

UNIVERSITI PUTRA MALAYSIA

OIL PALM EMPTY FRUIT BUNCH CARBONIZATION IN PILOT SCALE AND INDUSTRIAL SCALE HORIZONTAL ROTARY DRUMS

LAU LEK HANG

FK 2016 75

OIL PALM EMPTY FRUIT BUNCH CARBONIZATION IN PILOT SCALE AND INDUSTRIAL SCALE HORIZONTAL ROTARY DRUMS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2016

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

OIL PALM EMPTY FRUIT BUNCH CARBONIZATION IN PILOT SCALE AND INDUSTRIAL SCALE HORIZONTAL ROTARY DRUMS

By

LAU LEK HANG

January 2016

Chairman : Mohamad Amran b. Mohd Salleh, PhD Faculty : Engineering

Oil palm empty fruit bunch, EFB, is one of the biomass wastes generated from the palm oil production industry. Currently most of the EFB are incinerated or utilized as the boiler fuels for steam and electricity generation, some are mulched or composted naturally in the plantation; however these processes generally aggravated environmental problems due to process inefficiency. EFB conversion to biochar is a promising way to resolve the EFB disposal issue, as it is a renewable energy and a carbon neutral cycle if to be used as fuel, contributing in mitigating climate change. The objective of this study is to obtain optimum carbonization conditions of EFB in a horizontal rotary drum towards the char yield and properties. Carbonization conditions to be included are final carbonization temperature and retention time of carbonization.

EFB was characterized in laboratory of its elementary composition and moisture content by using CHNS/O-932 analyser and themogravimetry analyser. The results were comparable with previous works. Laboratory thermogravimetry analysis of EFB at 10°C/min, 30°C/min and 50°C/min heating rates using TGA analyser has shown that the maximum decomposition temperatures at different heating rates were in the range of 360°C to 370°C, suggesting good char yield with reasonable preserved calorific values could be produced at carbonization temperature above 370°C. EFB was then carbonized in pilot rotary horizontal drum reactor developed by Nasmech Technology Sdn Bhd at 400°C, 500°C and 600°C with 2.5 hours, 3.0 hours and 3.5 hours retention times and char products from different batch of tests were tested for proximate analysis and calorific values. The EFB char yields are in the range of 21.8% to 26.4%, increase with lower carbonization temperature but no significant effect with retention time. Both carbonization temperature and retention time have no significant effect on calorific value of chars which were at the range of 21.50 MJ/kg to 23.98 MJ/kg. The higher carbonization temperature reduced volatile content and increasing fixed carbon content of char. Retention time has no significant effect towards the char proximate composition

EFB char carbonization in 20 T/Day industrial scale rotary drum reactor, developed by Nasmech Technology Sdn Bhd has been performed at 350°C and 400°C final

carbonization temperature at 5 hours retention time. The analysis on char product have shown the EFB char produced possessed 22.71 MJ/kJ average calorific value for 400°C char, similar quality with pilot scale char product at same 400°C condition but higher char calorific value of 24.43 MJ/kg was produced at 350°C. This concludes that the char quality is greatly affected by final carbonization temperature and not much by retention time under isotherm final carbonization temperature condition. Yield of Dengkil plant are at average of 22.23% for 400°C char and 25.12% for 350°C char. Dengkil char is classified as medium quality fuel in the rank of bituminous or subbituminous equivalent quality according to ASTM D388 standard classification method for coal,

Specific carbonization energy of EFB and heat transfer flux rate through feedstock contact area with reactor drum surface could be used as preliminary scale up criteria of horizontal rotary drum. However the accuracy of upscale rules could be enhanced with further study and incorporation of others heat transfer parameters.

Several operational hiccups have been reported for the Dengkil plant for future improvement and to minimize operational downtime of similar reactor system. Despite those shortfalls, the economics and energy balance of EFB char carbonization plant in Dengkil has also been studied by others and concluded that this plant is technical feasible and economically viable with net energy yield of EFB char produced at 11.47 MJ/kg EFB. From this study, optimum EFB char yield and quality is best produced at 350°C to 400°C with 5 hours retention time in the industrial scale horizontal rotary drum carbonization reactor.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KARBONISASI TANDAN BUAH KOSONG KELAPA SAWIT DALAM DRUM BERPUTAR MELINTANG SCALA LOJI PILOT DAN SCALA LOJI INDUSTRI

Oleh

LAU LEK HANG

Januari 2016

Pengerusi : Mohamad Amran b. Mohd Salleh, PhD Fakulti : Kejuruteraan

Tandan buah kosong kelapa sawit, EFB, adalah salah satu daripada sisa biojisim yang dijanakan daripada industri pengeluaran minyak sawit. Pada masa kini sebahagian daripada EFB adalah dibakar atau digunakan sebagai bahan api dalam dandang dan untuk penjanaan stim dan elektrik, manakala sebahagiannya diluputkan secara semula jadi dalam ladang kelapa sawit. Walau bagaimanapun proses-proses ini dipercayai akan mendatangkan kesan buruk kepada alam sekitar yang disebabkan oleh ketidakcekapan proses. Penukaran EFB kepada arang asas tumbuhan, atau biochar, adalah penyelesaian yang berpotensi untuk menyelesaikan isu pelupusan EFB, kerana EFB adalah jenis tenaga yang boleh diperbaharui dan mematuhi kitaran karbon neutral jika digunakan sebagai bahan api, menyumbang dalam mengurangkan impak-impak perubahan iklim. Objektif kajian ini adalah untuk mendapatkan keadaan optimum untuk karbonisasi EFB dalam drum putaran mendatar dengan mengkaji kesan keadaan karbonisasi terhadap hasil ciri-ciri arang. Keadaan-keadaan karbonisasi proses yang dikaji termasuklah suhu akhir proses karbonisasi dan masa pengekalan bahan-bahan EFB dalam karbonisasi proses atau retention time.

