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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

INFLUENCE OF SURFACE ELECTROMYOGRAPHY ELECTRODE 

PLACEMENT ON SIGNAL ACCURACY AT FOREARM MUSCLES DURING 

WRIST MOVEMENTS 

ABSTRACT 

By 

 

HOSSEIN GHAPANCHI ZADEH 

 

February 2016 

 

Chair  :  Siti Anom Ahmad, PhD  

Faculty  :  Engineering 

 

Surface Electromyography (SEMG) is a technique to detect and monitor the muscles 

contraction during movements. Applying SEMG signal has difficulties due to complexity 

nature of this signal. Different type of noise like location of electrodes can affect SEMG 

signal during data acquisition. Electrode location can significantly important to conquer 

different type of noises during data collection. There are two ways to overcome this 

difficulty; 1) finding the best electrode position and 2) finding inter-electrode distance.  

 

To find the best electrode location in bipolar recording mode, it was designed and 

implemented a 6 channel SEMG acquisition system to detect and acquire the upper limb 

muscles’ SEMG signal. After that, the present study investigated electrode position and 

inter-electrode distance (IED) for wrist movements over forearm muscles. This study is 

based on the muscle physiology such as origin, innervation zone (IZ) and tendon zone 

(TZ) location. Three different electrode positions and three different IED are investigated 

over thirty volunteers participated during seven daily wrist movements such as wrist 

extension, flexion, radial deviation, ulnar deviation, wrist rotation and fingers extension 

and flexion.  

 

To find out the best electrode position, the collected signal were analyzed in time and 

frequency domain. The best electrode location selected where SEMG signal had higher 

value in time and frequency domain (Mean Absolute Value, Root Mean Square, Power 

Spectra Density) with lower cross-talk value (Cross-Correlation). The results show a 

significant differences between various electrode positions in both time and frequency 

domain. This study recommends the best electrode position over FCR, ECR and ED 

muscles near muscle origin and IZ with 40mm IED. The best electrode position for ECU 

and FCU recommend between muscle origin and IZ with 20mm IED. This study also 

suggests the electrode site for FD muscle is between IZ and TZ with 20mm IED. The 

presented method should be observed as an important step in every SEMG application 

and research to guarantee the signal quality. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains. 

 

PENGARUH PENEMPATAN SURFACE ELECTROMYOGRAPHY 

ELEKTROD PADA KETEPATAN SIGNAL PADA OTOT LENGAN SEMASA 

PERGERAKAN PERGELANGAN 

ABSTRAK 

Oleh 

 

HOSSEIN GHAPANCHI ZADEH 

 

Februari 2016 

 

Penyerusi : Siti Anom Ahmad, PhD  

Fakulti  : kejuruteraan 

 

Permukaan elektromyografi (SEMG) adalah satu teknik untuk mengesan dan memantau 

pengecutan otot semasa pergerakan.  SEMG mengandungi maklumat penting berkaitan 

pengecutan otot and arah pergerakan. SEMG telah banyak digunakan untuk pelbagai 

aplikasi seperti mengesan aktiviti otot dan diagnosis mampatan saraf atau kecederaan. 

Walaubagaimanapun, terdapat kesukaran dalam penggunaan SEMG disebabkan isyarat 

ini yang kompleks. Amplitud SEMG dalam julat frekuensi 0-1000Hz adalah kecil (0-

2mV puncak ke puncak). Maka, jenis hingar yang berbeza seperti lapisan permukaan 

tisu, zon inervasi yang luas (IZ), isyarat dari otot yang berhampiran, saiz elektrod and 

lokasi elektrod diletakkan boleh mempengaruhi isyarat. Terdapat dua kaedah untuk 

menyelesaikan masalah ini; 1) mencari kedudukan elektrod terbaik dan 2) mencari jarak 

dalaman elektrod. Kajian ini umumnya membentangkan dua bahagian yang berbeza. 

Bahagian pertama telah mereka dan membuat sistem pemperolehan SEMG enam saluran 

untuk mendapatkan isyarat dari otot bahagian atas badan. 

 

Bahagian kedua kajian ini mengesyorkan posisi elektrod dan jarak dalam elektrod untuk 

pergerakan tangan sekitar otot lengan. Kajian ini berdasarkan posisi otot asalan, IZ dan 

zon tendon (TZ). Tiga posisi elektrod yang berbeza dengan dua sentimeter jarak di antara 

bipolar elektrod, dan tiga jarak antara elektrod yang berberza disiasat. Isyarat SEMG 

diambil daripada otot flexor carpi ulnaris (FCU), extensor digitorum (ED), fexor carpi 

radialis (FCR), extensor carpi ulnar (ECU), extensor carpi radialis (ECR), dan flexor 

digitorum (FD) sewaktu pergelangan tangan digerakkan.  Seramai 30 sukarelawan 

menyertai kajian ini. Sukarelawan diminta melakukan lapan pergerakan pergelangan 

tangan harian seperti melanjut dan membengkukan pergelangan tangan, sisihan radial, 

sisihan ulnar, pusingan pergelangan tangan dan lanjutan dan bengkukan jari.  

