UNIVERSITI PUTRA MALAYSIA

KINETIC MODEL OF DRYING PROCESS OF PUMPKIN (CUCURBITA MOSCHATA DUCHESNE EX POIR.) IN A CONVECTIVE HOT AIR DRYER

ONWUDE DANIEL IROEMEHA C.

FK 2016 65
KINETIC MODEL OF DRYING PROCESS OF PUMPKIN (CUCURBITA MOSCHATA DUCHESNE EX POIR.) IN A CONVECTIVE HOT AIR DRYER

By

ONWUDE DANIEL IROEMEHA C.

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

With all my love, I dedicate this thesis to my wonderful and precious mum.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

KINETIC MODEL OF DRYING PROCESS OF PUMPKIN (CUCURBITA MOSCHATA DUCHESNE EX POIR.) IN A CONVECTIVE HOT AIR DRYER

By

ONWUDE DANIEL IROEMEHA C.

March 2016

Chairman : Norhashila Hashim, PhD
Faculty : Engineering

Pumpkins are highly perishable and must be preserved properly in order to increase shelf life and enhance carotenoid yield extraction. Convective hot air drying is the most suitable method of pumpkin preservation. The aim of this study was therefore to develop a computer simulation program for the prediction of the drying kinetics of pumpkin (Cucurbita moschata) in a convective hot air dryer.

The study investigated the effect of temperature (50, 60, 70 and 80 °C), material thickness (3, 5 and 7 mm) and drying air velocity (0.6 and 1.2 m/s) on the drying kinetics of pumpkin in a convective hot air dryer. Thin-layer drying method was used to obtain experimental data. The experimental data were modelled using empirical and semi-theoretical thin layer drying models. The best fitting model was evaluated based on the coefficient of determination (R^2) and sum of square error (SSE). The Hii et al. model, page and two term model showed excellent fit with the experimental data, thus can best describe the drying behaviour of pumpkin. The experimental data was further used to estimate the effective moisture diffusivities and activation energy of pumpkin by linear regression analysis based on the solutions of Fick's second law of diffusion or its simplified form. The calculated value of moisture diffusivity varied from a minimum of 1.94182×10^{-8} m2/s to a maximum of 9.19583×10^{-8} m2/s, while activation energy varied from 5.02158 kJ/mol to 32.14542 kJ/mol. The results indicated that with increasing temperature, the drying time was reduced. Furthermore, the drying time to reach safe moisture content of <2% increased as the slice thickness increased from 3 mm to 7 mm. Also, the effective moisture diffusivity increased as drying temperature increased and an increase in the slice thickness resulted in a corresponding increase in the activation energy for pumpkin slices. Subsequently, a computer program using MATLAB software was developed (LABUSIMSOFT) to predict the appropriate drying models at different drying conditions. Graphical User Interface (GUI) was created to show the simulation results graphically and also in generating the optimum drying conditions.

The results of colour change during the drying process showed that there was a decrease in the three colour parameters (L*, a*, b*) as the drying temperature and time increased. The Chroma value decreased with a corresponding decrease in temperature...
and drying time during the convective hot air drying of pumpkin. Similarly, the hue angle increased with an increase in drying time. The browning index (BI) increased slightly with an increase in drying time and temperature. However, this change was not significantly different between samples dried at 50 °C and 80 °C at 5% significant level using Tukey HSD.

The results of the effect of drying temperature on hardness, cohesiveness, fracturability, springiness, resilience and total carotenoid content (TCC) showed that the drying temperature affected the hardness properties considerably when compared to the control (fresh) sample. Likewise, the cohesiveness and springiness of pumpkin was approximately constant throughout all drying conditions. The total carotenoid content (TCC) of the dried sample was also measured. The results showed that the drying temperature affects the total carotenoid content (TCC) of pumpkin significantly. The TCC reduced as the temperature increased but at a higher temperature of 80 °C, there was a sudden increase in the value of TCC due to a shorter drying time. Overall the study established that, the drying kinetics of pumpkin; depends on drying temperature and material thickness. However, to get the most optimum combination, the developed simulation software (LABUSIMSOFT) rapidly generated the optimum drying conditions of 78 °C drying temperature, 5 mm sample thickness and a drying time of 350 minutes resulting in 3.3×10^{-6} m2/s and 24.8347 kJ/mole activation energy. Consequently, the overall colour and textural properties, and total carotenoid content could be retained by using the optimum drying conditions.

