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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the Degree of Master of Science 

 NLFXLMS AND THF-NLFXLMS ALGORITHMS FOR WIENER-
HAMMERSTEIN NONLINEAR ACTIVE NOISE CONTROL 

By 

RADIK SRAZHIDINOV 

October 2016 

Chairman : Associate Professor Raja Mohd Kamil b. Raja Ahmad, PhD 
Faculty : Engineering 

Filtered-X least mean square (FXLMS) control algorithm is a conventional algorithm 
employed to cancel the noise in linear environment. However, in practical applications 
nonlinearities may present. These nonlinearities are usually associated with the 
secondary path components, such as amplifiers and loudspeakers. Block oriented 
method is used to represent the linear and nonlinear components in the secondary path. 
Usually, linear components are represented by finite impulse response (FIR) filters 
and nonlinear component with saturation nonlinearity scaled error function (SEF). 
Nonlinear FXLMS (NLFXLMS) control algorithm based on SEF has been previously 
developed to cancel the noise in environment with external factors that can cause 
nonlinearity. The major drawback of using SEF based NLFXLMS (SEF-NLFXLMS) 
is that the degree of nonlinearity must be known in advance for good control 
performance. In recent works, it was shown that the SEF can be approximated using 
tangential hyperbolic function (THF) for Hammerstein and Wiener NLFXLMS 
algorithms, such that the degree of nonlinearity can be estimated using modelling 
approach. The THF-NLFXLMS method is extended here for Wiener-Hammerstein 
model. Using this method, the need for the knowledge of the degree of nonlinearity in 
advance can be avoided. The proposed algorithm models the Wiener-Hammerstein 
linear and nonlinear components in the secondary path and applies the estimated 
degree of nonlinearity of the nonlinear secondary path in the control algorithm design. 

In previous works, SEF-NLFXLMS and THF-NLFXLMS algorithms for 
Hammerstein and Wiener structures were developed where the acoustic path is 
assumed to be a unit gain. However, this assumption may lead to inaccurate secondary 
path model. In this work, the modelling of acoustic path using FIR filters is 
incorporated for both algorithms for Wiener-Hammerstein structure. The development 
of these algorithms becomes the first and second objectives of this research. It is 
hypothesised that incorporating the acoustic path model would improve the modelling 
of the secondary path and subsequently improves the level of noise cancellation. 
The proposed SEF-NLFXLMS and THF-NLFXLMS algorithms are compared with 
the conventional FXLMS and 2nd order Volterra FXLMS algorithms (which is 
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determined to be of comparable computational complexity with the THF-NLFXLMS). 
The simulation results show that the Wiener-Hammerstein THF-NLFXLMS has close 
performance with the SEF-NLFXLMS. It outperforms the FXLMS by 2.5dB and 4dB 
and 2nd order Volterra FXLMS by 3.5dB and 4.5dB for low and medium degrees of 
nonlinearity, respectively. In addition, Wiener-Hammerstein THF-NLFXLMS shows 
better performance compared to Wiener THF-NLFXLMS algorithm.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Master Sains 

ALGORITMA NLFXLMS DAN ALGORITMA THF-NLFXLMS UNTUK 
KAWALAN AKTIF BUNYI TAK LELURUS WIENER-HAMMERSTEIN 

Oleh 

RADIK SRAZHIDINOV 

Oktober 2016 

Pengerusi  : Profesor Madya Raja Mohd Kamil b. Raja Ahmad, PhD 
Fakulti : Kejuruteraan 

Algoritma kawalan tapisan-X min kuasa dua terkecil (FXLMS) adalah algoritma 
konvensional yang digunakan untuk memansuhkan bunyi dalam persekitaran lelurus. 
Walau bagaimanapun, dalam aplikasi yang praktikal, faktor ketaklelurusan barangkali 
wujud. Faktor ketaklelurusan selalunya dikaitkan dengan komponen-komponen dalam 
laluan sekunder, seperti amplifier dan pembesar suara. Kaedah blok terhala digunakan 
untuk mewakili komponen lelurus dan tak lelurus dalam laluan sekunder. Biasanya, 
komponen lelurus diwakili oleh penapis sambutan dedenyut terhingga (FIR) manakala 
komponen tak lelurus yang mempunyai ketepuan ketaklelurusan diwakili oleh fungsi 
ralat berskala (SEF). Algoritma kawalan FXLMS tak lelurus (NLFXLMS) berdasarkan 
SEF telah dibangunkan sebelum ini untuk memansuhkan bunyi dalam persekitaran tak 
lelurus. Kelemahan utama menggunakan SEF dalam NLFXLMS adalah tahap 
ketaklelurusan yang perlu diketahui terlebih dahulu bagi mendapatkan kawalan 
prestasi yang baik. Kajian terkini telah menunjukkan bahawa SEF boleh dianggarkan 
menggunakan fungsi tangen hiperbolik (THF) untuk algoritma NLFXLMS 
Hammerstein dan Wiener, yang mana tahap ketaklelurusan boleh dianggarkan 
menggunakan pendekatan pemodelan. Kaedah THF-NLFXLMS dilanjutkan di sini 
untuk model Wiener-Hammerstein. Dengan menggunakan kaedah ini, tahap 
ketaklelurusan tidak perlu diketahui terlebih dahulu. Algoritma yang dicadangkan 
untuk memodelkan komponen lelurus dan taklelurus Wiener-Hammerstein dalam 
laluan sekunder dan mengaplikasikan penganggaran dalam mengenal pasti tahapan 
ketaklelurusan laluan sekunder dalam rekabentuk algoritma kawalan. 

