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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

SYMMETRIC RANK-ONE METHOD AND ITS MODIFICATIONS
FOR UNCONSTRAINED OPTIMIZATION

By

ALIYU USMAN MOYI

June 2014

Chair: Associate Professor Leong Wah June, PhD

Faculty: Science

The attention of this thesis is on the theoretical and experimental behaviors of
some modifications of the symmetric rank-one method, one of the quasi-Newton
update for finding the minimum of real valued function f over all vectors x ∈ R

n.
Symmetric rank-one update (SR1) is known to have good numerical performance
among the quasi-Newton methods for solving unconstrained optimization prob-
lems. However, it is well known that the SR1 update may not preserve positive
definiteness even when updated from a positive definite approximation and can
be undefined with zero denominator. Thus, it is our aim in this thesis to provide
effective remedies aimed toward dealing with these well known shortcomings and
improve the performance of the update.

A new inexact line search strategy in solving unconstrained optimization prob-
lems is proposed. This method does not require the evaluation of the objective
function. Instead, it forces a reduction in gradient norm on each direction, hence
it is suitable for problems when function evaluation is very costly. The conver-
gence properties of this strategy is shown using the Lyapunov function approach.
Similarly, we proposed some scaling strategies to overcome the challenges of the
SR1 update. Under some mild assumptions, the convergence of these methods is
proved. Furthermore, in order to exploit the good properties of the SR1 update
in providing quality Hessian approximations, we introduced a three-term conju-
gate gradient method via the symmetric rank-one update in which a conjugate
gradient line search direction is constructed without the computation and storage
of matrices and possess the sufficient descent property. Extensive computational
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experiments performed on standard unconstrained optimization test functions and
some real-life optimization problems in order to examine the impact of the pro-
posed methods in comparison with other existing methods has shown significant
improvement on the performance of the SR1 method in terms of efficiency and
robustness.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH PANGKAT-SATU SIMETRI DAN
PENGUBAHSUAIANNYA UNTUK PENGOPTIMUMAN TAK

BERKEKANGAN

Oleh

ALIYU USMAN MOYI

Jun 2014

Pengerusi: Professor Madya Leong Wah June, PhD

Fakulti: Sains

Tumpuan tesis ini adalah mengenai tingkah laku secara teori dan eksperimen be-
berapa pengubahsuaian kaedah pangkat-satu simetri, salah satu daripada kemas
kini kuasi-Newton(QN) untuk mencari minumum bagi fungsi bernilai nyata f ke
atas semua vektor x ∈ R

n. Kemaskini pangkat-satu simetri (SR1) diketahui
mempunyai prestasi berangka yang baik di antara kaesah kuasi-Newton untuk
menyelesaikan masalah pengoptimuman tak berkekangan. Walau bagaimanapun,
adalah diketahui bahawa kemaskini SR1 tidak boleh memelihara ketentu-positifan
walaupun dikemaskini dari anggaran yang tentu positif dan boleh jadi tak ter-
takrif dengan pembahagi sifar. Oleh itu, adalah menjadi matlamat kami di dalam
tesis ini untuk menyumbangkan penyelesaian yang berkesan bertujuan mengatasi
kelemahan tersebut dan meningkatkan prestasi kemaskini ini.

Satu strategi carian garis tidak tepat baru dalam menyelesaikan masalah pengop-
timuman tak berkekangan dicadangkan. Strategi ni tidak memerlukan penilaian
fungsi objectif. Sebaliknya, ia memaksa pengurangan dalam norma kecerunan
pada setipa lellaran. Oleh itu, ia sesuai untuk masalah apabila penilaian fungsi
adalah sangat mahal. Sifai-sifat penumpuan strategi ini telah ditunjuk dengan
menggunakan pendekatan fungsi Lyapunov. Begitu juga, kami mencadangkan be-
berapa strategi penskalaan untuk mengatasi cabaran kamiskini SR1. Penumpuan
bagi kaedah-kaedah ini terbukti di bawah beberapa andaian ringan . Tambahan
pula, untuk mengekploitasi sifat-sifat baik daripada kemas kini SR1 dalam mem-
perkenalkan kaedah kecerunan konjugat tiga sebutan melalui kemaskini pangkat-
satu di mana suatu arah carian garis konjugat kecerunan dibina tanpa pengiran

v



© C
OPYRIG

HT U
PM

dan penyimpanan matriks dan memiliksi sifat penurunan yang mencukupi. Pengi-
raan ujikaij dijalakan je atas fungsi ujian pengoptimuman tak berkekangan piawai
dan beberapa masalah pengoptimuman dunia sebenar dikaji. Stategi yang di-
cadangkan telah menunjukkan peningkatan yang sangat ketara prestaisi kaedah
SR1 dari segi kecakapan dan kekukuhan berbanding strategi dengan yang sedia
ada.
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CHAPTER 1

