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EFFECTS OF PISTON CROWN PROFILES ON PERFORMANCE OF A 

GASOLINE HOMOGENEOUS CHARGE COMPRESSION IGNITION 

ENGINE USING COMPUTATIONAL FLUID DYNAMICS 

By 

            HASSAN ABDULHADI JASIM  

October 2016 

Chairman    : Abdul Aziz Hairuddin, PhD 

Faculty         : Engineering 

Homogeneous charge compression ignition (HCCI) combustion incorporates the 

advantages of both spark-ignition (SI) engines and compression ignition (CI) engines. 

The homogeneous mixture is inducted into the cylinder without throttling losses and 

compressed until the mixture reaches the auto-ignition point, and combustion then occurs 

spontaneously without discernible flame propagation. This feature helps to reduce 

emission levels while producing a relatively high thermal efficiency. 

In the present study, the first objective is to analyse the performance of HCCI engine 

with different piston crown profiles using computational fluid dynamic (CFD) method, 

where the software is commercially known as ANSYS FLUENT. The second objective 

is to evaluate the most suitable piston crown profile to be used in the gasoline-fuelled 

HCCI engine. Using ANSYS software to create a three-dimensional CFD, the mesh 

creation and specific zone names with dissimilar topologies of each zone were meshed 

separately. FLUENT was used to model complex combustion phenomena in an HCCI 

engine. The validation and simulation were conducted based on an HCCI single-cylinder, 

four-stroke engine fuelled with gasoline at an engine speed of 1500 rpm and with a 

compression ratio of 11.7:1, it was then evaluated using three split injections. 

Combustion parameters such as cylinder pressure, temperature and heat release rate were 

obtained from the validation work. The CFD model yielded good results for experimental 

and CFD simulation. 

This study focuses on how different piston crown designs affect the performance of 

HCCI engines. Six different designs were created and evaluated through CFD analysis, 

where all other engine operating parameters were the same as in the experimental work. 

For simplicity, the pistons were named A, B, C, D, E and F. The study analyses the in-

cylinder pressure, in-cylinder temperature, heat release rate, turbulent kinetic energy, 

turbulent dissipation rate, NOX formation, indicated mean effective pressure (IMEP) and 

power output of different piston designs, and it evaluates the most suitable piston to be 

used in HCCI engines to improve engine performance. 
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The results demonstrate that improved piston crown design in HCCI engines can improve 

engine performance. All pistons in the investigation reached a peak pressure and 

temperature above the experiment. In piston A there is an increase of 9.6% in indicated 

mean effective pressure (IMEP) and 9.76% in power output compared with the 

experimental results, followed by pistons B, C, D, E and F, in order from highest to 

lowest, which was caused by higher peak pressure towards the end of combustion, 

leading to diffusion combustion. Piston A’s design could be used in an HCCI engine 

configuration to improve engine performance. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

KESAN PROFIL PUNCAK OMBOH PADA PRESTASI ENJIN PENCUCUHAN 

MAMPATAN CAJ HOMOGEN GASOLIN MENGGUNAKAN 

PERKOMPUTERAN DINAMIK BENDALIR 

Oleh 

          HASSAN ABDULHADI JASIM  

Oktober 2016 

Pengerusi    : Abdul Aziz Hairuddin, PhD 

Fakulti         : Kejuruteraan 

Pembakaran homogen caj pencucuhan mampatan (HCCI) menggabungkan kelebihan 

kedua-dua enjin percikan pencucuhan (SI) dan enjin pencucuhan mampatan (CI). 

Campuran yang seragam dimasukkan ke dalam silinder tanpa kehilangan pendikitan dan 

dimampatkan sehingga campuran mencapai titik auto-nyalaan, dan pembakaran berlaku 

secara spontan tanpa boleh beza perambatan api. Ciri ini membantu untuk mengurangkan 

tahap pelepasan manakala menghasilkan kecekapan haba yang agak tinggi.  

