
© C
OPYRIG

HT U
PM 

 

UNIVERSITI PUTRA MALAYSIA 
 

SURFACE ELECTROMYOGRAPHY CLASSIFICATION OF HAND 
MOTIONS 

USING TIME DOMAIN FEATURES FOR REAL TIME APPLICATION 
 

 
 
 
 
 
 
 
 
 

AHMAD AKMAL BIN AHMAD NADZRI 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2016 85 



© C
OPYRIG

HT U
PM 

 

SURFACE ELECTROMYOGRAPHY CLASSIFICATION OF HAND MOTIONS 

USING TIME DOMAIN FEATURES FOR REAL TIME APPLICATION 

 

 

By 

 

AHMAD AKMAL BIN AHMAD NADZRI 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of Master of 

Science 

February 2016 

 

 



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, 
icons, photographs and all other artwork, is copyright material of Universiti 
Putra Malaysia unless otherwise stated. Use may be made of any material 
contained within the thesis for non-commercial purposes from the copyright 
holder. Commercial use of material may only be made with the express, prior, 
written permission of Universiti Putra Malaysia.  
 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 
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By 

AHMAD AKMAL BIN AHMAD NADZRI 

February 2016 

Chair: Siti Anom Ahmad, PhD  

Faculty: Engineering 

Surface electromyography is a technique of analyzing muscle functions through 
signals emanating from the physiological variations of muscles states. Through 
this technique, various applications such as prosthetic hands control have been 
made for purposes of giving basic functionality for people that are unable to do 
daily tasks. Many researches have been made over the years to develop the 
prosthetic hand control system by using the surface electromyography signals 
through pattern recognition. Recent researches have shown that various 
method have been able to achieve above 90% accuracy. However, the 
challenge of developing a control system that is both accurate while being 
suitable for real time application with less than 300 ms delay still remains. In 
addition, no literatures have been reported classifying hand motions with 
stages of contraction despite patterns being observed. The objective of this 
study is to investigate the accuracy and real time suitability of using time 
domain features and artificial neural network, to characterize and classify 
different hand motions and stages of the contraction. To achieve this goal, the 
signal is first segmented into windows of two sizes, which are 132.5ms and 165 
ms, and then full wave rectified. Then the signal is separated into raw and 
normalized signal. Five time domain features, namely mean absolute value, 
variance, root mean square, integral absolute value and waveform length were 
extracted from the segmented windows to characterize three different hand 
motions of wrist flexion, wrist extension and co-contraction using raw signal 
and three different stages of contraction of start, middle and end using 
normalized signal. From the characterization obtained and t-test made, all raw 
features, waveform length normalized, and the 132.5 ms segmented window 
size were selected for classification. The features are then used by artificial 
neural network to be trained offline and evaluated for performance in terms of 
classification accuracy. Computational times have been recorded to determine 
real time suitability at all steps. It is determined that during feature extraction 
stage, the features were able to differentiate hand motions as the mean values 
were different. However, for stages of contraction, although patterns were 
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observed, only waveform length features could differentiate the different stages 
for all three motions. Overall, it is determined that an artificial neural network 
can be used with time domain features to achieve 98.5% accuracy when 
differentiating three different hand motions but not with stages of contraction 
achieving only 80.4% accuracy. Meanwhile, in terms of computational time, 
although artificial neural network is considered less suitable for real time 
application, when using time domain features, 245.8 ms delay is achieved 
which is below 300 ms, thus making it suitable for real time application. 
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KLASIFIKASI PERGERAKAN TANGAN OLEH ELEKTROMIOGRAFI 
PERMUKAAN MENGGUNAKAN CIRI DOMAIN MASA UNTUK APLIKASI 