EFB diuji dalam makmal komposisi untuk sifat-sifat fisikal dan kandungan kelembapan alat penganalisis CHNS/O-932 menggunakan dan penganalisis dengan themogravimetry (TGA). Keputusan analisis didapati mempunyai persamaam dengan kajian sebelum ini. Analisis termogravimetry EFB telah dijalankan pada kadar pemanasan 10°C/min, 30°C/min dan 50°C/min dengan menggunakan TGA menunjukkan bahawa suhu penguraian maksimum pada kadar pemanasan yang berbeza adalah dalam julat 360°C hingga 370°C, mencadangkan suhu karbonisasi haruslah lebih tinggi dari julat suhu tersbut untuk mendapatkan kadar penghasilan produk yang baik lagi memelihara nilai kalori arang EFB. EFB kemudian dikarbonisasikan dalam reaktor berputar melintang direka dan dipasangkan oleh Nasmech Teknologi Sdn Bhd pada suhu 400°C, 500°C dan 600°C dengan 2.5 jam, 3.0 jam dan 3.5 jam retention time dan produk arang dari kumpulan ujian yang berbeza telah dianalisa untuk mendapatkan nilai kalori dan proximate analysis masing-masing. Kadar hasil arang EFB adalah dalam lingkungan 21.8% ke 26.4%, dengan kadar hasil meningkat apabila suhu

karbonisasi menurun tetapi tiada kesan yang ketara dari *retention time*. Kedua-dua suhu karbonisasi dan *retention time* tidak mempunyai kesan yang besar ke atas nilai kalori arang yang diuji yang didapati dalam lingkungan 21.50 MJ/kg hingga 23.98 MJ/kg. Suhu karbonisasi yang lebih tinggi megurangkan kandungan meruap atau *volatiles* dan menambahkan kandungan karbon tetap (*fixed carbon*) dalam arang *EFB*. Selain itu, *retention time* tidak mempunyai kesan yang ketara kepada komposisi *proximate analysis* dalam arang *EFB*.

Karbonisasi *EFB* dalam reaktor berputar mlintang skala industri berkapasiti 20 ton sehari yang didirikan oleh Nasmech Teknologi Sdn Bhd di Dengkil telah dijalankan pada suhu karbonisasi akhir 350°C dab 400°C selama 5 jam. Keputusan analysis menunjukkan arang *EFB* yang dihasilkan mempunyai nilai kalori purata 22.71 MJ/kg untuk arang hasilan dari 400°C, mempunyai kualiti yang setanding dengan produk aranng skala pilot, manakala nilai kalori purata yang lebih tinggi telah diperolehi pada 24.43 MJ/kg untuk arang hasilan 350°C. Ini menyimpulkan bahawa kualiti arang yang sangat dipengaruhi oleh suhu karbonisasi akhir dan tidak banyak dipengaruhi oleh *retention time* di bawah keadaan suhu karbonisasi isoterma akhir. Kadar penghasilan arang pada keadaan 350°C dan 400°C dari Carbonator[®] Dengkil adalah 22,23% dan 25.12% secara puratanya. Arang *EFB* yang dihasilkan dari Carbonator[®] Dengkil juga diklasifikasikan sebagai arang bermutu serdanaha dalam kategori *bituminous* atau *subbituminous* dalam kaedah piawai ASTM D388 untuk pengelasan kualiti arang batu.

Tenaga karbonisasi spesifik *EFB* dan kadar pemindahan haba fluks melalui kawasan sentuhan bahan mentah dengan permukaan reaktor *drum* boleh digunakan sebagai kriteria kasar untuk peningkatskalaan reaktor karbonisasi *drum* putaran mendatar. Walau bagaimanapun ketepatan peraturan peningkatskalaan tersebut boleh diperincikan lagi dengan kajian lanjut dan pengambikiraan parameter pemindahan haba yang lain.

Beberapa rintangan operasi kilang Dengkil telah dilaporkan untuk penambahbaikan pada masa hadapan dan untuk mengurangkan masa penghentian (*downtime*) operasi untuk sistem reaktor yang sama. Walaupun dihadapi kekurangan, ekonomi dan tenaga baki karbonisasi proses untuk menghasilkan arang *EFB* di Dengkil telah juga dikaji oleh pengkaji lain dan menyimbulkan bahawa sistem karbonisasi ini boleh diusahakan dari segi kesesuaian teknikal dan berdaya maju dari segi ekonomi dengan hasil tenaga bersih arang *EFB* yang dihasilkan pada 11.47 MJ/kg *EFB*. Dari analysis kajian ini, kadar hasilan and kualiti arang *EFB* yang optimum dapat dihasilkan pada 350°C – 400°C dalam 5 jam di dalam *drum* karbonisasi mendatar industri.

ACKNOWLEDGEMENTS

I wish to extend my sincere and great gratitude to Dr. Mohamad Amran b. Mohd Salleh, Head of Department of Chemical and Environmental Engineering, UPM, and to Professor Dr. Azni b. Idris, as my supervisors for giving valuable ideas, guidance, supports in my research study and thesis completion.

