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Our main contribution in the thesis is the development of a new block 

method which is called diagonally implicit two point block backward 
differentiation formulas of order two (DI2BBDF(2)), order three 

(DI2BBDF(3)) and order four (DI2BBDF(4)) for solving stiff ordinary 
differential equations (ODEs) and fuzzy differential equations (FDEs). 
This method is constructed to compute multiple approximations 

concurrently in a block using various back values. The performance of 
the method is compared with existing methods. Furthermore, the 

convergence and stability properties of the method are investigated. The 
strategy of choosing suitable step size is also discussed. This thesis also 
explored the numerical solution of first order FDEs. The fully implicit 

two point block backward differentiation formulas of order three 
(FI2BBDF(3)) is reviewed and modified in fuzzy version for solving fuzzy 
initial value problems (FIVPs) under a new interpretation of Hukuhara 

Differentiability Theorem (HDT). Based on HDT, the exact and 
approximated solutions for two cases are compared to investigate the 

accuracy of the method. Finally, the derived method is modified in fuzzy 
version for solving FIVPs under HDT. The efficiency of the method is 
compared with several existing methods. In conclusion, the proposed 

method can be an alternative method for solving stiff ODEs and FDEs.  
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FORMULASI DUA TITIK BLOK PEMBEZAAN KE BELAKANG 

PEPENJURU TERSIRAT BAGI MENYELESAIKAN PERSAMAAN 
PEMBEZAAN BIASA KAKU DAN PERSAMAAN PEMBEZAAN KABUR 

 
Oleh 

 

ISKANDAR SHAH BIN MOHD ZAWAWI 
 

Januari 2014 

 
 

Pengerusi: Zarina Bibi Binti Ibrahim, PhD 
Fakulti: Sains 
 

 
Sumbangan utama kami dalam tesis ini ialah pembangunan kaedah 
blok baru yang dipanggil formula dua titik blok pembezaan ke belakang 

pepenjuru tersirat peringkat kedua (F2BPBPT(2)), peringkat ketiga 
(F2BPBPT(3)) dan peringkat keempat (F2BPBPT(4)) bagi penyelesaian 

persamaan pembezaan biasa (PPB) kaku dan persamaan pembezaan 
kabur (PPK). Kaedah ini dibina untuk menghitung pelbagai 
penyelesaian anggaran secara serentak dalam satu blok menggunakan 

pelbagai nilai belakang. Prestasi kaedah dibandingkan dengan kaedah 
sedia ada. Tambahan lagi, sifat-sifat kestabilan dan penumpuan kaedah 

diselidik. Strategi pemilihan saiz langkah yang sesuai turut 
dibincangkan. Tesis ini juga meneroka penyelesaian berangka bagi 
persamaan pembezaan biasa (PPB) kabur peringkat pertama. Formula 

dua titik blok pembezaan ke belakang tersirat penuh peringkat ketiga 
(F2BPBTP(3)) dikaji semula dan diubahsuai dalam versi kabur untuk 
menyelesaikan Masalah Nilai Awal (MNA). Oleh itu, pentafsiran kabur 

baru di bawah Teorem Pembezaan Hukuhara (TPH) ditunjukkan. 
Berdasarkan TPH, penyelesaian tepat dan anggaran bagi dua kes 

dibandingkan untuk menyiasat ketepatan kaedah. Akhirnya, kaedah 
yang dibina telah diubahsuai dalam versi kabur bagi menyelesaikan 
PPK di bawah TPH. Ketepatan kaedah ditunjukkan dan dibandingkan 

dengan beberapa kaedah sedia ada. Kesimpulannya, kaedah yang 
dicadangkan boleh menjadi salah satu kaedah alternatif bagi 

menyelesaikan PPB dan PPK. 
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1 

 

CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Introduction  
 

Differential equations serve as mathematical models for many 
exciting problems, not only in science and technology but also in 
such diverse fields such as economics, psychology, defense, and 

demography. The general form of differential equation is given by 
Butcher (2008) as follows: 
 

                                                                     
 
Rapid growth in the theory of differential equations and in its 

applications to almost every branch of knowledge has resulted in a 
continued study by researchers in many disciplines. However, 

ordinary differential equations (ODEs) are the most popular 
differential equations in mathematics curricula all over the world and 
it is now being taught at various levels in almost every institution of 

higher learning. Lambert (1991) has presented the general form of 
first order system of ODEs as  
 

 

                        

                        
                                         

                          

                                                

 

Currently, the study of differential equations with uncertainty plays 
an important role in many disciplines and real world phenomena. 