Dalam kajian ini, objektif pertama adalah untuk menganalisis tekanan dalam silinder 

yang mempunyai profil puncak omboh berbeza, dengan menggunakan kaedah 

perkomputeran dinamik bendalir (CFD), di mana perisian tersebut dikenali secara 

komersial sebagai ANSYS FLUENT. Objektif kedua adalah untuk menilai profil puncak 

omboh yang paling sesuai yang akan digunakan dalam enjin HCCI berbahan bakar 

gasolin. Perisian ANSYS digunakan untuk mewujudkan CFD tiga dimensi, penciptaan 

jaringan dan nama zon tertentu dengan topologi berbeza dimana setiap zon dijejaringkan 

secara berasingan. FLUENT digunakan untuk memodelkan fenomena pembakaran 

kompleks dalam enjin HCCI. Pengesahan dan simulasi telah dijalankan berdasarkan 

enjin HCCI satu silinder, empat lejang dengan petrol pada kelajuan enjin 1500 rpm dan 

dengan nisbah mampatan 11.7:1, ia telah dinilai dengan menggunakan tiga suntikan 

terpisah. Parameter pembakaran seperti tekanan silinder, suhu dan kadar pembebasan 

haba diperolehi daripada kerja-kerja pengesahan. Model CFD menghasilkan hasil yang 

baik untuk eksperimen dan simulasi CFD. 

Kajian ini memberi tumpuan kepada bagaimana profil puncak omboh berbeza memberi 

kesan kepada prestasi enjin HCCI. Enam profil yang berbeza diwujudkan dan dinilai 

melalui analisis CFD, di mana semua parameter operasi enjin lain adalah sama seperti 

dalam eksperimen. Untuk keringkasan, piston dinamakan A, B, C, D, E dan F. Kajian ini 

menganalisis tekanan di dalam silinder, suhu dalam silinder, kadar pembebasan haba, 

tenaga kinetik bergelora, kadar pelesapan bergelora, pembentukan NOX, tekanan 

berkesan min tertunjuk (IMEP) dan output kuasa profil omboh yang berbeza dan ia 

menilai omboh yang paling sesuai untuk digunakan dalam enjin HCCI untuk 

meningkatkan prestasi enjin. 
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Keputusan menunjukkan bahawa profil puncak omboh diperbaiki dalam enjin HCCI 

boleh mengurangkan paras pelepasan gas. Semua omboh dalam kajian mencapai tekanan 

dan suhu puncak melebihi eksperimen. Dalam omboh A terdapat peningkatan sebanyak 

9.6% dalam tekanan min berkesan tertunjuk (IMEP) dan 9.76% dalam pengeluaran kuasa 

berbanding dengan keputusan eksperimen, diikuti oleh omboh B, C, D, E dan F, untuk 

nilai dari tertinggi ke terendah, yang disebabkan oleh tekanan puncak yang lebih tinggi 

pada akhir pembakaran, yang membawa kepada pembakaran resapan . Profil omboh A 

boleh digunakan dalam konfigurasi enjin HCCI untuk meningkatkan prestasi enjin. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

The recent years have seen the world more concerned about climate change, health 

impacts of emissions and resource scarcity have made emissions and consumption of 

fuels as critical concerns that require consideration. Although engines have wide 

applications, the major sources of environmental pollution in the current times are the 

emissions from transportation vehicles (Yasar et al., 2013). This follows their increase 

all over the globe as developing countries continue to develop and persons that were 

initially poor rising to the middle-class level. Moreover, coupled with the association of 

vehicle ownership with a high class, middle-class populations continue to desire and to 

seek ways of owning cars (Kachuri et al., 2016). This has resulted in increased number 

of vehicles as well as increased traffic jams and especially in cities. Additionally, the 

number of cars around the globe is expected to triple by 2050 because of the increased 

development of the developing countries (Campen et al., 2014; Kachuri et al., 2016). 

These have become areas of increased emissions from diesel engines and increased fuel 

consumption for spark ignition engines. 

Therefore, the situation, poses a double impact: negative health impacts and 

environmental pollution. Persons that especially affected by the health risks are drivers 

while environmental pollution poses a threat to global warming (Gong et al., 2014). 

Emissions realized from the transportation vehicles are the major sources of 

environmental pollutions and particularly the emission of particulate matter (PM). 

Particulate matter, being among the common air pollutions, is a mixture of liquid droplets 

and small particles. The articles pose a threat to human health to a certain degree. For 

instance, the particles with a diameter of fewer than 10 micrometers and which pass 

through the nose and throat and enter the lungs have greater harm in comparison with 

larger particles (Engerer & Kunert, 2015). The exhaust emissions from motor vehicles 

are ubiquitous with the exposure taking place using outdoor and indoor air and in 

numerous occupational environments. Most of the people that are exposed to the 

emissions are operators of heavy equipment and drivers (McDonald et al., 2007; Yasar 

et al., 2013). 