I also wish to thank Mr. Adli Nazri bin Mohd Kassim, from Analytical Lab, Chemical and Environmental Department, Faculty of Engineering, for his coordination in schedule arrangement for TGA analyser usage as well as guidance to use the equipment. Great thanks to Mr. Gan Tian Boon and Mr Chris Ho Kit Man, graduates of UPM Chemical and Environmental Engineering who have been cooperating in conducting the research during their undergraduate period. Besides, my gratitude to Nasmech Technology Sdn Bhd team for offering a lot of convenience and help especially the use of pilot unit and opportunity to access and study the Dengkil Carbonator[®] plant throughout the period of the research.

Lastly, I sincerely thank all my fellow research group members for their constructive comments, ideas and suggestions in improving my thesis at different stage of research, as well as to all of my friends and all parties who have given their encouraging supports and helps all the time.

I certify that a Thesis Examination Committee has met on 28 January 2016 to conduct the final examination of Lau Lek Hang on his thesis entitled "Oil Palm Empty Fruit Bunch Carbonization in Pilot Scale and Industrial Scale Horizontal Rotary Drums" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Salmiaton binti Ali, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Halim Shah bin Ismail, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Robert Thomas Bachmann, PhD Senior Lecturer University of Kuala Lumpur Malaysia (External Examiner)

ZULKARNAIN ZAINAL, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 April 2016

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohamad Amran b. Mohd Salleh, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azni b. Idris, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> **BUJANG KIM HUAT, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date:

Name and Matric No.: Lau Lek Hang, GS24805

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Supervisory Committee:	Dr. Mohamad Amran b. Mohd Salleh
	and the second sec
Signature:	
Name of Member of	
Supervisory	Professor Dr. Azni b. Idrig
committee.	

TABLE OF CONTENTS

ABSTR ABSTR ACKNO APPRO DECLA LIST O LIST O	ACT AK DWLED VAL RATIO F TABL F FIGUI F ABBR	GEMENTS N ES RES EVIATIONS	Page i iii v vi viii xii xii xiv xvii
СНАРТ	E R		
	 INTR 1.1 1.2 1.3 LITE 2.1 2.2 2.3 2.4 2.5 MET 3.1 3.2 	 ODUCTION Background of study Problem Statement Objectives RATURE REVIEW Thermochemical Conversion of Biomass Wastes 2.1.1 Combustion Process 2.1.2 Gasification Process 2.1.3 Pyrolysis Process EFB Pyrolysis Research 2.1 Influence of Pyrolysis Temperature 2.2 Influence of Pyrolysis Residence Time 2.3 Influence of Pyrolysis Residence Time 2.3 Influence of Pyrolysis Particle Size Quality Criteria Of Biochar 2.3.1 Calorific Values and Pollutants 2.3.2 Adsorbing Strength 2.3 Soil Amendment Agent Rotary Kiln Pyrolysis Rotary Drum Scale Up HODOLOCY Characterization of Feedstock Samples 3.1.1 Ultimate Analysis of EFB Samples 3.1.2 EFB Carbonization Using TGA analyzer 3.1.3 Experimental Design to Study The Effect of Heating Rate EFB Char Produced From Pilot Carbonator[®] Rotary Drum 3.1 EFB Characterization – Determination of The Moisture Content of empty fruit bunch (EFB) 3.2.2 Experimental Procedure for Carbonization of Empty Fruit Bunches in Pilot Carbonator[®] 	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 9 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \\ 13 \\ 13 \\ 14 \\ 15 \\ 18 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 24 \\ 24 \\ 25 \\ 27 \\ \end{array} $
		From Pilot Carbonator [®]	<i>21</i>

			3.2.3.1 Determination of	f Moisture Content	28
			3.2.3.2 Determination of	f Volatile Matter	28
			3.2.3.3 Determination of	f Fixed Carbon	29
		3.2.4	Calorific Value Analysis		29
	3.3	EFB (har Produced From 20 Ton/da	ay Carbonator®	31
		Rotar	Drum		
	3.4	Scale	Jp Analysis		36
4	RE	SULTS AN	D DISCUSSION		38
	4.1	EFB Char	cterization		38
		4.1.1	Iltimate Analysis of EFB		38
	4.2	TGA Carb	onization of EFB		39
	4.3	Yield of E	B Char in TGA Tests		47
	4.4	EFB Char	Analysis from Pilot Test		48
		4.4.1	Characterization of EFB As I	Reactant	48
		4.4.2	Characterization of EFB Cha	r	49
		4.4.3	Yield of EFB Char From Pilo	ot	49
			Carbonator		
		4.4.4	Proximate Analysis of EFB (Char From Pilot	51
		115	Carbonator	Enous Dilat	51
		4.4.5	Calorine value of EFB Char	From Pilot	54
		116	Effect of Carbonization Tom	porature on The	54
		4.4.0	Enect of Carbonization Tem	perature on The	54
		447	Effect of Volatile Matters and	d Fixed Carbon on	56
		4.4.7	the Fuel Properties of FFB C	har	50
		448	Effect of Carbonization Reter	ntion Time on the	57
		т.т.0	Fuel Properties of FFB Char	intion Thine on the	57
	45	EFB Char	analysis From 20 Ton/day		57
	1.5	Carbonato	[®] Plant		57
		4 5 1	Carbonator [®] Plant Design		57
		4.5.2	Ultimate Analysis of Dengki	Plant EFB Char	64
		4.5.3	EFB Char Properties in Coal	Classification	66
	4.6	Scale Up /	nalvsis		67
	4.7	Operationa	Problems of Industrial Plant		69
		4.7.1	Inconsistent Retention Time		69
		4.7.2	Incomplete Carbonization		70
		4.7.3	Reactor Seal Integrity		71
		4.7.4	Formation of Tar		71
	60		T		70
5	CO	INCLUSIO	N		73
REFERE	NCE	S			75
APPEND	ICES	8			80
BIODAT	A OF	F STUDEN	ſ		98
LIST OF PUBLICATIONS 99					99

