggunakan bahan-bahan buangan seperti kaca SLS sebagai 

sumber utama untuk menghasilkan silikat akan menjimatkan, murah dan berguna 

untuk mengurangkan jumlah bahan-bahan buangan dari tapak pelupusan. 

Objektif utama kajian ini adalah untuk menentukan kesan penambahan erbium 

oksida (Er2O3) kepada sifat-sifat fizikal dan optik kaca seramik berasaskan willemite 

disinter pada suhu yang berbeza.Sampel yang telah dihasilkan melalui kaedah 

peleburan dan pelindap kejutan diikuti oleh penghasilan serbuk, penekanan dan 

persinteran. Di peringkat pertama kaca SLS telah dihancurkan dan diayak untuk 

mendapatkan saiz zarah yang dikehendaki. Serbuk yang telah disediakan 

dicampurkan dengan ZnO diikuti dengan peleburan pada suhu 1400 °C dan pelindap 

kejutan di dalam air untuk mendapatkan kaca fritz. Kaca fritz yang dihasilkan 

dihancurkan menggunakan lesung, alu dan pengayak yang bersaiz 63µm. Kemudian, 

serbuk yang dihasilkan akan disinter pada suhu 1000C untuk menghasilkan 

willemite. Willemite berasaskan kaca seramik telah didopkan dengan erbium trivalen 

(Er
3+

) dengan komposisi ([(ZnO)0.5(SLS)0.5] 1-x[Er2O3]x) di mana x = 1-5 wt.%. Pada 

akhirnya, serbuk dimampatkan dan palet yang berbeza dihasilkan dan akhirnya 

disinter pada suhu yang berbeza antara 500-1000 °C. Kristal (fasa) berubah 
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mengikut kandungan Er2O3 dan suhu persinteran yang berbeza yang telah dikaji 

dengan menggunakan pembelauan sinar-X (XRD), struktur pengikatan akan 

dieksplorasi oleh spektroskopi (FTIR), mikrostruktur, morfologi, dan komposisi 

kimia akan dikaji menggunakan pancaran medan imbasan mikroskop electron (FE-

SEM) berserta dengan EDAX, dan sifat-sifat optik dan jalur sela akan dianalisis 

menggunakan spektroskopi UV-VIS.  

Keputusan XRD menunjukkan bahawa Kristal willemite (Zn2SiO4) yang baik 

dengan sumbangan daripada bahan pendopan (Er
3+

) di dalam kekisi boleh dicapai 

pada suhu 900 °C. 

Keputusan XRD juga menunjukkan bahawa hablur willemite rhombohedra telah 

dibentuk oleh pencampuran ZnO dan SLS kaca dan rawatan haba paling optimum 

adalah 1000 °C untuk menghasilkan seramik kaca berasaskan willemite, reaksi 

keadaan pepejal antara hablur willemite dan Er
3+

 telah diperolehi pada suhu 

pensinteran 900 °C dan Er
3+

 boleh diserap sepenuhnya ke dalam kekisi pada suhu 

ini. Hasil FTIR mengesahkan kemunculan getaran kumpulan SiO4 dan ZnO4 yang 

jelas menunjukkan pembentukan fasa Zn2SiO4, penilaian kerencaman sifat dari 

sistem FTIR bagi [(ZnO)0.5(SLS)0.5]1-x[Er2O3]x menunjukkan bahawa kehadiran ion 

erbium memberi kesan kepada persekitaran Si-O dan trivalen erbium untuk 

menduduki kedudukan mereka, dan ini bersetuju dengan data XRD yang puncaknya 

terletak pada kedudukan 20.29 °. Pengubahsuaian yang paling penting yang 

dihasilkan oleh penambahan erbium dan peningkatan suhu rawatan haba sampel 

dikaji menunjukkan penurunan dalam keamatan FTIR band terletak di 513 cm
-1

, 

yang menunjukkan bahawa penambahan oksida erbium dan peningkatan dalam suhu 

pensinteran menolak kehadiran kumpulan SiO4. Analisis struktur mikro sampel 

menggunakan FESEM menunjukkan bahawa saiz butiran purata sampel cenderung 

meningkat dari 325.2 ke 9625.2 nm suhu pensinteran bertambah. Akhir sekali, 

spektra UV-VIS semua didopkan kaca seramik menggambarkan jalur penyerapan 

kerana menjadi tuan rumah rangkaian matriks dan kehadiran Er2O3. Keputusan 

menunjukkan bahawa keamatan satu band cenderung berkembang dengan 

meningkatkan kandungan Er2O3 yang dalam lingkungan 1-5 wt.%, Dan suhu 

pensinteran dalam julat 500-900 °C, diikuti penurunan suhu pada 1000 dan 1100 °C. 

