UNIVERSITI PUTRA MALAYSIA

AVAILABILITY AND PHYTOREMEDIATION OF ZINC AND COPPER IN TWO MALAYSIAN SOILS TREATED WITH SEWAGE SLUDGE

AISHAH RAMADAN MOHAMED BIN ADAM

FP 2017 24
AVAILABILITY AND PHYTOREMEDIATION OF ZINC AND COPPER IN TWO MALAYSIAN SOILS TREATED WITH SEWAGE SLUDGE

By

AISHAH RAMADAN MOHAMED BINADAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2017
DEDICATION

To the soul of my father “may Allah forgive him and grant him his highest paradise”. To my beloved mother and my siblings with love and eternal appreciation.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

AVAILABILITY AND PHYTOREMEDIATION OF ZINC AND COPPER IN TWO MALAYSIAN SOILS TREATED WITH SEWAGE SLUDGE

By

AISHAH RAMADAN MOHAMED BINADAM

July 2017

Chairman : Professor Shamshuddin Jusop, PhD
Faculty : Agriculture

The disposal of municipal sewage sludge face serious challenges. Currently, over 3.2 \(\times 10^6 \) metric tons of domestic sewage sludge in Malaysia are in need of safe disposal. Phytoremediation provides an efficient soil remediation solution since it uses plants to remove contaminants. A glasshouse experiment were conducted to assess the potential of four plant species (\textit{Jatropha curcas}, \textit{Hibiscus cannabinus}, \textit{Acacia mangium} and \textit{Syzigium cumini}) to the phytoremediation of excess Zn and Cu in Oxisol and in Ultisol amended by different rates of sewage sludge: 0, 5 and 10% v/v.

The results showed that the addition of 10% sewage sludge enhanced the nutritional status of the Oxisol and Ultisol, shown by the increase in soil pH from 5.36±0.01 to 5.84±0.02 in the Oxisol, and from 4.77±0.02 to 5.37±0.01 in the Ultisol, the CEC increased from 8.00±0.57 to 9.39±0.01 cmol\(_c\) kg\(^{-1}\) in Oxisol and from 10.33±0.01 to 11.22±0.06 cmol\(_c\) kg\(^{-1}\), available P increased from 10.70±0.05 mg kg\(^{-1}\) to 24.00±0.02 mg kg\(^{-1}\), in Oxisol and from 10.90±0.05 mg kg\(^{-1}\) to 26.80±0.01 mg kg\(^{-1}\) in Ultisol.

Among the four plants examined, it was found that \textit{J. curcas} and \textit{H. cannabinus} were capable of accumulating more Zn and Cu than those of the \textit{A. mangium} and \textit{S. cumini}, which was shown by their high translocation factor (TF>1). \textit{H. cannabinus} had the highest TF value of Zn (2.43±0.02), while \textit{J. curcas} had the highest TF value of Cu (1.52±0.02).

Fractionation of metals showed that the Zn and Cu existed in the residual form, while the sludge application into the soils tended to shift the forms of Zn and Cu away from residual fraction to water soluble and exchangeable fractions that might be more available for plant uptake.
A leaching study was conducted to determine movement of Zn and Cu in the tested soils. The results showed that the application of 10% sewage sludge seemed to increase the concentration of Zn and Cu in the leachates of the soils, the maximum concentration of Zn in the leachates from the Ultisol was 82.35±0.45 mg L⁻¹ which was higher than that of the Oxisol 62.91 ±0.25 mg L⁻¹. For Cu, it was 8.69±0.15 mg L⁻¹ in the leachates of the Ultisol which was lower than that of the Oxisol of 11.67±0.05 mg L⁻¹. The downward movement of Zn and Cu in the soil columns after the leaching process was different among the metals, whereby Zn had a lower concentration (1.12±0.03 mg kg⁻¹) compared that to Cu (5.6±0.07 mg kg⁻¹) in the both soils, especially for the 0-5 cm layer.