C

LIST OF TABLES

Table		Page
2.1	Various EFB waste management in practice and potential solutions	5
2.2	Some examples of biomass pyrolysis method	8
2.3	Influence of pyrolysis temperatures, heating rates, residence time and particle sizes on EFB char yield and calorific values from previous studies	10
3.1	Experiment parameters for carbonization of EFB samples in TGA analyser	24
3.2	Matrix of EFB samples according to Pilot Carbonator [®] test conditions	27
3.3	Compositional analysis test parameters according to ASTM E-1131- 03 for Coal	28
3.4	EFB samples according to Pilot Carbonator® test conditions	36
4.1	Ultimate analysis of EFB using Elemental Analyzer (Dry basis)	38
4.2	Summarized analysis data of total six TGA EFB carbonization graphs	42
4.3	Maximum decomposition rate temperature	47
4.4	EFB char from various carbonization temperature and retention time	49
4.5	Yield of EFB char from pilot Carbonator [®]	50
4.6	Proximate Analysis of EFB char samples from pilot Carbonator [®]	53
4.7	Calorific values of char samples from pilot Carbonator®	54
4.8	Tests operating conditions of 20 T/Day Carbonator [®] plant	58
4.9	Yield of EFB carbonization in Dengkil Carbonator [®]	60
4.10	Fuel properties of various EFB chars from 20 T/Day $\mbox{Carbonator}^{\mbox{\ensuremath{\mathbb{R}}}}$ plant	61
4.11	EFB char, coal and mangrove wood charcoal properties	63
4.12	Ultimate analysis of EFB char produced from Dengkil Plant Carbonator $^{\ensuremath{\mathbb{R}}}$	64

4.13	Oxygen and hydrogen ratio of EFB char, raw EFB, mangrove wood and mangrove char	65
4.14	EFB char ranking parameters according to ASTMD388	66
B.1	Temperature change at various times for bomb calorimeter test (L1)	88
B.2	Temperature change at various times for bomb calorimeter test (L2)	89
B.3	Temperature change at various times for bomb calorimeter test (L3)	90
B.4	Temperature change at various times for bomb calorimeter test (M1)	91
B.5	Temperature change at various times for bomb calorimeter test (M2)	92
B.6	Temperature change at various times for bomb calorimeter test (M3)	93
B.7	Temperature change at various times for bomb calorimeter test (H1)	94
B.8	Temperature change at various times for bomb calorimeter test (H2)	95
B.9	Temperature change at various times for bomb calorimeter test (H3)	96

C

LIST OF FIGURES

Figure		Page
2.1	Cross sectional illustration of solids filling and gas filling in a rotary drum reactor	16
2.2	Degree of filling of solids in a rotary drum reactor	16
3.1	Summary of EFB and EFB chars tests at various scales of experimental setups	19
3.2	Location of Sri Ulu Langat Palm Oil Mill (from Google Earth)	20
3.3	Oil palm empty fruit bunch collected from Sri Ulu Langat Palm Oil Mill	21
3.4	Elemental Analyzer (model CHNS-932) in Faculty of Science, UPM	22
3.5	TGA Analyzer in Analytical Lab, Chemical and Environmental Engineering Department, Faculty of Engineering, UPM	23
3.6	Process flow diagram of Pilot Carbonator® System	25
3.7	Pilot Carbonator® system in Nasmech Technology Sdn Bhd	26
3.8	Thermogravimetric Analyzer	29
3.9	Oxygen Bomb Calorimeter (Parr 1341)	31
3.10	Schematic diagram of 20T/day Carbonator [®] system in Dengkil	32
3.11	Schematic diagram single drum of 20T/day Carbonator [®] system in Dengkil	33
3.12	Reactor installation for 20 T/Day Carbonator [®] plant at Dengkil	33
3.13	20 T/Day Carbonator [®] plant at Dengkil during construction phase	34
3.14	20 T/Day Carbonator [®] plant at Dengkil – Charge In Side	34
3.15	20 T/Day Carbonator [®] plant at Dengkil – Discharge Side	35
4.1	TGA for EFB Sample #1	39
4.2	TGA for EFB Sample #2	39
4.3	TGA for EFB Sample #3	40
4.4	TGA for EFB Sample #4	40

0

	4.5	TGA for EFB Sample #5	41
	4.6	TGA for EFB Sample #6	41
	4.7	EFB char yield produced at various heating rates in TGA carbonization	43
	4.8	TGA and DTG curve (EFB Sample #1)	44
	4.9	TGA and DTG curve (EFB Sample #2)	44
	4.10	TGA and DTG curve (EFB Sample #3)	45
	4.11	TGA and DTG curve (EFB Sample #4)	45
	4.12	TGA and DTG curve (EFB Sample #5)	46
	4.13	TGA and DTG curve (EFB Sample #6)	46
	4.14	Yield of EFB char at various heating rate of TGA tests	48
	4.15	EFB char sample produced from pilot Carbonator®	50
	4.16	TGA profile of EFB char carbonized at 400°C for 2.5 hr (EFB char L1)	51
	4.17	Relationship among calorific values, volatile matters and ash content of EFB char	56
	4.18	EFB to be charged into Carbonator [®] drum by inclined conveyor	59
	4.19	EFB charged into Carbonator [®] drum by horizontal conveyor	59
	4.20	Characteristics of EFB char from Dengkil plant Carbonator [®] compared with mangrove wood and char in Van Krevelen Diagram	65
	4.21	Actual projected and theoretical angle of filling of EFB in pilot Carbonator [®] drum	68
	4.22	Corrected angle of filling of EFB in pilot Carbonator [®] drum	69
	4.23	Partial carbonized EFB pith from Dengkil Carbonator [®] plant	70
	4.24	Degree of carbonization profile of an incomplete carbonized EFB pith	71
	A.1	TGA profile of EFB char L2 carbonized at 400°C for 3.0 hours	80
	A.2	TGA profile of EFB char L3 carbonized at 400°C for 3.5 hours	81
	A.3	TGA profile of EFB char M1 carbonized at 500°C for 2.5 hours	82

