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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

CLASSIFICATION AND DERIVATIONS OF LOW-DIMENSIONAL
COMPLEX DIALGEBRAS

By

WITRIANY BINTI BASRI

December 2014

Chair: Professor Isamiddin S. Rakhimov, Ph.D.

Faculty: Science

The thesis is mainly comprised of two parts. In the first part we consider the
classification problem of low-dimensional associative, diassociative and dendriform
algebras. Since so far there are no research results dealing with representing dias-
sociative and dendriform algebras in form of precise tables under some basis, it is
desirable to have such lists up to isomorphisms. There is no standard approach to
the classification problem of algebras. One of the approaches which can be applied
is to fix a basis and represent the algebras in terms of structure constants. Due to
the identities we have constraints for the structure constants in polynomial form.
Solving the system of polynomials we get a redundant list of all the algebras from
given class. Then we erase isomorphic copies from the list. It is slightly tedious
to perform this procedure by hand. For this case we construct and use several
computer programs. They are applied to verify the isomorphism between found
algebras, to find automorphism groups and verify the algebra identities.

In conclusion, we give complete lists of isomorphism classes for diassociative and
dendriform algebras in low dimensions. We found for diassociative algebras four
isomorphism classes (one parametric family and another three are single class)
in dimension two, 17 isomorphism classes (one parametric family and others are
single classes) in dimension three and for nilpotent diassociative algebras we ob-
tain 16 isomorphism classes (all of them are parametric family) in dimension four.
In dendriform algebras case there are twelve isomorphism classes (one parametric
family and another eleven are single classes) in dimension two.
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The second part of the thesis is devoted to the computation of derivations of
low-dimensional associative, diassociative and dendriform algebras. We give the
derivations the above mentioned classes of algebras in dimensions two and three.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENGELASAN DAN TERBITAN BAGI DIMENSI RENDAH
KOMPLEKS DWIALJABAR

Oleh

WITRIANY BINTI BASRI

Disember 2014

Pengerusi: Profesor Isamiddin S. Rakhimov, Ph.D.

Fakulti: Sains

Tesis ini terdiri daripada dua bahagian. Dalam bahagian pertama kita mempertim-
bangkan masalah pengelasan bagi dimensi rendah aljabar sekutuan, dwisekutuan
dan dendriform. Oleh kerana setakat ini tiada hasil penyelidikan berkaitan den-
gan mewakili aljabar dwisekutuan dan dendriform dalam bentuk jadual di bawah
beberapa asas, adalah wajar untuk mempunyai senarai tersebut hingga ke isomor-
fisma. Tiada pendekatan piawai kepada masalah pengelasan aljabar. Salah satu
pendekatan yang boleh digunakan adalah dengan menetapkan asas dan mewakili
aljabar dari segi pemalar struktur. Oleh kerana identiti tersebut, kami mem-
punyai kekangan untuk pemalar struktur dalam bentuk polinomial. Penyelesaian
sistem polinomial, kami akan memperoleh senarai berlebihan untuk semua aljabar
dari kelas yang diberikan. Kemudian kami memansuhkan salinan isomorfik dari
senarai. Ia adalah sedikit merumitkan untuk melakukan prosedur ini secara man-
ual. Untuk kes ini dalam penyelidikan, kami membina dan menggunakan beberapa
program komputer. Ia digunakan untuk mengesahkan isomorfisma antara aljabar
yang diperolehi, untuk mencari kumpulan automorfisma dan mengesahkan identiti
aljabar.

Kesimpulannya, kami memberikan senarai lengkap kelas isomorfisma untuk al-
jabar dwisekutuan dan dendriform dalam dimensi rendah. Kami dapati dengan
aljabar dwisekutuan, empat kelas isomorfisma (satu keluarga parametrik dan tiga
lagi adalah kelas tunggal) dalam dimensi dua, 17 kelas isomorfisma (satu keluarga
parametrik dan selainnya kelas tunggal) dalam tiga dimensi dan aljabar dwiseku-
tuan nilpoten, kami mendapatkan 16 kelas isomorfisma (semuanya adalah keluarga
parametrik) dalam dimensi empat. Dalam kes aljabar dendriform terdapat dua
belas kelas isomorfisma (satu keluarga parametrik dan sebelas lagi adalah kelas
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tunggal) dalam dimensi dua.