The results adsorption study showed that the sewage sludge application had significant effect on the processes of adsorption-desorption of Zn and Cu. This is shown by the systematic change of the distribution coefficients (K_d). Comparison between K_d values for both soils indicated the following selectivity of metals; Cu (K_d= 3.42) > Zn (K_d=2.82). It is clear that Zn adsorption was lower than that of Cu. The adsorption isotherms of Zn and Cu of both soils were well fitted to linear Freundlich and Langmuir equations (R² = 0.96 - 0.99).

This study suggests that sewage sludge possessed the ability to improve the fertility of highly weathered soils. However, the presence of Zn and Cu is a negative side effect of using sewage sludge. The excess Zn and Cu in treated soils can be successfully removed by phytoremediators, such as *J. curcas* and *H. cannabinus*.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KETERSEDIAAN DAN FITOREMEDIASI ZINK DAN KUPRUM DALAM DUA JENIS TANAH MALAYSIA YANG DIRAWAT DENGAN SISA KUMBahan

Oleh

AISHAH RAMADAN MOHAMED BIN ADAM

Julai 2017

Pengerusi : Profesor Shamshuddin Jusop, PhD
Fakulti : Pertanian

Pelupusan sisa kumbahan adalah suatu proses yang amat mencabar. Di Malaysia, lebih 3.2 juta tan metrik sisa kumbahan domestik perlu dilupuskan dengan selamat. Fitoremediasi merupakan suatu penyelesaian untuk pemulihan tanah yang efisien kerana ianya menggunakan tumbuhan untuk mengelurkan bahan pencemaran dari tanah. Satu kajian rumah kaca telah dijalankan bertujuan menilai potensi empat spesies tumbuhan (*Jatropha curcas, Hibiscus cannabinus, Acacia mangium* and *Syzigium cumini*) untuk fitoremediasi kandungan Zn dan Cu yang berlebihan dalam tanah Oxisol dan Ultisol yang diletakkan dengan sisa kumbahan pada kadar yang berbeza, iaitu pada kepekatan 0, 5 dan 10% i.p./i.p.

Hasil kajian mendapati tanah Oxisol dan Ultisol yang rawat dengan sisa kumbahan pada kadar 10% menunjukkan peningkatan dari segi nutrisi tanah berdasarkan kenaikan pH dari 5.36±0.01 ke 5.84±0.02 dalam tanah Oxisol dan dari 4.77±0.02 ke 5.37±0.01 dalam tanah Ultisol. Nilai CEC tanah meningkat dari 8.00±0.57 ke 9.39±0.01 cmol c kg⁻¹ dalam tanah oxisol dan dari 10.33±0.01 ke 11.22±0.06 cmol c kg⁻¹ dalam tanah ultisol. Ketersediaan P juga meningkat dari 10.70±0.05 mg kg⁻¹ ke 24.00±0.02 mg kg⁻¹ dalam tanah Oxisol dan dari 10.90 ± 0.05 mg kg⁻¹ ke 26.80±0.01 mg kg⁻¹ dalam tanah Ultisol.

Di antara empat jenis tumbuhan yang dikaji, didapati pokok *J. curcas* dan *H. cannabinus* menunjukkan keupayaan mengumpulkan lebih banyak Zn dan Cu berbanding dengan pokok *A. mangium* dan *S. cumini*, berdasarkan kepada faktor transloksi yang tinggi (TF>1). Pokok *H. cannabinus* menunjukkan nilai TF yang paling tinggi untuk Zn (2.42±0.02), manakala *J. curcas* pula menunjukkan nilai TF yang paling tinggi untuk Cu (1.52±0.02).
Kajian komposisi logam menunjukkan Zn dan Cu wujud dalam bentuk mendakan, manakala aplikasi sisa kumbahan pada tanah menyebabkan kecenderungan penukaran Zn dan Cu daripada bentuk mendakan ke bentuk yang larut air dan dalam keadaan boleh ditukarganti dan lebih tersedia untuk tumbuhan.