A.4	TGA profile of EFB char M2 carbonized at 500° C for 3.0 hours	83
A.5	TGA profile of EFB char M3 carbonized at 500°C for 3.5 hours	84
A.6	TGA profile of EFB char H1 carbonized at 600°C for 2.5 hours	85
A.7	TGA profile of EFB char H2 carbonized at 600°C for 3.0 hours	86
A.8	TGA profile of EFB char H3 carbonized at 600°C for 3.5 hours	87

LIST OF ABBREVIATIONS

	a	Time of firing
	Ase	Effective area of material accumulated in the rotating reactor in contact with the drum surface, m^2
	b	Time (nearest to 0.1 min) when the temperature reaches 60% of the total rise
	c	Time at beginning of period (after the temperature rise) in which the rate of temperature change has become constant
	CV _{mmf}	Gross calorific value, moist metal-matters free, BTU/lb
	D	Reactor drum diameter
	D ₁	Pilot Carbonator [®] reactor drum diameter, m
	D ₂	Dengkil 20 T/Day Carbonator [®] reactor drum diameter, m
	DTG	Mass ratio reduction variation rate or derivative thermogravimetric
	dT	Temperature difference between external reactor drum and bulk solids
	e ₃	Centimeters of fuse wire consumed in firing
	FC _{mmf}	Fixed carbon content, moist, metal-matters free, %
	Hg	Gross heat of combustion
	L	Effective length of reactor drum
	L_1	Pilot Carbonator [®] reactor drum effective length, m
	L ₂	Dengkil 20 T/Day Carbonator [®] reactor drum effective length, m
	m	Mass of sample in grams
	m_1	Mass of EFB per batch test in pilot EFB Carbonator [®]
	m ₂	Mass of EFB per batch test in Dengkil 20 T/Day Carbonator®
	mmf	Moist, metal-matters free
	q_1	Specific energy received by EFB for reaction throughout the total retention time in pilot Carbonator [®]

	q ₂	Specific energy received by EFB for reaction throughout the total retention time in Dengkil Carbonator [®]
	Q	Effective heat transmitted to material in the reactor
	Q ₁	Heat transmitted effectively to the EFB in Carbonator $^{\ensuremath{\mathbb{R}}}$ reactor for pilot Carbonator $^{\ensuremath{\mathbb{R}}}$
	Q ₂	Heat transmitted effectively to the EFB in reactor for Dengkil Carbonator $^{\ensuremath{\$}}$
	r	Radius of rotating reactor drum
	r ₁	Rate (temperature units per minutes) at which the temperature was rising during the 5 min period before the firing
	r ₂	Rate (temperature unit per minute) at which the temperature was rising during the 5 minutes, period after time c.
	t	Temperature rise
	t ₁	Retention time for pilot Carbonator [®] test at 2.5 hours
	t ₂	Retention time for Dengkil 20 T/Day Carbonator [®] test at 5 hours
	t _a	Temperature at the time of firing
	t _c	Temperature at time c
	TGA	Thermogravimetric analysis
	U	Overall heat transfer coefficient
	v	Volume of material filling the bottom of reactor
	VM _{mmf}	Volatile matter, moist metal-matters free, %
	W	energy equivalent of the equivalent, determined under standardization
	<u>Greek Symbol</u>	
	ρ ₁	Bulk density of EFB charged into pilot Carbonator®
	ρ ₂	Bulk density of EFB charged into Dengkil 20 T/Day Carbonator [®]
	θ	Angle of filling of material accumulated in horizontal rotating reactor

CHAPTER 1

INTRODUCTION

Oil palm was naturally originated from Africa and was first introduced for planting in the Botanical Gardens in Singapore in 1870 [1]. It has now become one of the major commodities contributing to Malaysian economic growth since 3 decades ago. The Malaysia total land area is amounts to 32.90 million hectares, and major agricultural crops grown in Malaysia are rubber (39.67%), oil palm (34.56%), rice (12.68%), cocoa (6.75%) and coconut (6.34%) [1]. With the sharp expansion of palm oil demand and production, palm oil waste (empty fruit bunch, fiber, shell, fronds and trunks) from palm oil production has increased tremendously. Malaysia as the top two largest palm oil producer in the world has generated more than 7 million tons of EFB, 4.5 million tons of fiber and 1.9 million tons of shell as solid waste at an increase of 5% annually [2], while empty fruit bunch, EFB generation has struck 17.08 million tons in year 2009 [3]. Currently most of the waste are incinerated or utilized as the boiler fuels for steam and electricity co-generation, some are mulched or composted naturally in the plantation; however these processes generally aggravated environmental problems due to process inefficiency [2].