This study found that the developed computer simulation software has great potential as a simple and yet effective tool for predicting the drying time, optimizing and monitoring the drying process of pumpkin. The results of this study can be applied in the effective design and optimization of industrial convective hot air dryers.
MODEL KINETIK PENGERINGAN LABU (CUCURBITA MOSCHATA DUCHESNE EX POIR.) DI DALAM PENGERING UDARA PANAS OLAKAN

Oleh
ONWUDE DANIEL IROEMEHA C.

Pengerusi : Norhashila Hashim, PhD
Fakulti : Kejuruteraan

Mac 2016

Laba adalah sangat mudah rosak dan perlu dipelihara dengan baik untuk meningkatkan jangka hayat dan meningkatkan pengeluaran hasil karotenoid. Pengerian adalah salah satu kaedah yang sesuai digunakan untuk pemeliharaan labu. Tujuan kajian ini adalah untuk mengenal pasti kesan pengerian pada parameter kinetik untuk pengerian labu manis dalam pengerian udara panas olakan dan menghasilkan model ramalan.

Kajian ini menyelidik kesan suhu (50 °C, 60 °C, 70 °C dan 80 °C), ketebalan bahan (3 mm, 4 mm, 5 mm dan 7 mm) dan halaju udara pengerian (0.6 m/s dan 1.2 m/s) pada kinetik pengerian labu (Cucurbita moschata) dalam pengerian udara panas olakan. Kaedah pengerian lapisan nipis telah digunakan untuk mendapatkan data kajian. Model yang terbaik telah dihasilkan berdasarkan perhitungan (R²) dan Jumlah kesilapan persegi (SSE). Model Hii et al., Page dan Two Term menunjukkan penyesuaian terbaik dengan data eksperimen, sekaligus menggambarkan ciri-ciri pengerian labu. Data eksperimen tersebut kemudian digunakan untuk menganggarkan kelembapan kemerasapan dan tenaga pengaktifan labu dengan analisis regresi linear berdasarkan penyelesaian hukum kedua Fick atau bentuknya yang mudah. Nilai kelembapan kemerasapan berubah dari nilai minimum 1.94182 x 10⁻⁸ m²/s ke nilai maksimum 9.19583 x 10⁻⁸ m²/s, manakala tenaga pengaktifan berubah daripada 5.02158 kJ/mol hingga 32.14542 kJ/mol. Hasil kajian menunjukkan bahawa dengan peningkatan suhu, masa pengerian telah dikurangkan. Tambahan pula, masa pengerian untuk mencapai kadar lembapan sebanyak <2%, juga turut meningkatkan ketebalan kepingan daripada 3 mm hingga 7 mm. Selain itu, kemerasapan kelembapan juga turut meningkat dengan peningkatan suhu pengerian, ketebalan kepingan dan tenaga pengaktifan untuk kepingan labu. Di samping itu, program komputer menggunakan perisian MATLAB telah dihasilkan iaitu (LABUSIMSOFT) untuk meramal model pengerian yang sesuai pada keadaan pengerian yang berbeza. Graphical User Interface (GUI) telah dicipta untuk menunjukkan hasil simulasi grafik dan juga menjana keadaan pengerian yang optimum.

Hasil kajian menunjukkan bahawa terdapat peningkatan dalam tiga parameter warna (L*, a*, b*) sejajar dengan peningkatan masa dan suhu pengerian. Nilai kroma
menurun dengan penurunan suhu dan masa pengeringan semasa pengeringan udara panas olakan labu. Perkara tersebut turut direkodkan oleh nilai sudut warna dengan peningkatan dalam masa pengeringan. Browning Index (BI) meningkat sedikit dengan peningkatan masa pengeringan dan suhu. Walau bagaimanapun, perubahan tersebut tidak berbeza secara ketara antara sampel dikeringkan pada suhu 50 °C dan 80 °C pada dengan aras keertian 5% menggunakan Tukey HSD.