INTRODUCTION

1.1 Background

Optimization problems are the products of processes in the real world, from science
and engineering to economics. They constantly emanate from our desire to choose
the best among competing alternatives that require some decision making, and in
solving these problems we attempt to find the degree of goodness of the alternative
conveyed by an objective function. Undoubtedly, optimization is an important tool
essential in any problem involving decision making. In general, methods concerned
with finding the maximum or minimum of a given function of many real variables
can be term as optimization methods. According to Walsh (1975) “the study of
optimization techniques is attractive because of its very wide field of application
arising from diverse discipline”. One of the factor that gives a tremendous boom
to the growth and application of optimization methods is the advent of computer,
which saw numerous optimization techniques been developed and are constantly
being applied in solving real-life problems, but the choice of method for solving
a given problem is largely a matter of personal preference, since according to
Nocedal and Wright (2006), “there is no universal optimization algorithm but
rather a collection of algorithms, each of which is designed to a particular type of
optimization problem”. In practice, it was observed that a particular algorithm
may be a good option in solving certain type of minimization problems, but its
efficiency degenerates when applied to solve other categories of problems (see Phua
(1997) for instance).

1.2 Fundamental Concepts and Basic Definitions

Consider the optimization problem

min f(x) (1.1)

subject to x ∈ D

where x is the vector of variables of the optimization problem, D is a subset of
R
n called the constraint or feasible set and the function f : D ⊆ R

n → R is the
objective function. The best vector x of the decision variable over all possible vec-
tors in D known as the optimum vector that solves the problem (1.1) is denoted
by x∗ with a corresponding optimum function value f(x∗). Classifying problems
with the general form (1.1) can be done by considering the nature of the objec-
tive function, the constraints (linear, nonlinear, convex), the number of variables
(small, medium or large), the smoothness of the given function (differentiable or
non differentiable) and so on. But basically, the main difference is between those
problems having and those not having constraints on the variables. If D = R

n,
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the problem is called unconstrained minimization problem,

min
x∈Rn

f(x). (1.2)

Otherwise it is a constrained minimization problem.

In unconstrained optimization, we minimize an objective function that depends
on real variables and the values of these variable have no restrictions at all. It
is worth mentioning that there is no difference, for the values of the variables
that minimize f(x) also maximize −f(x). Therefore, we are going to restrict our
attention in this thesis to minimizing unconstrained optimization problems only.
Many modern optimization techniques are designed to solve specifically the gen-
eral unconstrained optimization problems. For a given constrained optimization
problem, techniques for unconstrained optimization problems can be used to solve
these problems since they constitute the foundation for the constrained-problems,
in which the constraints are substituted by penalization terms in the objective
function to cushion the effect of constraint violation. To have a better under-
standing of the methods and to follow the development described in this thesis,
the following definitions which we used throughout are briefly outlined (See No-
cedal and Wright (2006) for details):

Definition 1.2.1 A vector x∗ ∈ D is a global minimizer of f overD if f(x∗) ≤ f(x)
for all x, where x ranges over all of D.

Definition 1.2.2 A vector x∗ ∈ D is called a local minimizer of f over D if
there is an open neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N .

Definition 1.2.3 A norm is any mapping ‖ · ‖ from R
n to the non-negative real

numbers, such that the following conditions are satisfied for all x, y ∈ R
n and all

α ∈ R.
(i) ‖x‖=0 if and only if x = 0
(ii) ‖x+ y‖ ≤ ‖x‖+‖y‖
(iii) ‖αx‖=|α|‖x‖

Definition 1.2.4 Let A, B ∈ R
m×n. A mapping ‖ · ‖: R

m×n −→ R is said
to be a matrix norm if the following properties are satisfied for all A,B ∈ R

m×n

and all α ∈ R:
(i) ‖A+ B‖ ≤ ‖A‖+‖B‖
(ii) ‖αA‖=|α|‖A‖.

Let g(x) represents the gradient of f at x whose i-th component is defined as

[g(x)]i =
∂f(x)

∂xi
, i = 1, ..., n (1.3)

2
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and also G(x) to denote the n×n Hessian matrix of f at x whose ij-th component
is defined as

[G(x)]ij =
∂2f(x)

∂xi∂xj
, i = 1, ..., n, j = 1, ..., n (1.4)

Definition 1.2.5 A function f is said to be Lipschitz continuous in an open
neighborhood D ⊂ R

n if there is a constant γ > 0 such that

|f(x)− f(y)| ≤ γ‖x− y‖ for all x, y ∈ D (1.5)

where ‖ · ‖ is a selected norm and γ is called Lipschitz constant.