Dengan menambah kandungan Er2O3 kepada rangkaian tuan rumah dan peningkatan 

suhu pensinteran 500-900 °C, keamatan UV-VIS band terletak di antara 400-1800 

nm meningkat disebabkan penyerapan ion Er
3+

 dan struktur hablur perumah. 

Keamatan satu band UV telah diperhatikan dan menunjukkan penurunan apabila 

suhu pensinteran meningkat kepada 1000 dan 1100 °C, yang menunjukkan bahawa 

dengan mengenakan suhu 1000 dan 1100 °C zarah Er2O3 cenderung untuk 

menghasilkan kelompok yang menyebabkan penurunan dalam jalur penyerapan UV. 

Bagi sampel ini dengan x = 5 wt.% Er2O3, dua band penyerapan yang kuat terletak 

pada kira-kira 1535 dan 523 nm telah dipatuhi. Band-band ini telah dikaitkan dengan 

peralihan optik dari keadaan 4I15/2 untuk 4I13/2 dan 4S3/2 masing-masing. 
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CHAPTER 1 

                                             INTRODUCTION 

 

1.1 Glass and glass-ceramic materials 

Glass is a product of inorganic fusion obtained by cooling down the molten of 

inorganic materials to a rigid condition. Glasses can be synthesized in various shapes 

by melt quenching method. Today, the uses of glasses are far ranging with 

applications in the architectural, electrical and electronic devices, 

telecommunications and aerospace industries. Glass-ceramics are known as which 

include an amorphous phase and one or more crystalline phases. Glass-ceramics are 

produced through controlled crystallization process of the base glass in contrast to a 

spontaneous crystallization which is not acceptable by glass manufacturer. Glass-

ceramics materials pose properties of both glasses and ceramics including the 

fabrication advantage of glass and special properties of ceramics. Glass-ceramics 

usually have crystallinity between 30% [m/m] to 90% [m/m] (Hummel, 1951). 

Glass-ceramics materials have properties of high strength, translucency, 

pigmentation, opalescence, high chemical durability, high temperature stability, low 

or negative thermal expansion, fluorescence, machinability, ferromagnetism, 

resorbability, biocompatibility, bio-activity, ion conductivity, superconductivity, 

isolation capabilities, low dielectric constant and loss, high resistivity and break 

down voltage (Holand & Beall, 2002b; McMillan, 1974). These properties can be 

optimized by controlling the composition of the base glass and applying a controlled 

heat treatment/crystallization to the base glass. 

 

Most of the production of glass-ceramics is mostly done in two steps: firstly, a glass 

is produced through a glass manufacturing process such as melting and quenching. 

Then, the glass is reheated again at specific temperature. During this heat treatment, 

the glass undergoes partial crystallization. The properties of glass-ceramics are 

determined by the precipitation of crystallized phases from the glasses as well as 

their microstructure. Generally, to control the crystalinity and the type of crystal 

structure on the final glass-ceramics are depend on the parent glass composition, 

thermal treatment and the addition of nucleating agent (Hu, Li, Dali, & Mao Liang, 

2005). Mostly, nucleating agents are added to the base composition of the glass-

ceramics in order to control and facilitate crystallization process. Nucleation is the 

initiation of a phase change in a small region, such as the formation of a solid crystal 

from a liquid solution. It is a consequence of rapid local fluctuations on a molecular 

scale in a homogeneous phase that is in a state of metastable equilibrium. 
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1.2 Background on sintering and sintering temperature 

Sintering is a technique used to produce substances from powders which is based on 

diffusion of atoms. Diffusion takes palace above absolute zero in any material 

however; in the elevated temperature the diffusion is much quicker. Sintering is the 

processes of heating the powdered material to a temperature below the melting point. 