Oleh yang demikian, sampel labu yang telah dikeringkan dianalisis untuk mengenalpasti perubahan warna, kekerasan, kesepaduan, kelentingan, daya tahan dan jumlah kandungan karotenoid (TCC), dengan sampel segar sebagai bahan kawalan. Begitu juga, kesepaduan dan kekenyalan labu adalah sama dalam semua keadaan pengeringan. Jumlah kandungan karotenoid (TCC) bagi sampel kering juga diukur. Hasil kajian menunjukkan bahawa suhu pengeringan memberi kesan yang ketara kepada jumlah kandungan karotenoid (TCC). TCC telah berkurang apabila suhu bertambah tetapi pada suhu yang lebih tinggi daripada 80 °C, terdapat peningkatan mendadak dalam nilai TCC kerana masa pengeringan yang lebih singkat. Secara keseluruhan, kinetik pengeringan labu bergantung kepada suhu pengeringan dan ketebalan bahan. Walau bagaimanapun, untuk mendapatkan kombinasi yang paling optimum, perisian simulasi (LABUSIMSOFT) telah dihasilkan dalam keadaan optimum pengeringan seperti berikut: 78 °C bagi suhu pengeringan, 5 mm bagi sampel ketebalan dan 350 minit bagi masa pengeringan yang merekodkan tenaga pengaktifan sebanyak 3.3 x 10⁻⁸ m²/s dan 24.8347 kJ/mol. Akhir sekali, jumlah kandungan karotenoid boleh dikekalkan dengan menggunakan keadaan pengeringan optimum yang telah disyorkan.

Kajian ini mendapati bahawa perisian simulasi komputer yang dibangunkan berpotensi sebagai alat yang mudah dan efektif untuk meramal masa pengeringan, mengoptimumkan dan memantau proses pengeringan labu. Hasil kajian boleh digunakan dalam reka bentuk yang efektif untuk pengering perolakan industri.
ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to God almighty for seeing me through this project. I will like to show my immense appreciation, respect and warmest regards to my main supervisor, Dr. Norhashila Hashim for all her professional guidance, moral and financial support throughout the research period.

I also want to extend my sincere appreciation to my supervisory committee members, Associate Professor Dr. Rimfiel Janius and Dr. Nazmi Mat Nawi for advice and willingness to always assist throughout the research period. I also want to acknowledge the support of the Laboratory Technician, En. Sabri, and colleagues namely; Alfaadil Yahya, Jemilah Garba, Fizura Izu, Maimuna Mohammed Ali and Izah Azizah just to mention a few. I also wish to acknowledge the support of the Staff and members of the Department of Agricultural and Food Engineering, University of Uyo, Nigeria.

Lastly, I would like to express my appreciation to friends, family, love ones and well-wishers whom I am unable to mention their names, I am really grateful. Thank you all.
I certify that a Thesis Examination Committee has met on 10 March 2016 to conduct the final examination of Onwude Daniel Iroemeha C. on his thesis entitled “Kinetic Model of Drying Process of Pumpkin (Cucurbita moschata Duchesne ex Poir.) in a Convective Hot Air Dryer” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Samsuzana binti Abd Aziz, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Nordin bin Ibrahim, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Chung-Lim Law, PhD
Professor Ir.
University of Nottingham Malaysia Campus
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 April 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Degree of Master of Science. The members of the Supervisory Committee were as follows:

Norhashila Hashim, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Rimfiel Janius, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Nazmi Mat Mawi, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice-chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________________ Date: ______________________

Name and Matric No: Onwude Daniel Iroemeha C. GS 41831
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Norhashila Hashim, PhD

Signature: ________________________________
Name of Member of Supervisory Committee: Rimfiel Janius, PhD

Signature: ________________________________
Name of Member of Supervisory Committee: Nazmi Mat Mawi, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLERATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background | 1 |
1.2 Problem Statement | 2 |
1.3 Objectives | 4 |
1.4 Scope and Limitations | 4 |
1.5 Thesis Layout | 4 |

CHAPTER 2 LITERATURE REVIEW

2.1 Overview of Pumpkin Fruit | 6 |
2.2 Nutritional Composition of Pumpkin | 10 |
2.3 Colour Properties of Fruits and Vegetables | 12 |
2.4 Textural Properties of Fruits and Vegetables | 14 |
2.5 Drying of Fruits and Vegetables | 16 |
2.5.1 Factors affecting drying | 17 |
2.5.2 Drying mechanism | 18 |
2.5.3 Kinetic modelling | 19 |
2.5.3.1 Theoretical models | 20 |
2.5.3.2 Semi-theoretical models | 20 |
2.5.3.3 Empirical models | 26 |
2.5.4 Estimation of effective moisture diffusivity during drying | 29 |
2.5.5 Estimation of the activation energy | 34 |
2.5.6 Drying of Pumpkin | 35 |
2.6 Optimization and Computer Simulation | 37 |