1.1. Background of study

There have been many studies conducted to resolve agricultural waste in Malaysia recent years. Many of the studies have been conducted to explore the new ways to reuse these wastes as energy, fertilizer or even household furniture, while resolving the environment impact these waste would impose if left as they were. Oil palm empty fruit bunch, EFB, is particularly of interest as it was a rejected by product from the crude palm oil production process with potential energy content. There are a few attempted reuse applications of EFB including reused as fuel in the biomass boiler for palm oil mills [4], mulched as fertilizer and processed as pressed wood for furniture making.

EFB is a type biomass containing calories potentially to be used as fuel. However EFB in reality contain rather high moisture content at more than 55% [5], which is the key disadvantage quality as fuel. High moisture and the residue oil in the EFB left from the palm oil extraction process often accelerate the natural decaying process shortening EFB storage time. Charcoal is the blackish residue consisting of impure carbon obtained by removing water and other volatile constituents. Conversion of EFB into charcoal would enhance its potential values as fuel by increasing the burning quality with the removal of moisture and extending its storage period as well as preserving or to certain extend may densify its calorific energy.

Besides potential mass application as fuel in industrial co-generation process, biomass charcoal has been widely used in human society especially for cooking and heating. In Malaysia, mangrove wood charcoal is the most common charcoal used since decades ago. Biomass conversion into charcoal activities has also been practiced in human society since thousands of years ago. Conventional charcoal production method or technology is time consuming and labour intensive. The main mangrove wood charcoal production area in Malaysia is located in Perak state, along Matang Mangrove Forest Reserve focusing around Kuala Sepetang with conventional brick kiln technology which would take up to 30 days for one carbonization cycle in a kiln with about 10.5 tons per batch feed, or 90 kg/day of charcoal production rate assuming 25% yield.

1.2. Problem Statement

EFB is one of the agricultural wastes in Malaysia with increasing generation rate along with palm oil industry growth. Current EFB waste management methods through mulching in the oil palm plantation have been associated with potential greenhouse gases release into atmosphere especially when the anaerobic biodegradation of mulch occurs [6], and high operational cost due to increased labour and transportation cost as well as labour shortage [6, 7, 8]. Use of EFB as co-generation fuel is feasible yet imperfect with inconsistent combustion quality originated air pollution problem due to its high moisture content, while other EFB commercial applications are being explored and developed. Conversion of EFB into charcoal would enhance its burning quality. With modern technological evolvement and increasing market needs, biomass charcoal production technology with improved efficiency and production capacity are being developed but such studies for EFB were mainly limited at laboratory scale and some at pilot scale. There is lack of industrial scale carbonization process of EFB study reported hence the study on such scale of process is important for practical improvement and promotion of commercial sustainable EFB carbonization process. Rotary drum reactor is suitable for bulk carbonization processing of untreated EFB but with limited understandings of the effects of processing conditions towards char quality and yield especially at industrial capacity.

1.3. Objectives

A rotary drum carbonization system has been developed by Nasmech Technology Sdn Bhd for EFB conversion to char and this study is focusing in understanding the effect of some selected process parameters towards the EFB char quality produced from the pilot scale and industrial scale Carbonator[®] system. This is achieved through multiple objectives of studies as following :

- 1. To investigate the effect of heating rate on EFB decomposition characteristics and char yield.
- 2. To examine the effect of final carbonization temperature and retention time on EFB char yield and fuel properties for pilot and industrial scale horizontal rotary drum kiln.
- 3. To identify and verify the upscale criteria used for rotary drum kiln.
- 4. To establish the optimum operating conditions to produce a cost-effective EFB charcoal in a rotary horizontal kiln for fuel application

From previous research studies on EFB pyrolysis, higher char yield is promoted with lower heating rate, lower final carbonization temperature and longer residence time. Therefore it is projected that the similar trends and effects would be found in laboratory experiments as well as in the pilot and industrial scale horizontal rotary drum reactor with proper control of heat losses through the bigger equipment and process parameters. The upscale criteria is also expected to be identified with consistency of heat transfer and reactor sizing between pilot and industrial rotary drum in this study. The findings of this study will also be able to conclude optimum process conditions for this type of rotary drum carbonization reactor, with respect to the optimum calorific value and properties most suitably served as solid fuel.