Bahagian kedua tesis ini adalah dikhaskan untuk pengiraan terbitan dimensi ren-
dah aljabar sekutuan, dwisekutuan dan dendriform. Kami memberikan terbitan
bagi kelas-kelas aljabar yang dinyatakan di atas dalam dimensi dua dan tiga.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

This thesis is concerned with two problems. The first is the classification problem
of low-dimensional dialgebras and another one is the description of derivations of
these algebras. In classification problem of diassociative algebras, we consider the
diassociative algebra as a combination of two associative algebras. The dendriform
algebra characterized structure on a vector space is associative in multiplication,
i.e., x ∗ y = x ≺ y + x � y. The categories of diassociative and dendriform alge-
bras structures on n-dimensional vector space, we denote by Diasn and Dendn,
respectively. These classes of algebras have been introduced by Loday around 1990.

We begin this chapter by introducing basic concepts of algebra, diassociative and
dendriform algebras, followed by literature review and research objectives.

1.2 Basic concepts

Let V be a vector space over a field, K and {e1, e2, . . . , en} be a basis of V . Then
an algebra structure on V is defined by specifiying the products

eiej =
n∑
k=1

γkijek, γkij ∈ k, 1 ≤ i, j ≤ n. (1.1)

Indeed, (1.1) extends uniquely to a bilinear product on V by rule

(
n∑
i=1

biei)(
n∑
j=1

cjej) =
n∑
k=1

(
n∑

i,j=1

bicjγ
k
ij)ek.

The n3 elements γkij ∈ K are called the structure constants of the multiplication

that is defined by (1.1).

Every n-dimensional algebra A can be realized (up to isomorphism) by specifying
suitable structure constants γkij . On the other hand, not all choices of structure
constants yield special classes of algebras. Furthermore, different choices of the
structure constants can give isomorphic algebras.

Analogously, the diassociative algebra structure on V is defined as follows. Let
V be an n-dimensional vector space over a field K equipped with two bilinear
associative binary operations, denoted by a and `:

a: V × V → V

and
`: V × V → V.
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If a and ` satisfying the following axioms: ∀a, b, c ∈ V

(a a b) a c = a a (b ` c),
(a ` b) a c = a ` (b a c),
(a a b) ` c = a ` (b ` c),

(1.2)

then the triple (V,a,`) is called a diassociative algebra. The operations a and `
are called the left and right products, respectively.

Due to the axioms (1.2) the set of structure constants γkij and δkij form a closed

with respect to Zarisski topology subset of Kn3 ×Kn3 . Thus Diasn can be con-
sidered as a subvariety in 2n3-dimensional affine space. This variety is denoted by
Diasn. Consider a natural action of GLn(V ) on Diasn by changing a basis. This
action can be expressed as follows:

if g = [g
j
i ] ∈ GLn(K) and D = {γkij , δ

r
st}, then

{(g ∗D)kij , (g ∗D)rst} = {gpi · g
q
j · (g

k
l )−1 · γtpq , g

p
s · gqt · (g

r
l )−1 · γtpq}.

Two algebras D1 and D2 are isomorphic if and only if they belong to the same
orbit under this action.

Definition 1.1 A homomorphism of two dialgebras D and D1 (provided both are
given over the same field K) is a K-linear map φ : D → D1 such that

φ(x a y) = φ(x) a φ(y) and φ(x ` y) = φ(x) ` φ(y)

for all x, y ∈ D.

Remark 1.1 As usual, φ is an isomorphism if it is a bijective homomorphism
and φ is an automorphism if φ is an isomorphism and D = D1.

Let O(D) be the set of laws isomorphic to D. It is called the orbit of D. Let fix a
basis {e1, e2, . . . en} of V . Then

ei a ej =
∑
k

γkijek and ei ` ej =
∑
k

δkijek (1.3)

for i, j, k = 1, 2, 3, . . . n.