CHAPTER 3 METHODOLOGY

3.1 Introduction | 56 |
3.2 Materials | 57 |
3.2.1 Sample preparation | 57 |
3.3 Methodology | 58 |
3.3.1 Hot air dryer set-up | 58 |
3.3.2 Convective drying experiments | 59 |
3.4 Analytical Method | 60 |
3.4.1 Moisture content determination | 60 |
3.4.2 Colour measurements | 61 |
3.4.3 Texture determination | 63 |
3.4.4 Carotenoid extraction and separation | 64 |
3.4.5 Spectrophotometry analyses
3.5 Kinetic Modelling
 3.5.1 Theoretical principles
 3.5.2 Shrinkage
 3.5.3 Effective moisture diffusivity and activation energy
 3.5.4 Estimation of colour change kinetics
3.6 Statistical Design and Data Analysis
3.7 Computer Simulation
 3.7.1 Simulation software development
 3.7.2 Programming language

4 RESULTS AND DISCUSSION
 4.1 Preliminary Drying Results
 4.2 Convective Hot-Air Drying
 4.2.1 Influence of temperature on drying kinetics
 4.2.2 Influence of sample thickness on drying kinetics
 4.3 Thin Layer Modelling
 4.3.1 Shrinkage effect
 4.3.2 Shrinkage effect
 4.3.3 Determination of activation energy
 4.4 Effect of Drying on Colour Changes
 4.4.1 Colour kinetic modelling
 4.4.2 Estimation of colour change activation energy
 4.5 Texture Analysis
 4.6 Texture Analysis
 4.7 Computer Simulation
 4.7.1 Description of simulation software
 4.7.2 Output result
 4.7.3 Validation of simulation result

5 CONCLUSIONS AND RECOMMENDATION
 5.1 Conclusions
 5.2 Recommendations for future works

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Global production of Pumpkin, Squash and gourds in the year 2013</td>
</tr>
<tr>
<td>2.2</td>
<td>Main Vegetables Produced in Malaysia in the year 2013</td>
</tr>
<tr>
<td>2.3</td>
<td>Phytochemical composition of pumpkin</td>
</tr>
<tr>
<td>2.4</td>
<td>Thin layer models for the drying of fruits and vegetables</td>
</tr>
<tr>
<td>2.5</td>
<td>Studies conducted on thin layer drying kinetics modelling of fruits and vegetables</td>
</tr>
<tr>
<td>3.1</td>
<td>Thin layer drying models</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of temperature on the drying kinetics of pumpkin</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of sample thickness on the drying kinetics of pumpkin</td>
</tr>
<tr>
<td>4.3</td>
<td>The statistical comparison of selected models for drying curve prediction</td>
</tr>
<tr>
<td>4.4</td>
<td>Drying kinetic constants of the best models under different conditions</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation between Shrinkage ratio and moisture ratio</td>
</tr>
<tr>
<td>4.6</td>
<td>Effective moisture diffusivity (Deff) and correlation coefficients Pumpkin (Cucurbita moschata) at different drying conditions</td>
</tr>
<tr>
<td>4.7</td>
<td>Effective moisture diffusivity considering shrinkage of Pumpkin (Cucurbita moschata) at drying slice thickness</td>
</tr>
<tr>
<td>4.8</td>
<td>Activation energy and correlation coefficients at different slice thickness</td>
</tr>
<tr>
<td>4.9</td>
<td>Colour parameters (mean and standard deviation) for fresh and dried pumpkin.</td>
</tr>
<tr>
<td>4.10</td>
<td>Estimated regression results of zero-order, first-order and fractional conversion models for L*, a*, b*, and at various drying temperatures</td>
</tr>
<tr>
<td>4.11</td>
<td>Estimated regression results of zero-order, first-order and fractional conversion models for Chroma, Hue angle and Browning index at various drying temperatures</td>
</tr>
<tr>
<td>4.12</td>
<td>Activation energy for the colour degradation of pumpkin for different major colour kinetics parameter</td>
</tr>
</tbody>
</table>
4.13 Textural properties of pumpkin at different drying temperatures (mean and standard deviation) 106

4.14 Total carotenoid content and absorbance values of pumpkin (Cucurbita moschata) as affected by drying conditions 108

A1 Analysis of variance (ANOVA) result for effect of storage condition of pumpkin variability 136

A2 Analysis of variance (ANOVA) result for different colour coordinates at different drying temperatures 136