 

Untuk mengetahui kedudukan terbaik elektrod, kaedah pemproses berikut dilaksanakan; 

purata nilai (MAV), punca kuasa dua (RMS), variance (VAR) dan kuasa kepadatan 

isyarat (PSD). Isyarat silang yang paling rendah adalah komponen utama bagi kualiti 
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isyarat SEMG yang baik. Oleh itu, teknik korelasi silang (CC) dikira di antara otot yang 

berkaitan untuk setiap pergerakan, dengan otot berdekatan untuk mencari isyarat silang 

yang paling rendah. Untuk mengesahkan kedudukan elektrod dan IED yang dipilih, 

nisbah isyarat kepada hingar (SNR) digunakan. SNR yang tinggi menunjukkan nisbah 

isyarat yang dikehendaki kepada isyarat yang tidak dikehendaki.  

 

Keputusan menunjukkan perbezaan besar di antara kedudukan elektrod dalam kedua-dua 

domain masa dan frekuensi. Tambahan lagi, perbezaan IED mempengaruhi kadar isyarat 

silang. Kajian mengesyorkan kedudukan elektrod terbaik bagi otot FCR, ECR, dan ED 

berdekatan dengan otot asalan dengan IZ 40mm. Kedudukan elekrod terbaik baik ECU 

dan FCU disyorkan di antara otot asalan dan IZ dengan IED 20mm. kajian ini juga 

mengesyorkan bahawa kedudukan elektrod bagi FD adalah di antara IZ dan TZ dengan 

IED 20mm. kaedah yang dibentangkan perlu diperhatikan sebagai langkat penting bagi 

setiap aplikasi SEMG dan penyelidikan untuk memastikan kualiti isyarat. 
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1 

 

CHAPTER 1 
 

 

1 INTRODUCTION 

 

 

Electromyography (EMG) is a technique to monitor and store the electrical activity 

generated by the skeletal muscles during muscle contraction. EMG signals contain 

significant information, which can be used to detect a movement. EMG signals are 

collected in two ways: surface EMG (SEMG), and intermuscular EMG [20]. SEMG and 

intermuscular EMG can be collected by using non-invasive and invasive electrodes 

respectively. Recently, SEMG are preferably used to acquire information of muscles 

activities [21]. The SEMG signals are considered as the most advantageous method of 

electrophysiological signals in many areas such as medical and engineering.  

 

During past decade, the information and application of SEMG significantly increased. 

Using   SEMG   provide beneficial information such directly analyze the muscle 

behavior, easy to detect signals by surface electrodes, electrodes are nearby applications, 

detect more movement contrast with other type of signals, cheaper to use and more 

comfortable for user. 

 

The SEMG has amplitude between 0-2mv (peak-to-peak) or 1.5mv (rms) with 0-1000Hz 

frequency band [22]. Different kinds of noise including subcutaneous tissue layers  [23], 

spread of the innervations zone (IZ) [23], cross talk from neighbor muscles [24], 

electrode size and electrode position [25, 26] can affect SEMG signal. This problem can 

be conquered by finding the best electrode position and IED as the most important step 

of SEMG acquisition. Therefore, this study aimed to determine the best electrode 

position and IED to obtain SEMG over upper limb during wrist movement. 

 

SEMG has used in many areas such as detecting muscle activities [27] and diagnosis the 

nerve compression or injury [28, 29]. SEMG system has included electrode placement 

and signal acquisition parts. Electrode position can significantly mislead the description 

of SEMG statistically and spectrally factors.  

 

Although there are a few number of researches presented the SEMG electrode position 

during the last decade, but there is no universal and pervasive method for acquisition and, 

therefore, electrode position [17, 26, 30, 31]. The Surface Electromyography for the Non 

Invasive Assessment of Muscles (SENIAM) project published the electrode position to 

evaluate the SEMG [32]. The SENIAM project presented electrode position for 22 

various muscle were accorded on the workshops conclusion and SENIAM’s member’s 

studies. However, the SENIAM projects does not included forearm muscles for wrist 

movements which are used in daily life activities. 

 

H.J Hermens et al., 2000, D.Farainar et al., 2001 and K.Nishihara et al., 2013 who  

published after the SEINAM project and concluded that the IZ and tendon zone (TZ) are 
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not suitable for electrode placing because the SEMG signals which were collected from 

IZ and TZ were unstable and unsubstantially magnitude estimation and references [8, 33, 

34] shows the IZ shift during activities. Consequently, the recommended electrode sites 

were between IZ and TZ to ensure a better quality signal. 

 

The second part of SEMG is signal acquisition step. After placing the electrode, a system 

is needed collect the SEMG signals through electrodes in different position over various 

electrode types. A few number of studies focused on this important part of SEMG data 

acquisition.  Z. Hanquing et al., 2013 [35] introduced a wireless sensor accusation 

system. The presented system in this study included bipolar wireless sensor with constant 

internal distance and programmable receiver, and they just focused on programming and 

electrode types. SEMG has used in different areas like detecting myoneural junction [36]. 