Dalam kajian yang lalu, algoritma SEF-NFXLMS dan THF-NLFXLMS untuk struktur 
Hammerstein dan Weiner telah dibangunkan yang mana gandaan laluan akustik 
dianggap sebagai satu.   Tetapi anggapan berkenaan boleh menyebabkan model laluan 
sekunder tidak tepat.  Dalam kajian ini, kaedah permodelan laluan akustik 
menggunakan FIR telah menggabungkan struktur algoritma  Wiener-Hammerstein. 
Usaha membangunkan algoritma ini merupakan objektif pertama dan kedua kajian ini. 
Secara hipotesis, menggabungkan model laluan akustik akan mengelokkan model 
untuk laluan sekunder seterusnya memperbaiki tahap pemansuhan bunyi. 
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Algoritma THF-NLFXLMS yang dicadangkan telah dibandingkan dengan beberapa 
penanda aras iaitu algoritma SEF-NLFXLMS, algoritma FXLMS konvensional, dan 
algoritma tahap kedua Volterra FXLMS (yang mempunyai tahap kerumitan pengiraan 
yang standing dengan THF-NLFXLMS). Keputusan simulasi menunjukkan bahawa 
Wiener-Hammerstein THF-NLFXLMS mempunyai prestasi yang hampir sama dengan 
algoritma SEF-NLFXLMS. THF-NLFXLMS melebihi prestasi algoritma FXLMS 
dengan 2.5dB dan 4dB manakala melebihi prestasi algoritma Volterra FXLMS tahap 
kedua dengan 3.5dB dan 4.5dB bagi tahap ketaklelurusan rendah dan sederhana 
masing-masing. Selain itu, Wiener-Hammerstein THF-NLFXLMS telah menunjukkan 
prestasi yang lebih baik berbanding algoritma Wiener THF-NLFXLMS. 
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1 

CHAPTER  1 

INTRODUCTION 

1.1 Background 

Noise pollution has many negative effects on human health, such as: hearing loss, 
cardiovascular disease, mental illness and negative social behaviour [1] and [2]. Figure 
1.1 shows that in most states of Malaysia the noise level exceed both day and night 
time limits. High frequency noise can be controlled using passive methods, for 
example barriers and silencers. However, this method is not effective for low 
frequency noise below 500Hz, because this low frequency noise has longer 
wavelength that allows the noise to penetrate through the barriers and silencers [3]. 
An active noise control (ANC) method is on effective method that can be used to 
cancel low frequency noise using the principle of superposition.  

Figure 1.1 : Noise level for selected urban residential areas in various states of 
Malaysia 

Nonlinear active noise control (NANC) is a method to cancel an unwanted noise by 
generating an antinoise through secondary source (loudspeaker) in the system that 
contains secondary path nonlinearity [1]. Adaptive control technique is widely applied 
to design the controller in order to overcome the nonlinearity in the NANC. The two 
methodologies used in designing an adaptive NANC are direct and indirect methods. 
For the direct method, adaptation of the controller is achieved without utilizing the 
nonlinear model of the secondary path. An example of direct method algorithms such 
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as filtered-X least mean square (FXLMS), bilinear FXLMS (BFXLMS), Volterra 
FXLMS (VFXLMS), leaky FXLMS (LFXLMS) and minimum output variance 
(MOVFXLMS). In the indirect method, the controller is designed by utilizing the 
secondary path’s nonlinear saturation model. Nonlinear FXLMS (NLFXLMS) is the 
only algorithm that fall under this method, where the scaled error function (SEF) is 
used to represent the nonlinear saturation model [2]. Block oriented structure is usually 
used to represent secondary path by separating it into linear and nonlinear blocks [3]. 
Three block oriented structures are used in NANC: Wiener (linear-nonlinear), 
Hammerstein (nonlinear-linear) and Wiener-Hammerstein (linear-nonlinear-linear). 
In [2] and [4], the Wiener and Hammerstein NLFXLMS algorithms were proposed. 
These algorithms have the best performance in NANC system and low computational 
complexity. The application of NLFXLMS algorithm for Wiener-Hammerstein block 
oriented structure is yet to be developed and becomes the subject of this research.  
 
 
The secondary path in ANC consists of D/A and A/D converters, amplifier, actuators, 
sensors and acoustic path [5]. In practice, one of these components may be nonlinear. 
Wiener-Hammerstein block oriented structure can be used when the nonlinear 
component exists between two linear filters. For instance, a nonlinear loudspeaker is 
sandwiched between linear amplifier and linear acoustic path [5].  
 