A3 ANOVA result for total carotenoid content at different drying temperatures 139
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pumpkin (Cucurbita moschata)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>CIELAB colour space</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized food texture profile curve.</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of methodology</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Pumpkin (Cucurbita moschata) samples</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>A setup of convective hot air dryer</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Samples preparation for convective hot air drying experiments</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental set up for initial moisture content determination</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>Chroma Meter colorimeter (CR-10, Konica Minolta Sensing Americas, Inc.)</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>A texture analyser. TA.XT Plus (Stable Microsystems LTD, Surrey, UK)</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>Extraction of carotenoid from pumpkin dried samples</td>
<td>65</td>
</tr>
<tr>
<td>3.9</td>
<td>Flow chart of the simulation algorithm</td>
<td>66</td>
</tr>
<tr>
<td>3.10</td>
<td>Flow chart of the simulation algorithm</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of drying temperature, air velocity and relative humidity on the</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>drying kinetics of pumpkin</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Drying curve of fresh and stored pumpkin</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of drying temperature on drying kinetics at different slice thickness</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Drying rate changes with drying time at different temperatures</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of pumpkin thickness on the moisture ratio variation at different</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>drying conditions</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Drying rate changes with drying time at different slice thickness levels</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of models for different thickness levels at 70 °C</td>
<td>89</td>
</tr>
</tbody>
</table>
4.8 Variations and validation of Hii et al. (2009) model under different drying conditions