Definition 1.2.6 Let A be a square matrix, we say that A is symmetric if A = AT ,
and a symmetric matrix A is positive definite if

xTAx > 0 for all x ∈ R
n, x 6= 0 (1.6)

Similarly by applying the weak inequality to (1.6), A is called positive semidefinite
that is when

xTAx ≥ 0. (1.7)

Definition 1.2.7 Two vectors x, y 6= 0 are said to be orthogonal if the scalar
product xT y = (x, y) = 0. In the same degree, two vectors x, y 6= 0 are termed to
be mutually conjugate with respect to the matrix A if xTAy = (x,Ay) = 0, where
A is a positive definite symmetric matrix.

Definition 1.2.8 Let f : Rn → R be a function that is continuously differen-
tiable, we say that x∗ ∈ R

n is a stationary or critical point, if ∇f(x∗) = 0.

Definition 1.2.9 If a stationary or critical point is neither a local minimizer
nor a local maximizer such a point is called a saddle point.

Definition 1.2.10 Let f : R
n → R be a function at x. We say that the di-

rection d ∈ R
n is a direction of decrease if there exists a constant σ > 0 such that

f(x+ αd) < f(x) for all α ∈ (0, σ).

Definition 1.2.11 Let f : Rn → R be a function that is differentiable at x∗ ∈ R
n.

A direction d ∈ R
n is said to be a descent direction of f at x if

dT∇f(x) < 0. (1.8)

Lemma 1.2.1 (Nocedal and Wright (2006))
Let U and V be matrices in R

n×p for some p between 1 and n and let L(Rn) define
the linear space of all matrices of order n. The rank-k update of a nonsingular

3
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matrix A ∈ L(Rn) of the form

Ã = A+ UV T (1.9)

is nonsingular if and only if µ = I + V TA−1U 6= 0. In particular if µ 6= 0, then
the inverse of Ã is given by

Ã−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1 (1.10)

Equation (1.10) is known as the Sherman-Morrison formula, a very explicit way
of expressing the inverse of a matrix. For the original proof of the formula, see
Sherman and Morrison (1950)

Definition 1.2.12 The condition number k(A) of an n × n nonsingular matrix
defined by

k(A) =
λ1
λn

is the ratio of its largest and smallest eigenvalue.

This ratio is a measure that tells the extent of the difficulty to solve the asso-
ciated linear system Ax = b or alternatively the condition number k(A) quantifies
the sensitivity of the problem Ax = b. Matrices with large condition numbers are
said to be ill-conditioned while those with small condition numbers are said to be
well-conditioned.

Taylor series expansion serves as the building block in the techniques and methods
for locating the minimizer of a nonlinear differentiable function. for this reason we
now state it in the following theorem :

Theorem 1.2.1 Taylor’s Theorem (See, for example Nocedal andWright (2006))
Let f : Rn → R be a function that is continuously differentiable and that d ∈ R

n

then we have that
f(x+ d) = f(x) +∇f(x+ τd)T d, (1.11)

for some τ ∈ (0, 1). In addition, if f is twice continuously differentiable, it will
leads to

∇f(x+ d) = ∇f(x) +

∫ 1

0
∇2f(x+ τd)T d dτ, (1.12)

and that

f(x+ d) = f(x) +∇f(x)T d+
1

2
dT∇2f(x+ τd)T d, (1.13)

for some constant τ ∈ (0, 1).

Since most algorithms for unconstrained optimization are iterative, they will gen-
erate a sequence of iterates that are intended to converge. Convergence rate is
of interest to measure how quickly the iterates of an algorithm converges to the

4
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solution x∗ of a given function. Understanding the convergence rate of an algo-
rithm is very important since according to Dennis and More (1977) important as a
method is its convergence rate, if the method converges slowly we may not be able
to see it converge. Therefore, in agreement with the above assertion we outlined
the following definitions which will give an insight into how convergence rate is
basically characterized:

Definition 1.2.13 Let {xk} denote a sequence in R
n that converges to the fi-

nal solution x∗, for some norm ‖ · ‖. Given a constant ξ ∈ (0, 1) , we say that the
convergence is q-linear if

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ ξ, for all k sufficiently large (1.14)

Definition 1.2.14 The convergence is termed q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0 (1.15)

and it is called q-quadratic convergence if there exist a positive constant G, not
necessarily less than 1, such that