During sintering processes, the atomic composition of the powdery particles diffuses 

across the boundaries of the particles producing a solid piece by fusing the particles 

together. Sintering is known as the shaping process for materials such as glass and 

glass-ceramic with extremely high melting points. Besides that, Sintering is part of 

manufacturing process of pottery and ceramic objects substances such as glass, 

alumina, zirconia, silica, magnesia, lime, beryllium oxide and ferric oxide. The 

benefits of sintering stage are, higher levels of purity and uniformity in starting 

materials and preservation of purity, since it has the simpler and fewer subsequent 

fabrication steps (Carter & Norton, 2007; Kang, 2005). Stability of the details in 

repeatable operations, achieved by controlling the grain size at the input stages, there 

are no binding contact in-between segregated powder particles as often observed in 

processes of melting. There are different benefit of sintering such as no deformation 

needed to produce directional elongation of grains, ability to achieve materials with 

controllable and uniform porosity, ability to obtain objects with a near net-shape, 

ability to achieve materials which are difficult to fabricate by other techniques, and 

the ability to produce highly durable material. 

 

The higher the sintering temperature will cause glass-ceramic particles compacted. It 

tends to decrease the porosity and increase the density as well as the grains size of 

the glass-ceramic. The glass-ceramic after sintering has a higher thermal 

conductivity, elastic modulus and mechanical strength (Shackelford & Doremus, 

2008). Besides, sintering also increases the diffusion rate and reduces the dislocation 

of particles. The effective sintering temperature on the microstructure of a single 

phase oxide is in the range of 0.75-0.90 of its melting point (Shackelford & 

Doremus, 2008). The effective solid-state sintering also limit to the powder with a 

size which is less than 10 µm. It is due to the finer powder has a greater surface area 

per unit volume. Consequently, it has a greater driving force to cause densification at 

lower temperature (Shackelford & Doremus, 2008). The effectiveness of a solid-state 

sintering process can also be increased by applying higher pressure, slowed the 

heating rate and extending the heating period. There is various mass transport 

mechanisms involved in the solid-phase sintering of powder. Mass transports 

mechanisms include surface diffusion, volume diffusion, grains boundary diffusion, 

viscous flow, plastic flow and vapor transport from solid surface (German, 1996). 

There are three stages of solid-phase sintering that take place in the microstructure 

evolution. The stages of the solid-phase sintering depend on the sintering 

temperature, sintering period, as well as the nature of the material such as melting 

temperature, particle size shape and surface. By assuming all the powder particles are 

spherical, there are wide inter-particle placing present in them. The first stage of 

sintering occurred when the spherical come into contact, with a weak cohesive force 

within them. Small mass of particles are participated to form neck. Hence, the neck 

growth of particles and decreases porosity is significant in microstructure (German, 

1996). The intermediate stage of sintering occurred as large mass of particles are 

involved into neck growth. The particles are no longer spherical because they are 
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interconnected. The open pore network with porosity larger than 8% becomes 

geometrically unstable. The pores undergo shrinkages and become smoother. In this 

stage, densification can be significantly observed the microstructure (German, 1996).  

In the final stage of sintering, the grain growth and densification are evident. Several 

grains are joined together and growth to a larger size. Hence, the average grain size 

was increased and fewer grains can be observed on a unit area in micrograph. The 

pores observed are spherical and closed. They are presented on the fractured grain 

boundaries. The total surface porosity achieved is lower than 8%. The air in the pores 

will limit the endpoint of the total porosity and density after sintering (German, 

1996). 

 

1.3 The concept of doping 

The doping process was properly first developed by John Robert Woodyard at Sperry 

Gyroscope Company throughout World War II (Woodyard, 1985). Other researchers 

also have performed in line with his work by Teal and Sparks at Bell Labs (Sparks, 

1950). 