MASA NYATA 

Oleh 

AHMAD AKMAL BIN AHMAD NADZRI 

Februari 2016 

Pengerusi: Siti Anom Ahmad, PhD 
 
Fakulti: Kejuruteraan 

Elektromiografi permukaan adalah teknik menganalisis fungsi otot melalui 
isyarat dari variasi fisiologi otot. Melalui teknik ini, aplikasi seperti kawalan 
tangan palsu dibuat bagi memberikan fungsi asas untuk orang yang tidak 
dapat melakukan tugas harian. Kajian telah dibuat untuk membangunkan 
sistem kawalan tangan prostetik dengan menggunakan isyarat elektromiografi 
permukaan melalui pengecaman corak. Penyelidikan beberapa tahun 
kebelakangan ini menunjukkan beberapa kaedah mampu mencapai lebih 90% 
ketepatan. Namun, cabaran mencipta sistem kawalan yang tepat dan sesuai 
untuk aplikasi masa nyata dengan kelengahan kurang daripada 300 ms masih 
wujud. Tambahan pula, tiada penyelidikan telah dibuat bagi mengenal pasti 
ketepatan mengklasifikasi pergerakan dan tangan peringkat penguncupan 
walaupun ciri peringkat penguncupan telah dikenal pasti. Objecktif kajian ini 
ialah mengkaji ketepatan dan kesesuaian masa nyata dengan menggunakan 
ciri domain masa dan rangkaian neural buatan untuk mencirikan dan 
mengklasifikasi pergerakan tangan dan tiga peringkat pengucupan yang 
berbeza. Bagi mencapai matlamat, signal pada awalnya dibahagikan kepada 
tingkap yang mempunyai saiz 132.5 ms dan 165 ms dan gelombang penuh 
direktifikasi. Kemudian, signal dibahagikan kepada signal asal dan signal 
penormalan. Pada pengekstrakan ciri, lima ciri domain masa iaitu nilai min 
mutlak, varians , punca min kuasa dua, kamiran nilai mutlak dan panjang 
gelombang ini diekstrak untuk mencirikan tiga pergerakan tangan 
menggunakan signal asal dan tiga peringkat pengucupan yang berbeza 
menggunakan signal pernormalan. Ciri-ciri yang diekstrak kemudiannya 
digunakan untuk melatih rangkaian neural buatan secara luar talian dan 
menilai prestasi dari segi ketepatan. Masa pengiraan telah direkodkan untuk 
menentukan kesesuaian masa nyata pada setiap langkah. Ia ditentukan 
bahawa semasa peringkat pengekstrakan ciri, pergerakan tangan dapat 
dibezakan. Namun, bagi peringkat penguncupan, walaupun corak diperhatikan, 
hanya ciri panjang gelombang dapat membezakan dengan betul peringkat 
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pengucupan untuk ketiga-tiga pergerakan tangan. Secara keseluruhan, ia 
ditentukan bahawa rangkaian neural buatan dapat digunakan bersama ciri 
domain masa untuk mencapai ketepatan melebihi 98.5% apabila membezakan 
tiga pergerakan tangan namun bukan dengan peringkat pengucupan dengan 
80.4% ketepatan. Dari segi masa pengiraan, walaupun rangkaian neural 
buatan dianggap kurang sesuai untuk kegunaan aplikasi masa nyata, apabila 
digunakan bersama ciri domain masa kelengahan masa 245.8 ms dicapai iaitu 
kurang daripada 300 ms maka membuatkan ia sesuai untuk aplikasi masa 
nyata.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Overview 
 
 
The human hand is a complex system where about a quarter of the motor 
cortex in the human brain; the part of the brain which controls all movement in 
the body is devoted to the muscles of hand. The human hand and the brain are 
close partners in important and closely interconnected functions such as 
interacting with the physical world by touch and manipulation. These include 
activities such as making tools, writing and playing music. The highly versatile 
functions of the human hand depend on both its anatomical structure and the 
neural machinery that supports the hand [1]. 
 
 
Although the human hand is an important tool that allows the human brain to 
interact with the world, some people are unfortunate as to lose the functionality 
of the hand through injuries or natural defects that may lead to the amputation 
of the hand. This leads to people unable to do daily task properly that are 
considered simple such as to eat and drink and to wash one self. Prostheses 
aim to replace the missing functionality albeit a prosthetic hand is a pale 
comparison to the natural hand with its reduced capabilities. The human hand 
has a large number of degrees of freedom, sensor embedded in its structure 
and a complex hierarchical control for the prosthetic hand to try to emulate [2]. 
  