4.9 Shrinkage ratio (V/V0) of pumpkin (Cucurbita moschata) at 70 oC

4.10 Ln (MR) versus time (min) of different drying temperature and thickness levels of pumpkin.

4.11 Estimation of activation energy for different slice thickness levels

4.12 Pumpkin colour degradation (L* a* b* and ΔE parameters) during convective hot air drying

4.13 Effect of drying temperature on the (a) Chroma, (b) hue angle, and (c) browning index of pumpkin slices

4.14 Validation of the fractional conversion model for the prediction of colour change kinetics

4.15 Relationship between kinetic colour parameter and temperature

4.16 Effect of drying conditions on some textural properties of pumpkin (C. moschata).

4.17 Effect of drying temperature on TCC

4.18 Main programme interface

4.19 About project interface

4.20 The drying process calculation interface

4.21 Hii et al. model selection and simulation results

4.22 Page model selection and the simulation results

4.23 Storing the simulated results on a local computer

4.24 Optimization model of all possible drying combinations

4.25 Optimization result based on highest performance index

4.26 Comparison and validation between experimental and simulation results of Hii et al. and Page models

A1 Texture profile analysis of pumpkin dried at different temperatures
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Initial moisture content (g water/g dry solid)</td>
</tr>
<tr>
<td>M_e</td>
<td>Equilibrium moisture content (g water/g dry solid)</td>
</tr>
<tr>
<td>M</td>
<td>Moisture content at any time t (g water/g dry solid)</td>
</tr>
<tr>
<td>MR</td>
<td>Moisture ratio</td>
</tr>
<tr>
<td>MC_w</td>
<td>Moisture content (wet basis)</td>
</tr>
<tr>
<td>MC_d</td>
<td>Moisture content (dry basis)</td>
</tr>
<tr>
<td>D</td>
<td>Effective moisture diffusivity (m^2s^{-1})</td>
</tr>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>x</td>
<td>Direction of material dimension (m)</td>
</tr>
<tr>
<td>t</td>
<td>Time (s)</td>
</tr>
<tr>
<td>k, g, h, k_1, k_2, k_0</td>
<td>Drying constant (s^{-1})</td>
</tr>
<tr>
<td>d, n, a, b, c, ∞</td>
<td>Model constant</td>
</tr>
<tr>
<td>r</td>
<td>Radius of cylinder</td>
</tr>
<tr>
<td>z</td>
<td>Direction of thickness</td>
</tr>
<tr>
<td>h^*</td>
<td>Half thickness sample (m)</td>
</tr>
<tr>
<td>D_{efv}</td>
<td>Effective diffusivity with shrinkage (m^2s^{-1})</td>
</tr>
<tr>
<td>V</td>
<td>Sample volume (m^3)</td>
</tr>
<tr>
<td>V_0</td>
<td>Initial volume of sample (m^3)</td>
</tr>
<tr>
<td>V_e</td>
<td>Volume at equilibrium (m^3)</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>R</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>SSE</td>
<td>Sum square error</td>
</tr>
<tr>
<td>$RMSE$</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>χ^2</td>
<td>Reduced chi-square</td>
</tr>
<tr>
<td>EF</td>
<td>Modelling efficiency</td>
</tr>
<tr>
<td>MBE</td>
<td>Mean bias error</td>
</tr>
<tr>
<td>MPE</td>
<td>Mean percent error</td>
</tr>
<tr>
<td>$RRMS$</td>
<td>Mean relative error root square (%)</td>
</tr>
<tr>
<td>w</td>
<td>Width (mm)</td>
</tr>
<tr>
<td>h</td>
<td>Thickness (mm)</td>
</tr>
<tr>
<td>L</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>A^2</td>
<td>Area (mm^2)</td>
</tr>
<tr>
<td>T</td>
<td>Temperature ($^\circ C$)</td>
</tr>
<tr>
<td>T_a</td>
<td>Ambient temperature ($^\circ C$)</td>
</tr>
<tr>
<td>V</td>
<td>Air velocity (m/s)</td>
</tr>
<tr>
<td>$R.H$</td>
<td>Relative humidity (%)</td>
</tr>
<tr>
<td>EA</td>
<td>Exposed area (m^2)</td>
</tr>
<tr>
<td>P_d</td>
<td>Power density (W)</td>
</tr>
<tr>
<td>S_R</td>
<td>Solar radiation (W/m^2)</td>
</tr>
<tr>
<td>P</td>
<td>Power intensity (W/m^2)</td>
</tr>
<tr>
<td>S_I</td>
<td>Solar intensity (kW/m^2)</td>
</tr>
<tr>
<td>C_s</td>
<td>Sucrose concentration</td>
</tr>
<tr>
<td>$NaCl$</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>T_i</td>
<td>Inlet temperature</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface method</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>SDA</td>
<td>Single layer drying apparatus</td>
</tr>
<tr>
<td>TTD, TD</td>
<td>Tunnel and tray dryer</td>
</tr>
<tr>
<td>CTD</td>
<td>Cabinet tray dryer</td>
</tr>
<tr>
<td>OD</td>
<td>Oven dryer</td>
</tr>
<tr>
<td>FIR</td>
<td>Far infrared radiation</td>
</tr>
<tr>
<td>TCD</td>
<td>Tunnel convection dryer</td>
</tr>
<tr>
<td>LHCD</td>
<td>Laboratory hot air convective dryer</td>
</tr>
<tr>
<td>HCD</td>
<td>Hot air convective dryer</td>
</tr>
<tr>
<td>LTCD</td>
<td>Laboratory thermal convective dryer</td>
</tr>
<tr>
<td>DMO</td>
<td>Domestic microwave oven</td>
</tr>
<tr>
<td>ID</td>
<td>Infrared dryer</td>
</tr>
<tr>
<td>STD</td>
<td>Solar tunnel dryer</td>
</tr>
<tr>
<td>OSD</td>
<td>Open sun drying</td>
</tr>
<tr>
<td>MD</td>
<td>Microwave dryer</td>
</tr>
<tr>
<td>ISD</td>
<td>Indirect solar dryer</td>
</tr>
<tr>
<td>ATB</td>
<td>Aerothermic blower</td>
</tr>
<tr>
<td>PP CD, PSD</td>
<td>Pilot plant convective dryer</td>
</tr>
<tr>
<td>FBD</td>
<td>Fludized bed dryer</td>
</tr>
<tr>
<td>IFSD</td>
<td>Indirect forced solar dryer</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared radiation drying</td>
</tr>
<tr>
<td>OMD</td>
<td>Osmotic dehydration</td>
</tr>
<tr>
<td>TCD</td>
<td>Total colour difference</td>
</tr>
<tr>
<td>w.b</td>
<td>Wet basis</td>
</tr>
<tr>
<td>d.b</td>
<td>Dry basis</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>TCC</td>
<td>Total carotenoid content</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Pumpkin is one of the most widely known fruits grown for commercial purposes; both for fresh fruit market and food processing industries. It is also a good source of carotenoids, mainly α-carotene and β-carotene which are useful in medical, pharmaceutical and cosmetics industries (Arima and Rodriguez Amaya, 1990; Murkovic et al., 2002; Dutta et al., 2006; Garcia et al., 2007). Carotenoids are phytochemical components that reduce the risk of degenerative diseases such as cancer and diabetes. They are also responsible for the attractive colour of many fruits and vegetables. Carotenoids are said to be prone to isomerization and oxidation during processing due to inappropriate drying conditions, heat-treatment and exposure to light, resulting in some loss of colour and biological activity alteration (Rodríguez-Amaya, 2002). Thus, proper information of the processing condition must be provided to ensure that the extraction of the carotenoids from pumpkins will produce optimum output without appreciable loss of nutrients.