 
Nonlinearity in secondary path is commonly represented by saturation nonlinearity 
and the clipping effect is represented using SEF [6]. The major drawback of using SEF 
based NLFXLMS (SEF-NLFXLMS) is the requirement of prior knowledge about the 
system’s nonlinearity degree. In the work [4] and [7], the SEF was approximated by 
using tangential hyperbolic function (THF) for Wiener and Hammerstein NLFXLMS 
algorithms. It was shown that THF can model SEF with certain level of accuracy. 
Least mean square (LMS) algorithm is used to model the nonlinearity block 
represented by THF and this information can be used in THF based NLFXLMS (THF-
NLFXLMS) algorithm control design. 
 
 
1.2 Problem Statement 
 
SEF-NLFXLMS gives the highest results of noise cancellation. It is used as a 
benchmark in performance comparison since SEF-NLFXLMS utilizes the true value 
of the nonlinearity degree which is represented by saturation model [4]. This saturation 
nonlinearity in NLFXLMS algorithm is usually modelled by SEF [2]. The algorithm 
is limited in practical application due to the requirement of prior information about the 
nonlinearity degree that is usually assumed to be known [4] and [7]. This limitation 
leads to the development of the THF-NLFXLMS algorithm where the nonlinearity 
degree is estimated by modelling the secondary path. The most general and complete 
representation of block oriented NANC structure is the Wiener-Hammerstein model. 
Wiener-Hammerstein structure has advantage over Hammerstein and Wiener structure 
because it includes acoustic path into modelling rather than assuming that it is a unit 
gain. It is hypothesized that modelling the acoustic secondary path would improve the 
level of noise cancellation. However, SEF-NLFXLMS and the improved THF-
NLFXLMS algorithms have not yet been developed for this structure and are 
addressed in this research. 
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1.3 Aims and Objectives 
 
The aim of this research is to develop a methodology for modelling the nonlinearity 
in Wiener-Hammerstein secondary path structure and use this model to design an 
active noise controller based on THF-NLFXLMS algorithm. The proposed algorithm 
must have comparable performance with the benchmark SEF-NLFXLMS in terms of 
level of noise cancellation. The following objectives have been outlined in order to 
achieve the aims of the research: 
 

1. To develop benchmark SEF-NLFXLMS algorithm for Wiener-Hammerstein 
structure. 

2. To develop a methodology for modelling the nonlinearity in Wiener-
Hammerstein secondary path structure and use this model to design THF-
NLFXLMS algorithm. 

3. To compare the performance of SEF-NLFXLMS and THF-NLFXLMS with 
FXLMS and 2nd order VFXLMS algorithms. 
 
 

1.4 Research Scope 
 
The work is restricted to single-input single-output (SISO) feedforward ANC system. 
The feedforward strategy is used to control the noise at the observer. All the transfer 
function and filters, including reference signal and primary path, are assumed to be 
linear except the nonlinear block in secondary path which is represented by a 
memoryless saturation nonlinearity. This work involves designing and simulating the 
proposed modelling and control techniques. At the control stage, an alternative THF-
NLFXLMS algorithm is proposed and compared with NLFXLMS, FXLMS  and 2nd 
order Volterra algorithms with similar complexity. Figure1.2 illustrates the research 
scope which is covered in this simulation. 
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Figure 1.2 : Research scope 

 
1.5 Methodology 
 
The methodology of this research has three substantial parts: development of SEF-
NLFXLMS control algorithm, secondary path modelling, and THF-NLFXLMS 
control algorithm. Firstly, the SEF-NLFXLMS algorithm is developed for Wiener-
Hammerstein block oriented structure. Then, the secondary path is modelled with 
saturation nonlinearity that is estimated using THF.  
 
 
To overcome the drawback of SEF-NLFXLMS where the nonlinearity degree must be 
known in advance, the proposed secondary path model was used to design THF-
NLFXLMS algorithm. This proposed control algorithm is compared with SEF-
NLFXLMS, FXLMS and 2nd order Volterra FXLMS (with similar computational 
complexity as THF-NLFXLMS) using Mean Square Error (MSE) criterion.  
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Noise Control 

Passive Control Active Control 
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1.6 Thesis Organization 

This thesis is organized into five chapters. Chapter 1 presents the introduction, 
research problems, research objectives, research aim and methodology of the study. 
Chapter 2 presents the literature review related to the algorithms of NANC systems. 
Nonlinearities in the secondary path and their mathematical representations are 
discussed. Block oriented structure of nonlinear secondary path are provided in this 
section. In Chapter 3, the SEF-NLFXLMS and THF-NLFXLMS algorithms are 
developed and derived for NANC with nonlinearities in secondary path with Wiener-
Hammerstein structure. The secondary path modelling is proposed to estimate the 
secondary path linear and nonlinear values. In chapter 4, the numerical simulation is 
performed for the proposed secondary path modelling and control, the THF-NLFXLM 
algorithm is compared with SEF-NLFXLM, FXLMS and 2nd order VFXLMS 
algorithms. Finally, in Chapter 5 the conclusion is provided with possible future 
perspectives of the work. 
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