Gasoline and diesel are the most common fuel in combustion engines and comprise a 

complex combination of chemicals, for instance, organic compounds that are volatile, 

nitroarenes, polycyclic aromatic hydrocarbons (PAH) and carbon monoxide. Although 

the same particles are emitted from engines powered by diesel or gasoline the surface 

properties and the distribution of the particles are different suggesting the variations in 

the health impacts linked to such exposures. This has led to research on the various ways 

through which these emissions can be reduced as part of compliance with regulations, 

especially in developed countries. The transition in engine technology can be realized as 

more research studies are being conducted as well as the continued commercialization 

of technologies for hydrogen engines, electric vehicles, cell engines and hybrid vehicles. 
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1.2  Introduction 

 

A homogeneous charge compression ignition (HCCI) engine is a relatively new mode of 

the combustion process, which has in the recent times generated great interest to be used 

in a vehicle and the generation of stationary power (Khaliq et al., 2012). HCCI engine is 

the auto-ignition process by which the combustion occurs instantaneously when the fuel-

air mixture has enough chemical activation energy at the end of compression stroke. 

Thus, both high efficiency and low emissions can be obtained (Najafabadi et al., 2013). 

The engine is further defined by Ghafouri et al. (2014) as the combination between the 

compression ignition (CI) and spark ignition (SI) engine. Figure 1.1 shows the 

comparison between CI, SI and HCCI engines. 

 

 

Figure 1.1: Comparison between (a) diesel, (b) gasoline and (c) HCCI engines 

(Ghafouri et al., 2014). 

 

 

CI engines are used to describe the combustion which occurs in diesel engines. The CI 

engines are mainly used in some passenger cars, larger trains and trucks and high power 

generation and marine applications. In the conventional diesel engine, air enters the 

cylinder during the intake stroke. In the compression stroke, the air is compressed by the 

piston. The fuel is sprayed by an injector into the cylinder as the compression nears its 

end and the fuel is burnt as it is diffused into the cylinder. 

 

The process of combustion takes place in three phases. The first involves the emission 

of the atomized oil droplets from the nozzle of the fuel valve into the space for 

combustion at the commencement of the ignition, its evaporation and mixing with hot 

air which is compressed. This leads to some chemical changes in the fuel. The mixture 

reaches an ignitable condition leading to the commencement of spontaneous combustion. 

In the second phase, the ignition and the beginning of the combustion lead to the setting 

up of a flame which accelerates through the chamber surrounding and burning other 

droplets and leading a fast heat generation with increased temperature and pressure. In 

the third phase, the hot and turbulent conditions in the combustion chamber ignite and 

burn the remaining fuel charge as it is injected. 

 

The CI engines do not experience pumping losses and as such have increased part load 

efficiency. The control of loads is accomplished through the change in the level of fuel. 
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The diesel engines have problems with the emission of NOX and smoke. Given that the 

fuel and the air are not mixed well, the resulting combustion leads to the production of 

particulate matter. 

 

In the conventional SI engine, fuel and air enter the cylinder and then mix in the intake 

stroke. In the process of the compression stroke, the mixture is compressed by the piston 

and is prepared for combustion. Towards the end of this stroke, the mixture is ignited by 

a spark plug leading to the initiation of a flame which passes through the charge and as 

such burning the reactants. The disadvantage of the flame is that it leads to the 

introduction of high local temperatures and as such leading to the production of NOX 

(Kannan et al., 2015). Spark ignition engines which are fitted with three-way catalysts 

can be taken as very clean, but they have problems during their part load conditions 

(Kamaruddin et al., 2012). 

 

In the HCCI engine, the engine has the capability of running very lean mixture with an 

equivalence ratio of about 0.2 or even lower given that there is no need for the 

propagation of the flame as multiple sites for ignition are developed as a result of 

compression. The capability of the HCCI to operate at very lean mixture and pre-mixed 

conditions provide the potential for its efficient functioning with low NOX and particulate 

emissions. This is because as opposed to the other engines, the air-fuel mixture is able to 

attain homogeneity to a certain degree. Significant attention has been accorded to the 

analysis of HCCI engines in the recent years. The analyses have been conducted on the 

assumption that the combustion of HCCI is controlled by the local rates of reaction that 

are chemical-kinetic in nature and having no propagation of flames. The idea has 

received support from spectroscopic data which indicate that the radical formation order 

in HCCI combustion is correspondent to self-ignition as opposed to propagation (Nemati 

et al., 2011). 