Generally, doping is the process of adding impurities to material. For instance, in the 

fabrication of semiconductors, the impurities are usually introduced to the host lattice 

to modify their electrical and optical properties. Mainly doping processes are 

important for the creation of electronic junctions in silicon, and for the 

manufacturing of semiconductor devices (Sze, 1981). In the technology of glass-

ceramic phosphors materials, some of the impurities such as rare-earth elements are 

utilized as activators to enhance the luminescence characteristics. Such phosphors 

materials prepared from inorganic compounds by doping with suitable activators and 

impurities are capable of converting one or more forms of energy into radiation in or 

close to the visible region of the electromagnetic spectrum. Erbium doped materials 

have been widely studied for several years as Er
3+

 ions illustrate emission at 1500 

nm, which coincides with the minimum-loss transmission window of silica based 

optical fibers telecommunication systems (Miniscalco, 1991). 

 

1.4 Rare-earth luminescence in solid host 

The rare-earth or lanthanides are the series of elements in the sixth row of the 

periodic table starting from lanthanum to ytterbium at the end. Rare earths are 

specially identified by a partially filled 4f shell that is shielded from outer field by 

5s
2
 and 5p

6 
electrons. In this series, the energy levels of elements are not largely 

sensitive to the surrounding environment which they are in. 

The rare-earth incorporated in crystalline or amorphous hosts in the form of 3+, or 

occasionally 2+, ions. The 3+ ions all exhibits strong narrow-band intra-4f 

luminescence in different hosts, and the provided shield by the 5s
2
 and 5p

6
 

electrons. It means that rare-earths have radiative transitions in solid hosts similar to 

those of the free ions and weak electron–phonon coupling. The diagrams related to 

energy level of the isolated 3+ ions of each of 13 lanthanides with partially filled 4f 

orbitals from cerium (n=1) to ytterbium (n=13) is shown in Figures 1.1 and 1.2. 

Though some of the divalent species (principally samarium and europium) also 

http://en.wikipedia.org/wiki/Sperry_Gyroscope_Company
http://en.wikipedia.org/wiki/Sperry_Gyroscope_Company
http://en.wikipedia.org/wiki/World_War_II
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shown luminescence, it is the trivalent ions which are of mostly of highly interest. 

The intra-4f transitions are parity forbidden and are made partially allowed by 

crystal field interactions mixing opposite parity wave functions. 

Therefore, luminescence have a long life time (in the range of millisecond), and 

narrow line widths. An intense and narrow-band emission can be achieved by 

chosen the suitable ions across most of the visible region and into the near infrared. 

The more technologically important radiative transitions are highlighted. Figure 1.3 

further shows the influence of spin–orbit and crystal field interacting with the 

energy of the Er
3+

 ion (Kenyon, 2002). 

 

 

 

 

Figure 1.1 The Energy levels of the triply charged lanthanide ions, 

(n=1-6) (Kenyon, 2002). 
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Figure 0.2  The Energy levels of the triply charged lanthanide ions,  

(n=7-13) (Kenyon, 2002). 

 

 

Figure 0.3 The influence of spin orbit and crystal field splitting on the energy 

levels of the trivalent erbium (Er
3+

) ion in silicate host (Kenyon, 2002). 
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1.5 Problem statement 

Phosphate glasses are excellent host media for the Er
3+

 ions because of their 

attractive spectroscopic characteristics (such as large emission cross-section and a 

weak interaction among active ions, which may cause concentration quenching). In 

present days, phosphate glasses are commonly utilized for bulk laser applications. 

However, they are not much suitably applicable for integrated optics purposes (i.e., 

planar or channel waveguides), due to their poor chemical stability and low 

transition temperatures (J. Yang et al., 2004). On the contrary, silicate glasses, have 

much better chemical stability which is important for ion-exchange techniques to 

fabricate optical waveguides (Capek et al., 2004). Up to now the silicate glasses such 

as germanosilicate (R. Santos, L. Santos, & R. Almeida, 2010; Smith, 1978), soda 

lime silicate (Khalil et al., 2010) soda-lime alumino silicate (Berneschi et al., 2006; 

Righini et al., 2005), lithium aluminum silicate (Ananthanarayanan, Kothiyal, 

Montagne, & Revel, 2010), and lithium silicate glasses (Du & Chen, 2012) are 

chosen to be suitable host for the rare-earth especially Er
3+

. On the other hand, the 

knowledge of the effects of erbium on zinc silicate (willemite) especially willemite 

prepared by waste materials and the effects of sintering on the undoped willemite and 

rare-earth doped willemite sintered at different temperature are limited. In fact 

silicate glass-ceramics such as willemite (zinc silicate) is of much interest kind of 

silicate, are the semiconductors of choice for the overwhelming majority of 

microelectronics, and the full integration of silicates microelectronics with optical 

emission would allow the realization of low-cost, high-speed communication within 

circuits, between processors, or across local area networks (Kenyon, 2002). 