This type of differential equations is called fuzzy differential equations 
(FDEs). Developing an accurate numerical method is one of the 
important parts in studying ODEs and FDEs. The numerical method 

can be classified as single step methods and multistep methods. The 
single step methods is used to calculate approximated solution using 

one previous point while for multistep methods, the approximated 
solution is evaluated using several previous points. The examples of 
multistep methods are Adams method and backward differentiation 

formulas (BDF).  
 

 

1.2 Stiff initial value problems 
 

The following definition is given by Lambert (1991) to define stiff 
ODEs.  
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2 

Definition 1.1 

The system of (1.2) is said to be stiff if                    and 

                           where    are the eigenvalues of the 

Jacobian matrix,     
  

  
   Stiff problems often have        of greatly 

varying magnitude, which adds to the difficulty of their solution. 
 

 
1.3 Linear multistep method 

 
The theory of linear multistep method (LMM) is developed in large 
scale by Dahlquist (1956) and has become widely known through the 

exposition by Henrichi (1962, 1963). In this section, we briefly 
present some definitions of LMM which are introduced by Lambert 
(1991). 

 
Definition 1.2 

The LMM can be represented in standard form by an equation:  

       

 

   

          

 

   

                                              

where              and                       and    are real 

constants and   is defined as the order of the particular method 

applied. The formula (1.3) is explicit if     , and it is implicit if 

      
 
Definition 1.3 
The LMM is said to be of order   if                    . The 

general form of constant    is defined as: 

       

 

   

 

     
 

  
     

 

   

 

      
                        

                         

 

The general form of block method is given by Ibrahim et al. (2008) as 
follows: 

 
Definition 1.4 

The   block   point method is a matrix finite difference equation of 
the form:  

       

 

   

          

 

   

                                              

where    and    are properly chosen     matrix coefficients.  
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Majid and Suleiman (2006) stated that the block method is defined to 
be diagonally implicit if the coefficients of the upper-diagonal entries 

are zero.  
 
Definition 1.5 

We consider             and     are coefficients of      and      in 
the matrix form below.  
 

 

      

       

  

    

    

                                                     

 

The equation (1.5) is defined to be diagonally implicit if     is zero 

whereas     and     are equal. 
 
 
1.4 Convergence  
 
Convergence refers to the ability of a method to approximate the 
exact solution to a differential equation to any required accuracy. 

Butcher (2008) mentioned that the LMM is convergent if and only if it 
is consistent and stable.  
 

Definition 1.6 
The equation (1.5) proved to be consistent if and only if the following 

conditions are satisfied: 

      

 

   

                                                                  

     

 

   

    

 

   

                                                        

 

Definition 1.7 
LMM is said to be zero-stable if the roots            of the first 

characteristic polynomial,                 
     

            

satisfies       . If one of the roots is   , we call this root the 

principal root of     . 
 
Definition 1.8 

The LMM is said to be zero-stable if no root of the first characteristic 

polynomial,      has modulus greater than one, and if every root with 
modulus one is simple. 

 
Theorem 1.1  
The necessary and sufficient conditions for the LMM to be convergent 

are that it is consistent and zero-stable. 
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1.5 Stability theory 
 

The stability properties of LMM are generally considered as the most 
important for the effectiveness solution of some problems. In fact, 
Shampine and Watts (1969) emphasized that the stability problem 

would appear to be the most serious limitation of block methods. The 
following definitions demonstrate the absolute stable and A-stable of 

LMM. 
 

Definition 1.9 

The LMM is said to be absolute stable in a region   (real part) of the 

complex plane if, for all     , all roots of the stability polynomial 

        associated with the method, satisfy                   
 
Definition 1.10 

The LMM is A-stable if its region of absolute stability contains the 

whole of the left-hand half-plane,            
 

 
1.6 Fuzzy theory 
Here, we present some definitions of fuzzy number, triangular fuzzy 

number, trapezoidal fuzzy number and fuzzy initial value problems 
which are described by Nguyen and Walker (2000). 

 
Definition 1.11 
A fuzzy number satisfies the following conditions. 

1)        for at least one  . 
2) The support            of   is bounded. 

3) The    cuts of   are closed intervals. 
 