‖xk+1 − x∗‖
‖xk − x∗‖2 ≤ G, for all k sufficiently large (1.16)

Remark:
“Any sequence that converges q-quadratically also converges q-superlinearly and
any sequence that converges q-superlinearly also converges q-linearly.” (Nocedal
and Wright (2006))

Definition 1.2.15 The rate of convergence is termed r-linear where (‘r’ stands
for ‘root’) if there is a sequence of nonnegative scalers {νk} such that

‖xk − x∗‖ ≤ νk for all k (1.17)

and {νk} converges q-linearly to zero. The above definition is a weaker type of
convergence rate in which the overall error decrease rate is significant than the
decrease over each individual step of the algorithm Dennis and Schnabel (1983).

Conventionally, we call for the termination of an algorithm whenever the condition
∇f(xk) = 0 is attained. However, this condition is seldom found in practice be-
cause the numerical evaluation of the gradient hardly becomes identically equal to
zero. Therefore, we need a more practical stopping criterion to ascertain whether
a method has converges to the required solution or not. In order to promise the
convergence of a given method, we impose the condition that either

|f(xk)− f(x∗)| ≤ ǫ or ‖xk − x∗‖ ≤ ǫ
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where ǫ is a user specified. In practical realities, these conditions are also not ob-
tainable since we require the information of x∗, therefore we opt to use the following
criteria frequently use to stop iterative methods for unconstrained optimization:

‖∇f(xk)‖ ≤ ǫ (1.18)

‖∇f(xk)‖ ≤ ǫ×max(1, ‖xk‖) (1.19)

where ǫ is the machine precision.

1.3 Optimality Conditions for Unconstrained Optimization

Optimality conditions constitutes one of the basis for locating the solution of an
unconstrained optimization problem in the algorithms we are considering in this
thesis. These conditions are derived by letting the solution point x∗ to be the local
minimizer of a continuously differentiable function f . In the light of the above,
we are here giving a brief review on these conditions for which their proofs can be
found in Nocedal and Wright (2006).

Theorem 1.3.1 (First-Order Necessary Optimality Conditions)
Let f : Rn → R be continuously differentiable in an open neighborhood D ⊂ R

n,
if x∗ ∈ D is a local solution to the problem (1.2) then

∇f(x∗) = 0 (1.20)

Theorem 1.3.2 (Second-Order Necessary Conditions for optimality)
Let f : Rn → R be twice continuously differentiable in an open neighborhood
D ⊂ R

n, if x∗ ∈ D is a local solution to the problem (1.2) then ∇f(x∗) = 0 and
∇2f(x∗) is positive semidefinite.

Theorem 1.3.3 (Second-Order Sufficient Conditions for Optimality)
Let f : Rn → R be twice continuously differentiable in an open neighborhood
D ⊂ R

n, and x∗ ∈ D, if ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ is
a strict local minimizer of f .

1.4 Convexity

Convexity plays a major role in the theory of minimization algorithms, since many
objective functions are convex within some neighborhood of a local minimizer and
convergence analysis of numerical methods for locating local minimizers can easily
be launched for convex objective functions (Wolfe (1978)). The term convex can
both be applied to sets and functions. Convex set and convex function do feature
most frequently in numerous areas of applied science and Mathematics. Thus we
give the following definitions:

Definition 1.4.1 A set D ⊂ R
n is convex if for any two points x1, x2 ∈ D

6
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and for any constant λ ∈ [0, 1], we have

λx1 + (1− λ)x2 ∈ D. (1.21)

Definition 1.4.2 A function f is said to be a convex function over a nonempty
set D ⊂ R

n if for any two points x1, x2 ∈ D and for all λ ∈ [0, 1], we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (1.22)

Similarly, the function f is called strictly convex, if we replace the inequality in
(1.22) by a strict inequality such that x1 6= x2 and the constant λ is in the open
interval (0,1).

Definition 1.4.3 A function f is called a uniformly (or strongly) convex func-
tion on D, if there is a constant h > 0 such that for any two points x1, x2 ∈ D;

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)−
1

2
hλ(1− λ)‖x1 − x2‖2. (1.23)

Theorem 1.4.1 Let D ⊂ R
n be a nonempty set and f : Rn → R a convex func-

tion on D, it follows that any local minimizer x∗ is a global minimizer of f and
if in addition f is continuously differentiable, then any stationary point x∗ is a
global minimizer of f .

proof. See Nocedal and Wright (2006)

In the next part, we give some theorems on first and second order conditions
of differentiable convex functions with the following characterization, the proof
which can be seen as advanced by Andrei (2007).