Moreover; nowadays, many countries are facing a difficulty in disposing solid wastes 

materials from industries and from man-made waste because of limited landfill sites 

to dump these solid wastes. In Malaysia 19,000 tons of wastes are produced every 

day, and a majority of that ends up in landfills. Malaysia currently has 230 landfill 

sights and 80% of them will reach maximum capacity within next two years and with 

land for landfill site being at a premium, there is going to be a big problem to ours 

next generation. Recycling of low cost wastes materials such as soda lime silica 

(SLS) glass in order to fabricate applicable material in the field of optic and 

telecommunication will be beneficial to reduce the large amount of solid waste 

produced daily (Berneschi et al., 2006). Generally SLS glass have been known for 

their high insulating properties (Hayashi & Kudo, 2001), good and acceptable 

mechanical (Wang et al., 2005), and chemical properties (Khalil et al., 2010). Also 

they have been used as radiation-sensitive dosimeter, especially glasses doped with 

transition metal ions (Mercier, Palavit, Montagne, & Follet-Houttemane, 2002) or 

rare-earth ions (Elbatal, Khalil, Nada, & Desouky, 2003). Beside that using waste 

material in the scientific felid is affordable because majority of waste material are 

cheap and accessible. The artificial materials which have a potential to produce glass 

ceramic are SLS, table salt and aluminum cans. The main framework of the SLS 

glass is SiO4 tetrahedral of silica that plays an important role as network forming 

oxide. Pure silica has a very high melting temperature which is 1713 °C (Shackelford 

& Doremus, 2008) that is high temperature and unaffordable. On the other hand 

using waste SLS is economical because it has soda as a flux that reduce the eutectic 

temperature to ~800 °C at the silica-rich end of the phase diagram and the presence 

of SLS glass into other oxides is capable to enhance oxides interaction and crystal 

formation upon sintering (Shackelford & Doremus, 2008). 
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1.6 Importance of the study 

Nowadays glasses and glass ceramics play a major role in telecommunication 

systems and they have been intensively studied for application as conversion fiber, 

optical amplifiers, solid-stated laser and 3-D displays. Previously most researches 

focused on silica oxide as a glass-forming network. Among oxide glasses, phosphate 

and silicate glasses are the two most important materials, and they have been used 

extensively for lasers and fibre amplifiers (Veasey, Funk, Sanford, & Hayden, 1999). 

Compared with silicate glasses, phosphate glasses are more limited in their use 

because they are hydroscopic in nature (J. Yang et al., 2004).and have a lower glass 

transition temperature. In contrast, silicate glasses exhibit superior chemical 

resistance and are optically transparent at the excitation and lasing wavelengths (H. 

Lin, Pun, & Liu, 2001). Therefore, they are more compatible with the fabrication 

process in the development of optical devices (Capek et al., 2004). 

Various examples of rare-earths such as erbium (Er
3+

) (R. Santos, L. F. Santos, & R. 

M. Almeida, 2010), europium (Eu
3+

) (Du & Kokou, 2011), terbium (Tb
3+

) (Pan et al., 

2008), and cerium (Ce
3+

) (Brandily, Marie, Lumeau, Glebova, & Glebov, 2010) are 

used as dopant for silicate glass-ceramic to produce a full color display. The usage of 

rare-earth ions has been remarkably used as phosphor activators. In the case of 

luminescent rare-earth, the attention is toward in one species trivalent erbium (Er
3+

) 

with emission band around 1.53 mm. The justification for this are easy to come 

across when considering the rapid increase in optical telecommunication and some of 

the material limitations on this technology (Kenyon, 2002). 