Once a basis is fixed, we can identify the law D with its structure constants. These
constants γkij and δkij satisfy:

2
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∑
s

γtijγ
s
tk =

∑
s

γsitγ
t
jk,∑

s

γtijγ
s
tk =

∑
s

γsitδ
t
jk,∑

s

δtijγ
s
tk =

∑
s

δsitγ
t
jk,∑

s

γtijδ
s
tk =

∑
s

δsitδ
t
jk,∑

s

δtijδ
s
tk =

∑
s

δsitδ
t
jk.

where i, j, k, s, t = 1, 2, . . . , n.

Another class of algebras introduced by J.-L.Loday and (co)homologically closely
related to this class is called a class of dendriform algebras.

Let V be an n−dimensional dendriform algebra. Dendriform algebra is an algebra
equipped with two binary operations

�: V × V → V, and ≺: V × V → V

satisfying the following axioms:

(a ≺ b) ≺ c = (a ≺ c) ≺ b+ a ≺ (b � c),

(a � b) ≺ c = a � (b ≺ c),

(a ≺ b) � c+ (a � b) � c = a � (b � c).

∀a, b, c ∈ V . The triple (V,�,≺) is called dendriform algebra.

A dendriform algebra in fixed basis {e1, e2, . . . en} can be written as follows.

ei ≺ ej =
∑
s

αsijes and el � ep =
∑
q

βtlpet, (1.4)

for 1 ≤ i, j, s, p, q, t ≤ n.

The structure constants αsij and βtlp of the dendriform algebras satisfies the con-

ditions

3
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∑
s

αsijα
t
sk =

∑
s

(αsjkα
t
is + αtisβ

s
jk),∑

s

αtskβ
s
ij =

∑
s

αtisβ
s
jk,∑

s

(αsijβ
t
sk + βsijβ

t
sk) =

∑
s

βtisβ
s
jk.

for 1 ≤ i, j, k, s, t ≤ n.

Since a diassociative algebra is a combination of two associative algebras, but an
associative algebra is represented by quivers. Let us discuss brief on the quivers
first. We assume that K is an algebraically closed field. All the results of this
section have appeared elsewhere, particularly in Hazewinkel et al. (2007).

Definition 1.2 A quiver Q = (V Q,AQ, s, e) is a finite directed graph which con-
sists of finite sets V Q,AQ and two mappings s, e : AQ → V Q. The elements of
V Q are called vertices (or points), and those of AQ are called arrows.

Usually, the set of vertices V Q will be a set 1,2,. . . ,n. We say that each arrow
σ ∈ AQ starts at the vertex s(σ) and ends at the vertex e(σ). The vertex s(σ) is
called the start (or initial, or source) vertex and the vertex e(σ) is called the end
(or target) vertex of σ. Some examples of quivers are:

α

1 2

4
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A quiver can be given by its adjacency (or incidence) matrix

[Q] =


t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tn1 tn2 . . . tnn


where tij is the number of arrows from the vertex i to the vertex j.

Two quivers Q1 and Q2 are called isomorphic if there is a bijective correspondence
between their vertices and arrows such that starts and ends of corresponding ar-
rows map into one other. It is not difficult to see that Q1 ' Q2 if and only if
the adjacency matrix [Q1] can be transformed into the adjacency matrix [Q2] by
a simultaneous permutation of rows and columns.

Example 1.1 1. For the quiver

1 2 3

α β

we have V Q = 1, 2, 3 and AQ = α, β. We also have s(α) = 1, s(β) =
2, e(α) = 2 and e(β) = 3.

2. A quiver may have several arrows in the same or in opposite direction. For
example:

1 2

3

and

1 2 3

5
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3. A quiver may also have loops. For example:

For a quiver Q = (V Q,AQ, s, e) and a field K one defines the path algebra KQ
of Q over K. Recall that a path p of the quiver Q from the vertex i to the vertex
j is a sequence of r arrows σ1σ2 . . . σr such that the start vertex of each arrow
σm coincides with the end vertex of the previous one σm−1 for 1 < m < r, and
moreover, the vertex i is the start vertex of σ1, while the vertex j is the end vertex
of σr. The number r of arrows is called the length of the path p. For such a path
p we define s(p) = s(σ1) = i and e(σk) = j. By convention we also include into
the set of all paths the trivial path εi of length zero which connects the vertex i
with itself without any arrow and we set s(εi) = e(εi) = i for each i ∈ V Q, and,
also, for any arrow σ ∈ AQ with start at i and end at j we set εiσ = σεj = σ. A
path, connecting a vertex of a quiver with itself and of length not equal to zero, is
called an oriented cycle.