Drying is a part of the many processes involved in the extraction of carotenoids from fruits. It is a simultaneous heat and mass transfer process that results in the reduction of moisture level from high to very low. This process is also useful in order to extend shelf life, reduce the bulk of the produce and ultimately ease transportation. Usually, the drying process results in coagulation of the protein fraction and permits convenient separation of the lipid fraction besides generating a typical aroma of the end product (Fruhwirth and Hermetter, 2007). There are many available drying methods currently used in postharvest technology such as vacuum, microwave, heat pump, supercritical, freeze and hot air drying. According to Kudra and Mujumdar (2009), despite recent developments in novel drying technologies, conventional technologies are still widely preferred in the industries as compared to novel technologies due to the simplicity of dryer construction, ease of operation, as well as the status of familiarity (Araya-Farias and Ratti, 2008). Furthermore, drying is estimated to consume 10–15% of the total energy consumption of all the food industries in developed countries (Keey, 1972; Klemes et al., 2008). Thus, it is energy-intensive. In a nutshell, drying is arguably the most long-standing, diverse, and conventional operation.

Convective hot air drying is the most widely used method, which is naturally harmless and non-toxic, provides a more uniform, hygienic, rapid and attractively coloured dried product (Doymaz, 2007; Rodriguez et al., 2014; Tzempelikos et al., 2015). In addition, it is a low-cost method which uses hot air as a drying medium to remove moisture from the fresh produce (Prachayawarakorn et al., 2008; Nawirska et al., 2009). Jayaraman and Das Gupta (2014) also reported that for drying fruits and vegetables, convective hot air drying is the most preferred method due to both its simplicity and economical advantage. Convective hot air drying, account for more than 85% of industrial dryers and more than 99% of the applications involve removal of moisture (Mujumdar, 2000; 2007; Aghilinategh et al., 2015).
Basically, drying is a complex thermal process in which unsteady heat and moisture transfer occur simultaneously (Akoy, 2014). Since the process is energy intensive, the efficiency of drying with respect to energy and time is an important economic consideration. Therefore, it is also important to develop a better understanding of the controlling parameters of this complex process to ensure the optimum output during processing. Although considerable studies have been performed on the drying method of agricultural products, reliable simulation models of drying kinetics for pumpkins are still limited.

1.2 Problem Statement

Convective hot air drying of pumpkin, which is often one of the most used methods of preservation, is also widely used in the industry due to its simplicity and affordability. Industrial drying usually takes place at very high temperatures with less information on the appropriate drying conditions that would retain or minimize the loss of quality parameters (colour, texture and carotenoids) while reducing the total drying time.

In Malaysia, carotenoids are major sources of industrial pigments for health and cosmetics products. These carotenoids are extracted industrially from Pumpkin (Cucurbita moschata), which is extensively grown in Malaysia. Drying is the most time and energy consuming unit operation during the industrial extraction of pumpkin. However, carotenoids undergo degradation during this process due to factors such as a long processing time and inappropriate processing temperature (Akanbi and Oludemi, 2004; Nor, 2013). Thus, the engineering processes that will minimize carotenoid degradation, maintain the colour and textural properties during the industrial hot air drying of pumpkin becomes very essential. Modelling the drying processes can help in selecting the appropriate or optimum drying conditions, so that the drying process of pumpkin can be optimized as a means of maintaining the product’s optical properties, reducing carotenoid losses and improving product quality. Its application is therefore essential for a wide range of technologies, including online monitoring of the drying process of fruits and vegetables. This can be achieved by integrating computer simulation software with the dryer.

Few studies on the colour kinetics of food materials have been reported in the scientific literature. Gamli (2011) studied the colour changes of tomato puree and the kinetic modelling of the colour changes of some fruits, such as kiwifruits (Mohammadi et al., 2008) and apple, banana and carrots (Krokida et al., 2007) have also been investigated. More so, studies on the effect of process storage conditions and packaging on the colour properties of other fruits have been reported (Bechoff et al. 2011; Guiné et al., 2011; Divya et al., 2012; Bechoff et al., 2015). However, no study has been reported on the colour change kinetics of pumpkin during convective hot air drying process, with particular emphasis on the selection of a suitable kinetic model in predicting the colour stability.

The current industrial drying of pumpkin (Cucurbita moschata) is carried out at different temperatures, which may adversely affect the total carotenoid content. This current practice of using hot air dryers is also time consuming and greatly affected by
parameters such as air velocity, air temperature and material thickness. The effect of these parameters on the drying process of pumpkin can be investigated by determining the drying kinetics. The use of drying kinetics to describe the combined macroscopic and microscopic medium of heat and mass transfer during drying is also essential in engineering designs. The drying kinetics of several food product have been determined using thin-layer models (Erbay and Icier, 2010), which are significant in deciding the ideal drying conditions, for process optimisation and product quality improvement (Giri and Prasad, 2007). Many mathematical thin layer models are available from literatures, however their application is determined by the type of material to be dried (Akpinar, 2006a; Doymaz, 2007; Guine et al., 2011). Therefore, another challenge for engineers is to evaluate the most suitable thin layer model in order to develop a simulation that can predict the best drying time. With this, postharvest losses associated to hot air industrial drying of pumpkin will be greatly minimized thereby improving product quality and increasing food availability at an affordable cost to the populace and also generate great earnings to the farmers.