Figure 1.4 shows the loss spectrum of silica fiber. There are two low losses (or 

windows): in the spectrum of silicate fiber one between 1200 and 1350 nm, and the 

second around 1450–1600 nm (known as ultra-low-loss window). This phenomenon 

is caused by the combined effects of losses due to Rayleigh scattering and infrared 

absorption due to the Si–O species. The 1500 nm window is the wavelength region 

of choice for telecommunications where fortuitously coincides with the 1535 nm 

intra-4f 
4
I13/2- 

4
I15/2 transition of the Er

3+
 ion (Figure. 1.5).Therefore, there has been 

major interest in using erbium-doped materials to attain elements and sources in 

telecommunications systems. In the late 1980s, the development of the erbium-doped 

fiber amplifier (EDFA) (Desurvire, Simpson, & Becker, 1987; Mears, Reekie, 

Jauncey, & Payne, 1987) exploited the 
4
I3/2-

4
I15/2 transition and permitted the 

transmission and amplification of signals in the 1530–1560 nm region without the 

need for expensive optical to electrical conversion (Kenyon, 2002). 

On the other hand, willemite as particular kind of silicate glass-ceramics can also be 

considered as a proper host for erbium (Auzel & Goldner, 2001). Willemite has been 

discovered over the last 180 years and still is the most widely practically used and 

most interesting for hosting of rare-earth ions. Following its discovery, researchers 

have focused on the occurrence, crystallography, luminescence and industrial 

application of willemite. Up to now willemite generally has been created by pure 

material and by different methods such as sol-gel methods, supercritical water 

methods, vapor methods, and solid-state methods, also in order of using in different 

area, kinds of metals and rare-earths have been chosen to dope on willemite glass-

ceramic (Takesue, Hayashi, & Smith Jr, 2009). 

Anyway, at present there is not reported research on producing willemite by using 

waste materials and using trivalent erbium (Er
3+

) as a dopant. In this work willemite 

as a host was produced by using waste material and trivalent erbium (Er
3+

) was used 

as a dopant material. 
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Figure 0.4 Silicate optical fiber loss spectrum in the near IR region. 

 

 

Figure 0.5 PL spectrum of Er
3+

 (
4
I13/2 to 

4
I15/2) in a silica host. 
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1.7 Objectives of research 

This study was done based on the following objectives which are mentioned below: 

1. To analyze the density and linear shrinkage of willemite-based glass ceramic 

added with different content of Er2O3 and sintered at various temperature. 

2. To characterize the crystal phase and microstructure of produced willemite-

based glass ceramic. 

3. To determine the optimum content of Er2O3 and sintering temperature for 

willemite-based glass cramic 

4. To evaluate the optical properties of Er2O3 doped willemite-based glass 

ceramic utilizing ultra-visible (UV-VIS) spectroscopy. 

 

1.8 Scope of the study 

In order to attain the aims of the study, the scopes of the study as follow  

1. The base of willemite with stoichiometric equation of (ZnO)0.5(SLS)0.5  

produced using melting and quenching technique followed by sintering, then 

the willemite-based glass ceramic doped with Er2O3 from 1-5 wt.%. 

2. Samples structure is investigated with X-ray diffraction technique to settle the 

crystalline structure of the glass-ceramic samples. 

3. The bonding structure of samples is detailed by using Fourier transforms 

infrared spectroscopy (FTIR). 

4. The density of obtained samples is investigated using Archimedes principle 

with water as the fluid medium. 

5. Samples microstructure, morphology and chemical composition structure is 

studied using Field emission scanning electron microscopy (FE-SEM) along 

with EDAX. 

6. The optical property of samples is investigated using UV-VIS spectroscopy. 

 

1.9 Thesis organization  

The thesis is presented five chapters. Chapter 1 presents a brief introduction into the 

research topic and as well as statement of the objectives of research. Chapter 2 

provides a survey of the literature on glass and glass-ceramic, brief information about 

the (willemite preparation). Details of the experimental procedures performed in this 

work are presented in chapter 3Chapter 4 presents the results of XRD analysis, FTIR 

spectra, density and linear shrinkage, UV-VIS and Fe-SEM analysis. Chapter 5 

contains conclusions and recommendations for future work and refinement that can 

be done. 
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