Definition 1.3 The path algebra KQ of a quiver Q over a field K is the (free)
vector space with a K-basis consisting of all paths of Q. Multiplication in KQ is
defined in the obvious way: the product of two paths is given by composition when
possible, and is defined to be 0 otherwise.

Therefore if the path σ1 . . . σm connects i and j and the path σm+1 . . . σn connects
j and k, then the product σ1 . . . σmσm+1 . . . σn connects i with k. Otherwise, the
product of these paths equals 0. Extending the multiplication by distributivity,
we obtain a K-algebra KQ (not necessarily finite-dimensional), which is obviously
associative.

Remark 1.2 Note that if a quiver Q has an infinitely many vertices, then KQ has
no an identity element. If Q has infinitely many arrows, then KQ is not finitely
generated, and so it is not finite-dimensional over K. In future we shall always
assume that V Q is finite and V Q = 1, 2, . . . , n.

In the algebra KQ the set of trivial paths forms a set of pairwise orthogonal
idempotents i.e.,

ε2i = εi for all i ∈ V Q

εiεi = 0 for all i, j ∈ V Q such that i 6= j.

If V Q = 1, 2, . . . , n, the identity of KQ is the element which is equal to the sum of
all the trivial paths εi of length zero, that is, 1 = ε1 + ε2 + . . .+ εn. The elements
ε1, ε2, . . . , εn together with the paths of length one generate Q as an algebra. So
KQ is a finitely generated algebra.

6



© C
OPYRIG

HT U
PM

The subspace ε1A has as basis all paths starting at i, and the subspace Aεj has
as basis all paths ending at j. The subspace εiAεj has as basis all paths starting
at i and ending at j.

Since {ε1, ε2, . . . , εn} is a set of pairwise orthogonal idempotents for A = KQ with
sum equal to 1, we have the following decomposition of A into a direct sum:

A = ε1A⊕ ε2A⊕ . . .⊕ εnA.

So each εiA is a projective right A-module. Analogously, each Aεi is a projective
left A-module.

Lemma 1.1 Each εi for i ∈ V Q, is a primitive idempotent, and εiA is an inde-
composable projective right A-module.

Lemma 1.2 εiA 6' εjA, for i, j ∈ V Q and i 6= j.

Example 1.2 1. Let Q be the quiver

1 2 3

σ1 σ2

i.e., V Q = {1, 2, 3}, AQ = {σ1, σ2}.

Then KQ has a basis {ε1, ε2, ε3, σ1, σ2, σ1σ2} and KQ ' T3(K) =

K K K
0 K K
0 0 K

 ⊂
M3(K). So the algebra KQ is finite-dimensional over K.

2. Let Q be the quiver with one vertex and one loop:

α

1 2

Then KQ has a basis {ε, α, α2, . . . , αn, . . .}. Therefore KQ ' K[x], the poly-
nomial algebra in one variable x. Obviously, this algebra is finitely generated
but it is not finite-dimensional.

7
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3. Let Q be the quiver with one vertex and two loops:

α β

Then KQ has two generators α, β and a path in KQ is any word in α, β.
Therefore KQ ' K〈α, β〉, the free associative algebra generated by α, β,
which is non-commutative and infinite-dimensional over K.

If Q is a quiver with one vertex and n > 2 loops α1, α2, . . . , αn, then KQ '
K〈α1, α2, . . . , αn〉, the free associative algebra generated by α1, α2, . . . , αn,
which is also non-commutative and infinite-dimensional over K.

4. Let Q be the quiver with two vertices and two arrows:

1 2α

β

i.e., V Q = {1, 2} and AQ = {α, β}. The algebra KQ has a basis {ε1, ε2, α, β}.