 
A prosthetic hand mainly consists of a mechanical system that actuates the 
movement of the prosthetic hand and a control system that send signals to 
control the type of motions to the mechanical system. A prosthetic hand 
controlled by electronic devices is considered externally powered and is where 
control methods are used. One of the methods to control externally powered 
prosthetic hand is through Electromyography (EMG) signals sent by electrical 
signals general when muscles contract during hand motions.   
 
 
Numerous methods have been developed to control prosthetic hands through 
EMG. One of the more popular methods is Surface Electromyography (SEMG) 
due to its non-invasiveness. SEMG signal analysis has received wide interest 
especially in biomedical applications and clinical diagnosis in fields such as 
rehabilitation of motor disability. SEMG signals can provide important 
information for prosthetic hand control and possibly detect neuromuscular 
disorders for amputees [3].  
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A prosthetic basic function is to be able to output the correct hand motion 
intended by the user, using the SEMG signal generated. As classification 
accuracy is of importance, it plays a major role that will most probably decide 
whether users are happy with the SEMG system according to the classification 
rate with decent computational time. Thus extensive research has been done 
to find efficient methods. 
 
 
To classify a hand motion, SEMG signal analysis normally goes through pre-
processing, feature extraction and classification steps. Features need to be 
carefully selected in order to provide useful information for classification. 
Feature extraction can be divided into 4 major groups which are time domain 
(TD), frequency domain (FD), time frequency (TFR) and time scale 
representation [4]. Time domain features are generally easy to implement and 
calculate efficiently thus making it suitable for real time feature extraction. 
Feature extraction-based on TD methods show a good performance than 
feature extraction for SEMG pattern classification under various conditions [5-
7].  
 
 
In addition to classifying hand motions, there is a possibility to determine the 
stages of contraction during those hand motions using the features extracted. It 
was determined in [8] that when the subject’s maximum voluntary contraction 
was controlled, actual motion do not occur during start and end of contraction 
where the same type of fluctuation occurs. Ideally, control of a prosthetic hand 
should occur during the middle of contraction and being able to determine 
stages of contraction will lead to optimal control of actual hand motion more 
accurate to the user's intent.  
 
 
The features are used by a classifier to classify the different hand motions. 
Therefore, like selecting features to be used, selecting a suitable classifier is 
also of importance. In recent years, there were many literatures using ANN 
have reported an average classification accuracy of above 90%. Researches 
done in [9 - 21] were able to develop classifiers with above 90% accuracy.  
Some of the more popular classifiers were Fuzzy Logic (FL) systems and 
Artificial Neural Network (ANN).  
 
 
1.2 Problem Statement 
 
 
Based on recent studies, it is important for an SEMG control system to be able 
to achieve above 90% accuracy while being within the acceptable 300 ms 
delay [22]. Despite this, not many literatures mention the total time taken to 
classify the hand motion. This is especially true for studies involving widely 
used methods such as FD, TFR, and ANN, with more specific details at the 
steps of pre-processing, feature extraction and classification if it were to be 
implemented for real time application. Some methods sacrifice computational 
time for classification accuracy. There were no acceptable reported times for 
FD, TFR features [7]. An alternative to FD and TFR is TD features which are 
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less computational have been reported to have comparable performance to FD 
features [5, 6]. Meanwhile, although ANN classifiers have produced rather 
good results in accuracy, the fastest ANN classifier was reported in [9], a grasp 
classifier using spectral moments with 97.5% accuracy at 378 ms for 4 grasps. 
Thus, in this study, classification accuracy and computational time are tested 
using time domain features and ANN to find whether the cause of the delay is 
the computational heavy features of FD, TFR used in other studies or the ANN 
itself. 
 