Definition 1.12 

A fuzzy number,      can be determined by any pair                   

where        which satisfies the three conditions: 
1)      is a bounded left continuous increasing function          

2)      is a bounded left continuous decreasing function          
3)           ,        

 
Definition 1.13 

A triangular fuzzy number is determined by a triplet         of crisp 

number with        where its membership function is given by 
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Figure 2.1: Triangular fuzzy on       

 

Definition 1.14 

A trapezoidal fuzzy number is determined by the quadruplet           
of crisp number with         where its membership function is 

given by 
 

      

 
 
 
 

 
 
 

   

   
             

           

   

   
             

               

  

 
Figure 2.2: Trapezoidal fuzzy on       

 

 

1.7 Fuzzy initial value problems 

 
The general form of fuzzy initial value problem (FIVP) is first 
introduced by Seikkala (1987) as follows: 

 

                                                                             

 

where    is a fuzzy number with   level intervals          
    

 
    

and          
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The general form of FIVP which is given by Shokri (2007) in following 
form: 

 

                                
                                                                        

 

where        is a fuzzy function of   ,               is a fuzzy function 

of variable   and the fuzzy variable                is the fuzzy 

derivative of        and         is a trapezoidal shaped fuzzy number.  
 

The definition and theorem of Hukuhara differentiability is given by 
Stefanini and Bede (2009) as follows: 
 

Definition 1.15 

Let           and          where   is differentiable at     Then we 
consider two cases: 

 

(I) For all     sufficiently close to  , the Hukuhara differences 

              and               exist (in metric D) such that 
 

   
    

             

 
     

    

             

 
                           

 

(II) For all     sufficiently close to  , the Hukuhara differences 

             and               exist (in metric D) such that 
 

   
    

             

 
     

    

             

 
                           

 
Theorem 1.2 

Let           where          and   is a fuzzy function and denote 

                          for each        . Then two cases will be 

considered. 
 

Case 1: If        is Hukuhara differentiable in the first form (1.11), 

then        and         are differentiable functions in the following 

form: 
 

                                                                      

 

Case 2: If        is Hukuhara differentiable in the second form (1.12), 
then        and         are differentiable functions in the following 

form: 
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1.8 Objective of the thesis 
 

The objectives of this thesis are as follows: 
1) To derive the diagonally implicit two point block backward 

differentiation formulas of order two, three and four for solving 

ODEs and FDEs. 
2) To study the convergence and stability properties of the derived 

methods. 
3) To compare the efficiency of the derived methods in terms of 

accuracy and computational time when applied to stiff ODEs. 

4) To investigate the accuracy of the proposed method when 
applied to FDEs. 

 

 
1.9 Scope of the thesis 

 
This thesis comprises the formulation of a new block backward 
differentiation formulas (BBDF) which is called diagonally implicit two 

point block backward differentiation formulas (DI2BBDF) of order two 
(DI2BBDF(2)), order three (DI2BBDF(3)) and order four (DI2BBDF(4)). 
Meanwhile, the scope of this thesis is limited to the numerical 

solution of stiff initial value problems (IVPs) and first order fuzzy 
initial value problems (FIVPs). For a fair comparison, the numerical 

results obtained from the existing methods are collected and 
compared with the proposed method. 
 

 

1.10 Outline of the thesis 
 

This thesis covers the following: 
 

Chapter 1 provides the interest of problems and some relevant 
definitions when solving stiff ODEs and FDEs. 
 

In Chapter 2, the evolution of block method, BBDF, diagonally 
implicit method and FDEs are reviewed.  
 

Chapter 3 contains the derivation of second order, third order and 
fourth order diagonally implicit two point BBDF. The order of the 

method is verified. This chapter focuses on solving stiff ODEs under 
implementation of Newton iteration. In the last section of this 
chapter, the performance of the derived method is compared with the 

existing methods in terms of accuracy and computational time.  
 
In Chapter 4, the consistency and zero stability of the derived method 

are discussed for the purpose of convergence properties. The stability 
region of the methods are illustrated and discussed. The restriction of 

the step size is calculated to determine the suitable step size.  
 



© C
OPYRIG

HT U
PM

 

8 

The formulation of fully implicit two point BBDF is reviewed in 
Chapter 5. This method is modified in fuzzy version to solve FIVPs. A 

new interpretation of FIVPs is presented based on Case 1 and Case 2 
of HDT. The performance of the method is observed based on 
comparison of approximate solutions and exact solutions.  

 
In Chapter 6, the diagonally implicit two point BBDF of order two, 

order three and order four are modified in fuzzy version to solve 
FIVPs. The accuracy of the numerical results is compared with 
several existing methods.  

 
Finally, the summary of the thesis and recommendation for future 
research are discussed in Chapter 7.  
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