This algebra is isomorphic to the Kronecker algebra A =

(
K K ⊕K
0 K

)
,

which is four-dimensional over K.

An object to be considered in the Gröbner bases theory is an ideal I = 〈g1, . . . , gr〉
in the algebra K[x1, x2, . . . , xn] of commutative polynomials over a field K, in other
words, we deal with polynomial generators in several variables.
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1.3 Literature Review

In 1993, Loday (1993) introduced the notion of Leibniz algebra, which is a general-
ization of Lie algebra. Such generalization is appeared when the skew-symmetricity
of the bracket is dropped and the Jacobi identity is changed by the Leibniz iden-
tity. Loday et al. (2001) also showed that the relationship between Lie algebras
and associative algebras can be extended to an analogous relationship between
Leibniz algebras and the so-called dialgebras which are a generalization of asso-
ciative algebras possessing two products denoted by a and `.

A dissociative algebra (or dialgebra) is a vector space with two bilinear operations
`, a, satisfying five conditions (Loday et al., 2001). Diassociative algebras are
associative when the two operations coincide. The main motivation of Loday to
introduce this class of algebras was the search of an “obstruction” to the periodicity
in algebraic K-theory. Besides this purely algebraic motivation some relationships
them with classical geometry, non-commutative geometry and physics have been
recently discovered.

The classification of associative algebras is an old and often recurring problem.
The first investigation into it was perhaps done by Peirce (1881). Many other
publications related to the problem have appeared. Without any claim of com-
pleteness, we mention work by Hazlett (1916), (nilpotent algebras of dimension
≤ 4 over C), Mazolla (1979) - associative unitary algebras of dimension 5 over
algebraically closed fields of characteristic not 2, Mazzola (1980) - nilpotent com-
mutative associative algebras of dimension ≤ 5, over algebraically closed fields of
characteristic not 2,3, and recently, Poonen (2008) - nilpotent commutative asso-
ciative algebras of dimension ≤ 5, over algebraically closed fields.

A new era in the development of the theory of finite-dimensional associative al-
gebras begun due to works of Wedderburn (1907), who obtained the fundamental
results of this theory: description of the structure of semisimple algebras over a
field, a theorem on the lifting of the quotient by the radical, the theorem on the
commutativity of finite division rings, and others.

Further development of the theory of associative algebras was in the 80-s of the
last century, when many open problems, remaining unsolved since 30-s, have been
solved.

The next two theorems are basis of the structural theory of associative algebras
(see Hazewinkel et al. (2007)).

Theorem 1.1 (Wedderburn - Artin) Any finite-dimensional semisimple associa-
tive algebra A is uniquely decomposed into a direct sum of a number of simple
algebra:

A = B1 ⊕B2 ⊕ . . .⊕Bk.

9
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Recall that an algebra is simple if it has no nontrivial two-sided ideals.

Theorem 1.2 Any finite-dimensional simple associative algebra A is isomorphic
to the algebra of matrices Mn(D) over a division ring D, the number n and the
division ring D are uniquely determined by the algebra A.

These theorems give a complete description of semisimple algebras. At the same
time on the structure of nonsemisimple algebras, not much is known, even for an
algebraically closed field.

Complex associative algebras in dimensions up to 5 were first classified by B. Pierce
back in 1870, initially in the form of manuscripts, which appeared later in Peirce
(1881). There are classifications of unital 3, 4 and 5-dimensional associative alge-
bra by Scorza (1938), Gabriel (1975) and Mazolla (1979), respectively.