REFERENCES

- [1] N. Abdullah, *An assessment of pyrolysis for processing empty fruit bunches*, (2005), 23-101.
- [2] H. Yang, R. Yan, T. Chin, D. T. Liang, H. Chen and C. Zheng, *Thermogravimetric analysis-fourier transform infrared analysis of palm oil waste pyrolysis*, Energy and Fuels 18 (2004), 1814 - 1821.
- [3] M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, M. S. Mohammad Amran, A. Fakhru'l-Razi and Y. H. Taufiq-Yap, *Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in malaysia*, Renewable and Sustainable Energy Reviews 15, no. 2, 1258-1270.
- [4] S. E. Hosseini and M. A. Wahid, *Utilization of palm solid residue as a source of renewable and sustainable energy in malaysia*, Renewable and Sustainable Energy Reviews **40**, 621-632.
- [5] R. Omar, A. Idris, R. Yunus, K. Khalid and M. I. Aida Isma, *Characterization of empty fruit bunch for microwave-assisted pyrolysis*, Fuel **90**, no. 4, 1536-1544.
- [6] H. Stichnothe and F. Schuchardt, *Life cycle assessment of two palm oil production systems*, Biomass and Bioenergy **35** (2011), no. 9, 3976-3984.
- [7] M. Suhaimi and H. K. Ong, *Composting empty fruit bunches of oil palm*, Extension Bulletin - Food & Fertilizer Technology Center **555** (2001), 1-8.
- [8] B. Kavitha, P. Jothimani and G. Rajannan, *Empty fruit bunch a potential organic manure for agriculture*, International Journal of Science, Environment and Technology 2 (2013), no. 5, 930 937.
- [9] M. F. Awalludin, O. Sulaiman, R. Hashim and W. N. A. W. Nadhari, *An overview of the oil palm industry in malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction*, Renewable and Sustainable Energy Reviews **50**, no. 0, 1469-1484.
- [10] M. B. Wahid, K. W. Chan, Y. M. Choo and M. C. Chow, *The need to reduce national greenhouse gases emissions: Oil palm industry's role*, Journal of Oil Palm Research Special Issue- April (2006), 1-23.
- [11] M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina and M. S. Mohamad Amran, *Gasification of oil palm empty fruit bunches: A characterization and kinetic study*, Bioresource Technology **110**, 628-636.
- [12] A. Demirbas, *Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues*, Progress in Energy and Combustion Science **31** (2005), no. 2, 171-192.
- [13] S. Yaman, *Pyrolysis of biomass to produce fuels and chemical feedstocks*, Energy Conversion and Management **45** (2004), no. 5, 651-671.
- [14] S. H. Shuit, K. T. Tan, K. T. Lee and A. H. Kamaruddin, *Oil palm biomass as a sustainable energy source: A malaysian case study*, Energy **34** (2009), no. 9, 1225-1235.

- [15] P. McKendry, *Energy production from biomass (part 2): Conversion technologies*, Bioresource Technology **83** (2002), no. 1, 47-54.
- [16] A. Inayat, M. M. Ahmad, M. I. A. Mutalib and S. Yusup, Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production, Fuel Processing Technology 93, no. 1, 26-34.
- [17] M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, M. S. Mohammad Amran and A. Fakhru'l-Razi, *Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor*, Energy Conversion and Management 52, no. 2, 1555-1561.
- C. Erlich and T. H. Fransson, Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study, Applied Energy 88, no. 3, 899-908.
- [19] S. Siyasangar, Z. Zainal, A. Salmiaton and Y. H. Taufiq-Yap, *Supercritical water gasification of empty fruit bunches from oil palm for hydrogen production*, Fuel **143**, 563-569.
- [20] J. Idris, Y. Shirai, Y. Andou, A. A. Mohd Ali, M. R. Othman, I. Ibrahim and M. A. Hassan, Self-sustained carbonization of oil palm biomass produced an acceptable heating value charcoal with low gaseous emission, Journal of Cleaner Production 89, no. 0, 257-261.
- [21] P. Lahijani and Z. A. Zainal, *Gasification of palm empty fruit bunch in a bubbling fluidized bed: A performance and agglomeration study*, Bioresource Technology **102**, no. 2, 2068-2076.
- [22] S.-H. Kong, S.-K. Loh, R. T. Bachmann, S. A. Rahim and J. Salimon, *Biochar from oil palm biomass: A review of its potential and challenges*, Renewable and Sustainable Energy Reviews **39** (2014), no. 0, 729-739.
- [23] Q. Yang, F. Han, Y. Chen, H. Yang and H. Chen, *Greenhouse gas emissions* of a biomass-based pyrolysis plant in china, Renewable and Sustainable Energy Reviews 53 (2016), 1580-1590.
- [24] A. Demirbas and G. Arin, An overview of biomass pyrolysis, Energy Resources 24 (2002), no. 5, 471 482.
- [25] P. A. Brownsort, "Biomass pyrolysis processes: Review of scope, control and variability," *UKBRC*, vol. MSc, 2009, p. 39.
- [26] N. S. M. A. a. N. A. Adilah Shariff, Slow pyrolysis of oil palm empty fruit bunches for biochar production and characterisation, Physical Science 25 (2014), no. 2, 97 - 112.
- [27] S. E. Hosseini, M. A. Wahid and A. Ganjehkaviri, *An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in malaysia*, Energy Conversion and Management **94**, no. 0, 415-429.
- [28] D. Meier and O. Faix, State of the art of applied fast pyrolysis of lignocellulosic materials 涂?A review, Bioresource Technology 68 (1999), no. 1, 71-77.