Theorem 1.4.2 Let f : D ⊂ R
n → R be a continuously differentiable func-

tion on D, where D ⊂ R
n is an open nonempty set, then we have:

(i) f is convex if and only if , for any two points x1 6= x2 ∈ D:

f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1). (1.24)

(ii) f is strictly convex on D if and only if , for any two points x1, x2 ∈ D, x1 6= x2:

f(x2) > f(x1) +∇f(x1)
T (x2 − x1). (1.25)

(iii) f is uniformly (or strongly) convex function on D, if and only if , for any two
points x1, x2 ∈ D, there is a constant h > 0 such that:

f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1) +

1

2
h‖x1 − x2‖2. (1.26)

Theorem 1.4.3 Let f : D ⊂ R
n → R be twice continuously differentiable function

on D, where D ⊂ R
n is an open nonempty set, then:

7
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(i) f is convex if and only if its Hessian matrix is positive semidefinite at each
point in D.
(ii) f is strictly convex if and only if its Hessian matrix is positive definite at each
point in D.
(iii) f is uniformly (or strongly) convex function if and only if its Hessian matrix
is uniformly positive definite at each point in D, that is for a constant a > 0 we
have:

a‖ν‖2 ≤ νT∇2f(x)ν. ∀x ∈ D, ν ∈ R
n.

1.5 Statement of the Problem

The major shortcomings of the SR1 update are the background of this research
which includes:
1. The approximate inverse Hessian generated by the SR1 update may not preserve
positive definiteness even when updated from a positive definite approximation,
and thus dk+1 may not be a descent direction.

2. Sometimes the denominator yTk (sk − Hkyk) in the SR1 update may become
zero or undefined leading to numerical instabilities.

1.6 Scope of the thesis

Quasi-Newton methods are distinguished by their use of approximate Hessian ma-
trices. These approximate matrices are evaluated with respect to some iterative
update formula as the algorithm progresses. The update procedure only requires
the gradient of the objective function in each iteration, these methods differ by the
formula they use for updating the approximate Hessian matrix. In this thesis our
focus is only on the line search implementation of the symmetric rank-one update
to find the optimal solution of the general unconstrained optimization problem
(1.2).

1.7 Objectives of the Thesis

In this thesis, we focus on various modifications of symmetric rank-one (SR1)
method for solving small, medium and large-scale unconstrained optimization
problems. These modified schemes of update not only possesses good numerical
performance of the original SR1 but an improved numerical efficiency and stability,
in which the major shortcomings of the SR1 of not maintaining positive definite
approximations and becoming undefined with zero denominator are overcome by
some simple strategies.

Specifically the objectives of the thesis are:
• To derive effective inexact line search strategy for the implementation of SR1
method.
• To develop new scaling strategies in avoiding the loss of positive definiteness of
the SR1 update.
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• To derive a three-term conjugate gradient method via the symmetric rank-one
formula for solving large-scale unconstrained optimization problems.
• To establish the convergence results of the proposed methods.
• To present extensive numerical results on some benchmark optimization prob-
lems for evaluation of the performance of the proposed methods compared with
some existing schemes.
• To apply the proposed methods in solving some real-life optimization problems.

1.8 Outline of the Thesis

The thesis is arranged accordingly into 7 chapters as follows:
In chapter 1 we present an overview of unconstrained optimization algorithm, some
basic mathematical background related to the research work and the objectives of
the research are highlighted.

A comprehensive review of related literature on existing line search methods for
unconstrained optimization is given chapter 2 .

In chapter 3, we present a new line search strategy for the implementation of
the SR1 updating scheme. Convergence results for this inexact line search method
are shown. Numerical results are reported and discussed, and the chapter ends
with a brief conclusion.

Some scaling strategies to overcome the major shortcoming of the SR1 update
are derived in chapter 4. Convergence results of the improved SR1 methods are
analyzed. Numerical experiments obtained from the improved SR1 methods with
other existing variants of the SR1 method on some standard set of test problems
are reported.

Chapter 5 suggests a three-term conjugate gradient method inspired by the SR1
update for solving large-scale unconstrained optimization problems. Convergence
analysis for the proposed method is established. Conclusions are drawn based
upon the computational evidence at the end of the chapter.

Chapter 6 will discuss some applications of the proposed methods in solving real-
life optimization problems. Numerical results obtained from the applications are
presented and discussed with the chapter ends with a conclusion.

Finally, in chapter 7, we conclude the thesis with summary of the achievements
based on the earlier stated objectives. An outline of a number of possible direc-
tions of related future research is given with the findings in this thesis serving as
a basis.
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