 

1.2.1  Advantages and Disadvantages of HCCI Engines 

 

When compared with the CI and the SI engines, the HCCI engines have relatively high 

part load efficiency, very low levels of NOX emissions (Bedoya et al., 2012). This comes 

through the dilute mixture of fuel and air. HCCI engines do not have problems with the 

formation of soot because of the employment of the homogenous charge (Barari et al., 

2016). The HCCI engines also have the capability to operate on numerous types of fuel 

including diesel, biodiesels and gasoline. Moreover, it has the capability to combine the 

low level of fuel consumption as is the case of the diesel engines with the low exhaust 

emissions characterized by the SI engines having three-way catalysts. 

 

A side from their potential for being less expensive because of the way in which they are 

constructed, they do not need (a) sophisticated inlet duct shapes for the generation of the 

particular turbulence within the combustion chamber; (b) a high-pressure system for 

injection; and (c) after treatment systems for the exhaust gas. The ignition in the HCCI 

engines is determined by the chemical-kinetic rates of reaction of the air/fuel mixture 

whose control comes from temperature, time and the composition of the mixture. 

 

It appears that the diesel engines may not achieve the emission levels of particulate 

matter and NOX through future legislation. In the same way, the SI engines do not have 

the capability of reaching higher rates of efficiency during part loads because of the way 
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they are constructed and their working principles. The HCCI engine can, therefore, be 

taken as a combination of the CI and the SI and as such connects their attractive 

properties and has the potential of emerging as the driving propulsion of vehicles. The 

reasons that underlie these advantages include increased specific heat ratio of a very lean 

mixture; increased cycle efficiency that comes from the use of a higher compression 

ratio; faster combustion. Because of these, the HCCI has gained a strong interest globally 

(Yao et al., 2009). The advantages that make the HCCI be regarded as a combination are 

indicated in Table 1.1. 

 

Table 1.1: The advantages of HCCI engine (Barari et al., 2016). 

 

SI engine CI engine HCCI engine 

Low efficiency at part 

loads 

High efficiency during all 

load conditions 

Relatively high efficiency at 

low load conditions 

Low emission of 

particulate matter 

High emission of 

particulate matter 

Low emissions of particulate 

matter 

  Ability to use any fuels 

  Less maintenance, no spark 

plug 

 

Despite their advantages of relatively high efficiency and reduced emissions, the HCCI 

engines have their challenges. In the HCCI engine, the combustion occurs when the 

mixture auto-ignites instantaneously at any location. The implication is that the start of 

combustion is not well defined, like having a spark plug in SI engines. The ignition 

occurs in such a way that it is in numerous points which enables the mixture to burn in a 

simultaneous manner. The lack of a direct initiation of combustion leads to difficulty in 

controlling the auto-ignition process. 

 

To achieve the dynamic operation of the HCCI engine, the conditions that induce 

combustion much be changed. This means that the engine must control the compression 

ratio, gas pressure and temperature, ratio of fuel and air in the mixture and quantity of 

exhaust recirculation. Although this has been achieved, the difficulty lies in ignition at 

higher loads. At increased loads, the rate at which pressure rises can increase instantly, 

increasing engine noise and leading to knocking. 

 

Moreover, the control of combustion duration is also a challenge. In the exhaust gas 

recirculation (EGR) process, some of the exhaust gases are channeled back to the 

combustion chamber for the promotion of auto ignition. Having sustained levels of 

exhaust gases in each of the engine cycles result in cycle-to-cycle coupling given that a 

large proportion of the cylinder charge is retained in the cylinder in the next cycle 

(Kamaruddin et al., 2012). The disadvantages of HCCI engines are summarized in Table 

1.2. 
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Table 1.2: The disadvantages of HCCI engine (Barari et al., 2016). 

 

Attribute Explanation 

Combustion Lack of a direct initiator of combustion  

Ignition Challenge in start of ignition 

High load conditions 
Instantaneous pressure rises, leading to knocking 

and may cause engine damage 

Timing Challenge in controlling the ignition timing 

1.3  Research Focus 

 

Only a few studies have considered the impact of piston shapes on the performance of 

engines. Conducted a study which reveals that the geometry of pistons bowls impacts 

greatly on combustion at conditions of low load and especially in the case that multiple 

strategies of injection are employed (Gugulothu & Reddy, 2015). They concluded that 

the geometries have an impact on engine performance. 