The Rota-Baxter algebra was introduced by Baxter (1960) in his probability study,
and was popularized mainly by the investigations of Rota (1969) and his col-
leagues. Loday has introduced dendriform algebra notion in connection with di-
algebra structure (Loday, 1993). Besides of Loday’s motivations, the key point
from our perspective is the intimate relation between the Rota-Baxter algebras
and such dendriform algebras. In 2002, Ebrahimi has explored the relationship
between Rota-Baxter operators and Loday-type algebras, i.e. dendriform di- and
tri-algebras (see Ebrahimi-F, 2002). It is shown that associative algebras equipped
with a Rota-Baxter operator of arbitrary weight always give such dendriform struc-
tures. Discussion more detail the relationship Between Rota-Baxter algebras and
dendriform dialgebras and continue the research to study the adjoint functors be-
tween the category of Rota-Baxter algebras and the categories of dendriform di-
and trialgebras were considered in the works of Ebrahimi and Guo (2005 and
2007). Leroux (2006) proposed a reformulation of the free dendriform algebra over
the generator via a parenthesis setting and brief survey on planar binary trees.
Ebrahimi and his colleagues showed some new combinatorial identities in dendri-
form dialgebras and investigate solutions for a particular class of linear equations
in dendriform algebras (see Ebrahimi-F., K., Manchon, D. and Patras, F., 2007
and Ebrahimi-F. and Manchon, 2009).

Dialgebra cohomology with coefficients was studied by Frabetti ((1997) and (2001))
and deformations of dialgebras were developed in Majumdar and Mukherjee (2002).
Dialgebras appear in different context such as dialgebra can be related to triple
product as in (Pozhidaev, 2008). Lin and Zhang (2010) defined a new associative
dialgebra over a polynomial algebra F [x, y] with two indeterminates x and y. Left
derivations, right derivations, derivations and automorphism of F [x, y] are deter-
mined too. Bokut et al. (2010) used the Gröbner-Shirshov basis for a dialgebra.
The concept of left-symmetric dialgebras was introduced by Felipe (2011). In 2012,
Bremner has explored some recent developments in the theory of associative and
nonassociative dialgebras, with an emphasis on polynomial identities and multi-
linear operations. González (2013) has desccribed the class of zero-cubed algebras
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and applied its study to two-dimensional associative dialgebras. The problem of
finding special identities for dialgebras was studied by Kolesnikov and Voronin
(2013). Zhang et al. (2014) has introduced the concepts of a totally compatible
dialgebra and a totally compatible Lie dialgebra.

1.4 Research Objectives

In this thesis, we consider the classification problem of low-dimensional diassocia-
tive algebras and dendriform algebras. The classes of diassociative and dendriform
algebras in dimension n are denoted by Diasn and Dendn, respectively. We inves-
tigate the classification of these two classes of algebras for dimensions up to 4 and
2, respectively. Then we discuss on finding derivations of these classes of algebras.

Firstly, we classify associative algebras in low dimensions. Then by using this re-
sult we give classification of low-dimensional diassociative algebras and dendriform
algebras.

For both classifications, we apply the same approaches. It is as follows, we fix a
basis and then represent the algebras in term of structure constants. Due to the
identities we get constraints for the structure constants in polynomial equations
form. Solving the system of the polynomial equations gives a redundant list of all
the algebras from given class. We break up the set of algebras into several disjoint
subsets. For each of these subsets, we consider the classification problem sepa-
rately. As the result, some of them are represented as a single orbit and others as
a union of infinitely many orbits. Finally, we give the list of non-isomorphic classes
of complex diassociative and dendriform algebras with the tables of multiplications.

We study the derivations of complex associative, diassociative and dendriform
algebras. Simple properties of the right and left multiplication operators in di-
associative algebras are also considered. Derivations of two, three-dimensional
associative, diassociative algebras and dimension two in dendriform algebras are
presented.

1.5 Outline of Contents

The thesis consists of five chapters. Chapter 1 summarises basic knowledge about
algebras, dialgebras.

In Chapter 2, we describe a relationship between associative, diassociative and
dendriform algebras by Loday diagram and some preliminaries of diassociative
and dendriform algebras. Here we introduce the concepts of nilpotency and solv-
ability for dialgebras.
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The main results of the thesis are presented in Chapters 3 and 4. In Chapter 3,
we present a complete lists of isomorphism classes of Asn, Diasn and Dendn in
dimension 2 up to 4 (associative and diassociative algebras, while dimension 4,
considered nilpotent case only denoted by Dian4 in dimension four) and dimen-
sion 2, respectively. In Chapter 4, we construct all possible list of derivations.

Some conclusions and suggestions for further research are given in Chapter 5.
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