- [29] J. Zandersons, J. Gravitis, A. Kokorevics, A. Zhurinsh, O. Bikovens, A. Tardenaka and B. Spince, *Studies of the brazilian sugarcane bagasse carbonisation process and products properties*, Biomass and Bioenergy 17 (1999), 209 219.
- [30] G. Chen, J. Andries, Z. Luo and H. Spliethoff, *Biomass pyrolysis/gasification* for product gas production: The overall investigation of parametric effects, Energy Conversion and Management 44 (2003), no. 11, 1875-1884.
- [31] A. C. Lua and J. Guo, *Preparation and characterization of chars from oil palm waste*, Carbon **36** (1998), no. 11, 1663-1670.
- [32] D. H. Lee, H. Yang, R. Yan and D. T. Liang, *Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations*, Fuel **86** (2007), no. 3, 410-417.
- [33] M. A. Sukrian, S. K. Loh, N. A. Bakar and Y. M. Choo, Production and characterization of bio-char from the pyrolysis of empty fruit bunches, American Journal of Applied Science 8 (2011), no. 10, 984-988.
- [34] H. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang and C. Zheng, *Mechanism of palm oil waste pyrolysis in a packed bed*, Energy and Fuels **20** (2006), 1321 1328.
- [35] P. Baggio, M. Baratieri, L. Fiori, M. Grigiante, D. Avi and P. Tosi, *Experimental and modeling analysis of a batch gasification/pyrolysis reactor*, Energy Conversion and Management **50** (2009), 1426 - 1435.
- [36] G. Várhegyi, M. J. Antal Jr, E. Jakab and P. Szabó, *Kinetic modeling of biomass pyrolysis*, Journal of Analytical and Applied Pyrolysis 42 (1997), no. 1, 73-87.
- [37] N. Abdullah and H. Gerhauser, *Bio-oil derived from empty fruit bunches*, Fuel **87** (2008), no. 12, 2606-2613.
- [38] Y. Lee, J. Park, C. Ryu, K. S. Gang, W. Yang, Y.-K. Park, J. Jung and S. Hyun, *Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°c*, Bioresource Technology **148**, no. 0, 196-201.
- [39] A. Bridgwater, *Thermal biomass conversion and utilization biomass information system*, (1996), 147.
- [40] N. B. Alias, N. Ibrahim and M. K. A. Hamid, *Pyrolysis of empty fruit [bunch by thermogravimetric analysis*, Energy Procedia **61** (2014), 2532-2536.
- [41] G. H. Wood, T. M. Kehn, M. D. Carter and W. C. Culbertson, *Geological survey circular 891*, Coal Resource Classification System of the U.S. Geological Survey.
- [42] *Astm standard d 388, standard classification of coals by rank.*
- [43] J. G. Speight, *Handbook of coal analysis*, vol. 166, John Wiley & Sons, Inc, New Jersey, 2005.
- [44] N. Z. Rebitanim, W. A. Wan Ab Karim Ghani, N. A. Rebitanim and M. Amran Mohd Salleh, *Potential applications of wastes from energy generation particularly biochar in malaysia*, Renewable and Sustainable Energy Reviews 21, no. 0, 694-702.

- [45] F. S. N. Abdullah, H. Gerhauser, *Characterisation of oil palm empty fruit bunches for fuel application*, Journal of Physical Science **22** (2011), no. 1, 1-24.
- [46] F. S. Nurhayati Abdullah, *The properties of the washed empty fruit bunches of oil palm*, Journal of Physical Science 24 (2013), no. 2, 117 137.
- [47] J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday and D. Crowley, *Biochar effects on soil biota a review*, Soil Biology and Biochemistry 43, no. 9, 1812-1836.
- [48] S. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Proll and H. Hofbauer, Rotary kiln pyrolysis of straw and fermentation residues in a 3 mw pilot plant - influence of pyrolysis temperature on pyrolysis product performance, Journal of Analytical and Applied Pyrolysis 97, no. 0, 1-10.
- [49] H. P. Wenning, *The veba oel technologie pyrolysis process*, Journal of Analytical and Applied Pyrolysis **25** (1993), 301 310.
- [50] G. Guehenneux, P. Baussand, M. Brothier, C. Poletiko and G. Boissonnet, Energy production from biomass pyrolysis: A new coefficient of pyrolitic valorisation, Fuel **84** (2004), 733 - 739.
- [51] G. W. J. Wes, A. A. H. Drinkenburg and S. Stemerding, *Heat transfer in a horizontal rotary drum reactor*, Powder Technology **13** (1976), no. 2, 185-192.
- [52] G. Wang, W. Li, B. Li and H. Chen, *Tg study on pyrolysis of biomass and its three component under syngas*, Fuel **87** (2007), 552 558.
- [53] T. Iwasaki, S. Suzuki and T. Kojima, *Influence of biomass pyrolysis temperature, heating rate and type of biomass on produced char in a fluidized bed reactor*, Energy and Environment Research 4 (2014), no. 2.
- [54] D. Chen, J. Zhou and Q. Zhang, *Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bambooi*, Bioresource Technology **169** (2014), 313-319.
- [55] E. Natarajan and E. G. Sundaram, *Pyrolysis of rice husk in a fixed bed reactor*, World Academy of Science, Engineering and Technology **56** (2009), 506-508.
- [56] M. Fowles, *Black carbon sequestration as an alternative to bioenergy*, Biomass and Bioenergy **31** (2007), no. 6, 426-432.
- [57] A. K. Majumder, R. Jain, P. Banerjee and J. P. Barnwal, *Development of a new proximate analysis based correlation to predict calorific value of coal*, Fuel **87** (2008), no. 13-14, 3077-3081.
- [58] S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid and M. J. Aris, Investigation on thermochemical behaviour of low rank malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (tga), Bioresource Technology 101, no. 12, 4584-4592.
- [59] B. B. Beamish, Proximate analysis of new zealand and australian coals by thermogravimatry, New Zealand Journal of Geology and Geophysics 37 (1994), no. 4, 387-392.
- [60] B. B. Yatim and W. K. Hoi, *The quality of charcoal from various types of wood*, Fuel **66** (1987), no. 9, 1305-1306.

- [61] M. M. Said, G. R. John, C. F. Mhilu and S. V. Manyele, Analysis of pyrolysis kinetic and energy content of agricultural and forest waste, Open Journal of Renewable Energy and Sustainable Development 1 (2014), no. 1, 36 - 44.
- [62] P. Abdul Salam and S. C. Bhattacharya, *A comparative study of charcoal gasification in two types of spouted bed reactors*, Energy **31** (2006), no. 2-3, 228-243.
- [63] S. S. Harsono, P. Grundman, L. H. Lau, A. Hansen, M. A. M. Salleh, A. Meyer-Aurich, A. Idris and T. I. M. Ghazi, *Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches*, Resources, Conservation and Recycling 77, no. 0, 108-115.