Furthermore, studies on drying of pumpkin do not consider the shrinkage effect. However, this phenomenon have been found to be a major factor in describing and optimizing the drying process of most fruits and vegetables. Therefore, the increasing demand for high quality and shelf-life dried pumpkin products requires optimization of the drying process conditions with the purpose of identifying optimal drying time, reduction in the total cost of production and improvement in the overall drying process efficiency. The knowledge of the drying kinetics and subsequently, the selection of an appropriate thin-layer drying model can be used to develop a simulation program in order to predict the best drying time, select appropriate drying conditions thereby optimizing the drying process. Particularly, the simulation program can adequately generate optimum drying parameters and time, the generated values can then be used on the dryers by the engineer or operator in the industry in order to reduce drudgery, reduce processing time, maintain product quality, maximize the energy required, thereby increasing the efficiency of the overall production process.

Several studies have proposed different models in determining the drying kinetics of various fruits and vegetables in hot air dryers (Erbay and Icier, 2010). The drying kinetics of Pumpkins (C. maxima and C. pepo) have also been investigated (Akpinar 2006a; Perez and Schmalko 2009; Guine et al., 2011). However, there is no study on the best drying parameters (temperature, thickness and air velocity) and time for the convective hot air drying of pumpkin (C. moschata). In addition, no existing computer simulation program for modelling the drying kinetics of fruits and vegetables in general, and pumpkin (Cucurbita moschata) in particular. This gap in knowledge could affect process optimization and modelling the moisture changes during the post-harvest processing of pumpkin (Cucurbita moschata). Hence, a study of kinetic modelling for the drying process of pumpkins in a convective hot air dryer in order to develop a computer simulation program for identifying best drying time becomes indispensable. Thus, the following existing problems associated with the industrial drying of pumpkin (Cucurbita moschata) in Malaysia can be addressed:

- Inappropriate drying parameters
- Longer drying time leading to high cost of production
- Reduction in total carotenoid content during hot air drying.
As a consequence, the drying kinetics of pumpkins in a convective hot air dryer was investigated with a view to develop a computer simulation program for predicting the best drying conditions and time, and also describing the drying process. The model and simulation program could be used as a baseline for the drying processes of other tropical fruits and vegetables.

1.3 Objectives

The main objective of this study is to develop a computer simulation program for predicting the most suitable drying conditions and time of pumpkin (*Cucurbita moschata*) in a convective hot air dryer.

The specific objectives are:

i. To determine the drying kinetics of pumpkin using a convective hot air dryer and to identify the best thin layer drying model(s) for the development of simulation program.

ii. To estimate the moisture diffusivity and activation energy requirement of pumpkin during drying process.

iii. To determine the effect of drying on the texture, colour and total carotenoid yield.

1.4 Scope and Limitations

The study exclusively involved only thin layer convective hot air drying of pumpkin (*Cucurbita moschata*) at temperature range of 50 °C to 80 °C, thickness of 3 mm to 7 mm and constant air velocity of 1.2 m/s and limited to textural properties, colour and total carotenoid content determination.

1.5 Thesis Layout

The thesis consists of five chapters, and each chapter is divided into several sub-sections. Chapter one gives information about the background of the research, the knowledge gap, drawback, and statement of problem, specific objectives and the scope of study. Chapter two is the literature review. A review on pumpkin and physiochemical properties of pumpkin was carried out. Most importantly, modelling thin-layer drying of fruits and vegetables, and pumpkin in particular, was extensively and comprehensively reviewed so that readers will have a better understanding into thin layer kinetic modelling of the drying process of fruits and vegetables in general, and pumpkin in particular. Chapter three focused on methodology used in the drying experiments. This chapter also give insight on the procedures used in the colour, texture and carotenoid measurements. The different thin layer models, computer
simulation and optimization process were well documented in this chapter. Chapter four presents the findings of the research. Particular emphasis on the drying rate curve, moisture ratio curve, effect of drying on colour, texture and carotenoid contents, and results of the developed computer simulation program were appraised in this chapter. Finally, the conclusions and recommendations based on the current research are presented in Chapter five.
REFERENCES

121

Crowne Plaza, Gold Coast, Australia.