 
At feature extraction step, time domain features were determined to be most 
efficient as mentioned in [4-6]. Characterization of time domain features is 
needed to differentiate different hand motions. However there were not many 
studies that use only time domain features for feature extraction. To achieve 
ideal control, stages of contraction should be recognized for classification. 
Despite the characteristics of stages of contraction determined in [8], there 
have been no literature reported studied in a non MVC controlled environment 
and that uses the characteristic for classification. MVC is where signal quality is 
controlled where that the signal from each subject is amplified in order to 
exceed a certain threshold criteria. In this type of study the focus is mainly on 
method comparison at the feature extraction and classification step. 
Meanwhile, in a non MVC controlled environment signal is not amplified and is 
analyzed as it is without the subjects SEMG signal having to meet a certain 
threshold criteria. As the objective of this study requires characterizing the 
different hand motion and stages of contraction, it focuses more on the signal 
analysis without any modification to the signal rather than method comparison 
at the feature extraction and classification step. Previous literature [8] only 
reported the characteristic of only one hand motion of CC. However, since the 
motion can be obtained by observing two SEMG channels, the minimum 
amount of motion that can be studied should be three as observed in [5]. The 
importance of identifying the different stages of contraction is the ability to 
identify when actual motion occurs or does not occur according to the stages of 
contraction. It is important to see whether a certain segmented size could 
differentiate the stages of contraction when it is modified using MVC. This will 
help improve user experience with more accurate classification of when the 
motion should occur. 
 
 
1.3 Aim and Objectives 
 
 
The aim of this study is to classify 3 different hand motions and stages of 
contraction from SEMG signal in order to achieve ideal control using time 
domain features and ANN while determining real time suitability. To obtain that 
aim, several objectives are to be attained: 
 
 
(1) To study the characteristic of SEMG signal to differentiate hand motions 

and stages of contraction 
(2) To design and implement a classifier for classifying both different hand 

motions and stages of contraction. 
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(3) To evaluate the performance in terms of classification accuracy and total 
time delay. 
 
 

1.4  Scope of work 
 
 
Although one of the objectives of this study is to research on the computational 
time of the proposed method, this research is done mainly by simulation and 
offline, as the SEMG data has already been acquired. The data set[23] used 
has three different hand motions and stages to contraction to concentrate on 
whether the stages of contraction can be differentiated for the different hand 
motions since in previous reported literature only 1 hand motion were studied 
for stages of contraction. Only two channels are used in this study as only the 
two channel of FCU and ECR are considered needed to be able to differentiate 
the 3 different hand motions. There are 3 hand motions studies in this study, 
and because the two SEMG are used it should at least be able to differentiate 
the 3 different hand motions chosen in this study. The time domain features 
were selected based on recommendations from other literatures.  
 
 
The computational times were recorded at pre-processing, feature extraction 
and classification steps. For feature extraction, only time domain features were 
used as it is determined to be most efficient. At classification step, a fixed 
structure of the ANN is used so that a comparison can be made with other 
studies and to determine whether the number inputs will effect computation 
time when the amount of hidden neurons remain the same. 
 
 
1.5 Thesis Layout 
 
 
Chapter 1 describes some brief information of background and overview of 
research in the field that led to this project. It explains the aims and objectives 
of this study, where the main objective is to classify different hand motions and 
stages of contraction, as well as to evaluate the performance of the ANN in 
terms of classification accuracy and total delay time when using time domain 
features. 
 
 
Chapter 2 reviews the types of prosthetic hand and the control system 
available for the prosthetic hand. It introduces basic concepts of SEMG signal 
and reviews the methods available for the SEMG signal analysis steps of pre-
processing, feature extraction and classification of researches done, while 
discussing real time suitability.  
 
 
Chapter 3 explains the methodology of this research for the SEMG signal 
analysis steps, in terms of the characterization of time domain features for 
hand motion and stages of contraction. Classification accuracy was tested by 
classifying only hand motions, and classifying both hand motions and stages of 
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contraction. Computational times were recorded at each step of the pattern 
recognition based system.  
 
 
Chapter 4 presents the result obtained from the methodology used. It shows 
the pattern observed for the different motions and stages of contraction. The 
classification accuracy and computational time were compared and the 
performances in this study were compared with other studies. 
  
 
Chapter 5 will conclude the findings inferred from the results, with significant 
points at the steps of feature extraction and classification in terms of accuracy 
and total delay. Lastly, it discusses possible future works to find ways to 
improve classification accuracy while being suitable for real time application. 
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