 

Conducted a study of the impact of the different shapes of pistons on the performance of 

gasoline direct injection engines (Zheng et al., 2015a). Findings indicated that flat top 

pistons are of benefit in the maintenance of turbulence intensity within the cylinder for 

high-pressure injectors with multi-holes. The explanation to this is that the structure 

enables the combustible mixture to form around the spark plug during ignition. Pistons 

having smoother surfaces enable the strengthening of kinetic energy at the ignition time 

and as such accelerate combustion and increase the temperature and pressure within the 

cylinder. Increased temperature and pressure within the cylinder enhance emission and 

the decrease in the emission of soot comes from subsequent oxidation. 

 

Although the studies reveal that there is the impact of the piston types or shapes on the 

performance of SI engines, no study has examined the same with HCCI engines. The 

current research focuses on studying the functioning of the HCCI engines with different 

piston crown designs to establish the most optimal design. Moreover, factors examined 

in defining this optimality include operating loads, and emissions. This comes from the 

notion that the piston crowns designs affect the performance of the engines at particular 

loads, and that there are designs that lead to increasing performance engine.  

 

1.4  Hypothesis 

 

The flat piston is common in internal combustion engine, where it does not improve the 

mixing process (Zheng et al., 2015a). However, in CI engines, they have different piston 

crown designs, and so to some of the SI engines (Zheng et al., 2015a), to improve the 

mixing, as well as the performance of the engine. It is hypothesized from the study that, 

the performance of HCCI engine will be improved with the piston which can create a 

better homogenous mixture and high turbulent level. Therefore, this study, contributes 

significantly to the performance of HCCI engines with different piston crown designs.  
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1.5  Objectives 

 

The objectives of the study are to: 

1. analyse the performance of HCCI engine with different piston crown profiles. 

2. evaluate the most suitable piston crown profile to be utilized in the gasoline-fuelled 

HCCI engine. 

 

1.6  Scope of Study 

 

The current study involves the design of the piston crown in a manner that enhances the 

combustion process. The design will be done through the use of ANSYS software and as 

such, the simulation software will facilitate both design and testing. The study will 

analyze the performance of different piston crown designs through the collection of data 

from the simulation software. The engine is a single cylinder, where the simulation starts 

from 0 – 720 crank angle degree (CAD). The engine speed is 1500 rpm, based on Hunicz 

et al. (2015). The simulation is based on a gasoline fuelled HCCI engine. However, the 

study uses single-reaction n-octane as a surrogate fuel (Cai & Pitsch, 2015), which is 

available from ANSYS software.  

 

1.7  Thesis Outline 

 

The thesis has five chapters. The second chapter is that of the literature review. In this 

chapter, explains the HCCI engines and their operation more closely, drawing 

comparisons with the diesel and the spark ignition engines. Moreover, the role of piston 

crowns in the modeling of the HCCI engine is discussed, together with the possibility of 

having variations of engine performance through the use of varied piston crowns. The 

literature reviewed provides the foundation for methodology and compare findings with 

those of other researchers where applicable. 

 

Chapter three is methodology or simulation methods. Given that the research is solely 

based on simulation of the piston crown designs and establishing their performance, the 

chapter majorly involves model preparation and a description of the grid generation of 

HCCI engine that created the needed mesh by moving the dynamic mesh model. 

Moreover, the chapter includes the definition of the variables to be measured and the 

actual simulation. This enables the collection of data and their subsequent analyses to 

provide the results required for discussion. 

 

Chapter four entails the presentation and the discussion of the findings. This involves the 

reporting of the stages of modeling together with the measures obtained from the various 

variables. Moreover, explains these results by comparing them with the findings of past 

studies and explaining any phenomenon established through the use of available 

literature. This enables the validation of the results. 

 

Chapter five which is the last is the conclusions and recommendations. It comprises the 

restatement of the aim and the objectives of the current study, the methods used and the 

summary of the results. Further, the challenges experienced in the course of modeling 

that can affect the validity and the reliability of the findings are also discussed. This leads 

to the statement of the recommendations for future research. The study ends with the 

conclusions chapter.  
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