Consequently, for various studies like matrix electrode, H. Mok et al., 2003  designed a 

system with flexibility and elasticity linear shield of SEMG electrode [37]. The system 

which was introduced by H. Mok et al., can be rounded to the muscle and connected to 

the amplification circuit. In addition, recent study by X. Zhang et al., 2012 provides 

portable SEMG system [38]. The portable device is comprised of various units such as 

central processing, amplification, transition circuit and band pass filter. SEMG Electrode 

and data accusation system have been investigated and developed for different 

application. However, the current technology still needs to improve 

 

 

1.1 Problem Statement 

 

The SEMG signal is significantly used in many areas such as the prostheses body 

member and rehabilitation robot. Although SEMG has many advantages, there are still 

some challenges to use it for application of SEMG signal based. 

 

SEMG is a complex signal and exhibits an amplitude between 0 to 2 mv (peak-to-peak) 

or 1.5 mv (rms) with a frequency band of 0–1000 Hz [39]. Various noises affecting 

SEMG include subcutaneous tissue layers [23], spread of innervation zone (IZ) [23], 

crosstalk from neighbour muscles [24], electrode size, and electrode position [26, 40]. 

The electrode position can significantly reduce or increase this type of noise especially 

cross-talk [32]. The significant difficulty in SEMG is to identically collect SEMG signal 

of the targeted muscle with lower cross-talk, lower noise and maximum amplitude and 

power of frequency [31, 41-43]. 

 

Various studies presented the effect of electrode placement on SEMG signal over 

forearm muscles. However, only a few studies addressed the methodological manner to 

find correct electrode position. Recent studies, electrodes were placed over a bully area 

or between innervation zone and tendon zone without the specific symptoms of the points 

along the length or shape of the muscle. In addition, the inter-electrode distance varied 

in different studies and there is no specific guideline to place electrode over forearm 

muscles during wrist movements.  
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Quantitative studies on the sensitivity of the signal feature extracted from the SEMG 

signal on the recording type, including electrode position and inter-electrode-distance, 

for forearm muscles related to wrist movements are scarce. This limitation is 

significantly crucial for the repeatability of the results and the feasibility of comparing 

the data from various studies. 

 

 

1.2 Aims and Objectives 

 

The main objective of this thesis is to present a simple and easy guideline to identify the 

best electrode position for upper limb during wrist movements. The specific objectives 

of this research are include: 

 

 To investigate the electrode placement and internal distance of the electrodes 

 To provide recommendation guide line for muscle position and electrode site 

 

The sub objectives to accomplish the second research aim which is electrode position the 

sub objectives are as following: 

 

- Different electrode site 

- Various IED 

- Suitable for both time and frequency domain signal processing 

 

 

1.3 Thesis Scope 

 

The first part of this study is the interfacing between the electrode and the computer for 

monitoring and recording. Therefore, a low-cost multichannel SEMG acquisition system 

is developed. This system is product for laboratory research and limited to six channels. 

 

The second part is to explore the best electrode position over forearm muscle. This study 

aimed to identify the optimal electrode position to acquire SEMG over the upper limb 

during wrist movement by using a commercial adhesive electrode. The selection of the 

movements are limited to seven movements; wrist extension/flexion, wrist ulnar/radial 

deviation, wrist rotation and fingers flexion/ extension. Selected movements are the most 

significant daily wrist movements. To record the SEMG signal related to the movements 

three different electrode position with three various IED over six forearm muscle was 

investigated.  
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1.4  Thesis Contribution 

 

This study contribute the dissertation in purpose of mentioned objectives as follows: 

 To investigate the electrode site based on electrode position and IED to achieve high-

quality SEMG signals with low-noise during wrist movements 

 To develop the guideline to identify the electrode positions for the upper limb. 

 

 

1.5 Thesis Outline 

 

The structure of this study reflects the process of developing the SEMG acquisition 

system for monitoring and recording SEMG signal and the sequence of mapping 

electrode site over upper limb. The organization of thesis is as follows: 

 

Chapter two will take the reader through the publications and studies over related works 

on background of myoelectric signal, SEMG acquisition system and electrode position 

in the recent years as literature review and highlight the expressive achievements.   

 

Chapter three will start the short introduction of SEMG and current studies. Furthermore, 

the methodology of developing six channel SEMG acquisition system will be discussed. 

This chapter presents the methodology to find the best electrode position and IED over 

forearm muscles during wrist motion. Three different electrode positions and three IED 

over forearm muscle of 30 different subjects will recorded. After recording the SEMG 

data, two different signal preprocessing techniques and six processing methods will apply 

to the raw signal to find the best electrode position.  

 

The result of the proposed method will present in chapter 4. Chapter 4 will present the 

results and validating the result of the presented system and differences between various 

electrode sites and the effect of electrode placement or displacement over upper limb. 

 

Chapter 5 draws the conclusions from chapter 4 which present methodology and result 

of the research. Furthermore, the noteworthy points of electrode placements will present. 

Therefore, the method of finding the best electrode position will conclude and lastly, the 

future work will offered. 
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