Suatu kajian larutlesap telah dijalankan untuk melihat pergerakan Zn dan Cu dalam tanah yang diuji. Hasil kajian menunjukkan aplikasi sisa kumbahan pada kepekatan 10% meningkatkan kandungan Zn dan Cu dalam hasil larutlesap. Kepekatan maksimum Zn dalam hasil larutlesap tanah Ultisol adalah sebanyak 82.35±0.45 mg L\(^{-1}\) dan lebih tinggi berbanding kepekatan dalam tanah Oxisol iaitu sebanyak 62.91 ±0.25 mg L\(^{-1}\). Manakala untuk Cu pula, kepekatan dalam hasil larutlesap tanah Ultisol adalah 8.69±0.15 mg L\(^{-1}\) iaitu lebih rendah berbanding tanah Oxisol sebanyak 11.67±0.05 mg L\(^{-1}\). Pergerakan Zn dan Cu menuruni kolum tanah hasil dari proses larutlesap adalah berbeza. Kepekatan Zn adalah lebih rendah (1.12±0.03 mg kg\(^{-1}\)) berbanding kepekatan Cu (5.6±0.07 mg kg\(^{-1}\)) untuk kedua-dua jenis tanah terutamanya pada lapisan 0-5 sm.

Keputusan kajian jerapan menunjukkan aplikasi sisa kumbahan memberikan kesan yang ketara dalam proses jerapan dan pembebasan Zn dan Cu dalam tanah. Ini dibuktikan oleh perubahan yang sistematik dalam nilai pembolehubah taburan (K\(_d\)). Perbandingan antara nilai K\(_d\) untuk kedua-dua jenis tanah menunjukkan urutan pilihan logam seperti berikut: Cu (K\(_d\)= 3.42)> Zn (K\(_d\)=2.82). Jerapan Zn adalah jelas lebih rendah berbanding Cu. Isoterma jerapan untuk Zn dan Cu dalam kedua-dua jenis tanah adalah sangat menepati persamaan linear Freundlich dan Langmuir (R\(^2\) = 0.96 - 0.99).

Kajian ini menunjukkan bahawa sisa kumbahan mempunyai keupayaan untuk meningkatkan kesuburan tanah yang terluluhawa, walaupun kehadiran Zn dan Cu merupakan kesan sampingan yang negatif dari penggunaan bahan ini. Namun, kandungan Zn dan Cu yang berlebihan dalam tanah ini boleh hapuskan melalui fitoremediasi oleh pokok J. curcas dan H. cannabinus.
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor professor Shamshuddin B Jusop for the continuous support of my Ph.D study, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study.

Besides my supervisor, I would like to thank the rest of my thesis committee: Professor Che Fauziah Bt Ishak, Associate Professor Arifin Bin Abdu, for their insightful comments and encouragement, but also for the hard question which incited me to widen my research from various perspectives.

I am also thankful to the laboratory assistant, Mrs. Rusnah, who endured with great patience in all my laboratory tasks. I thank my fellow lab mates for the stimulating discussions, and for all the fun we have had in the last four years. Not to forget Nur Nazirah for hardships and good times during our projects.

Special thanks to my lovely brother: Reda who shared with me my moments of studying abroad.

Last but not the least; I would like to thank my family: my mother, my brothers and sister for supporting me spiritually throughout writing this thesis and my life in general.
I certify that a Thesis Examination Committee has met on 21 July 2017 to conduct the final examination of Aishah Ramadan Mohamed Binadam on her thesis entitled "Availability and Phytoremediation of Zinc and Copper in Two Malaysian Soils Treated with Sewage Sludge" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zaharah binti Abdul Rahman, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ahmad Husni bin Mohd Haniff, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Hazandy bin Abdul Hamid, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
/Internal Examiner

Md. Jahiruddin, PhD
Professor
Bangladesh Agricultural University
Bangladesh
/External Examiner

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Shamshuddin B Jusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Che Fauziah Bt Ishak, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Arifin Bin Abdu, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Aishah Ramadan Mohamed Binadam, GS36700
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________________
Name of Chairman of Supervisory Committee: Professor Dr. Shamshuddin B Jusop

Signature: _______________________
Name of Member of Supervisory Committee: Professor Dr. Che Fauziah Bt Ishak

Signature: _______________________
Name of Member of Supervisory Committee: Associate Professor Dr. Arifin Bin Abdu
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENT	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1 INTRODUCTION
1.1 General overview 1 1.2 Justification 3 1.3 The Objectives 3

2 LITERATURE REVIEW
2.1 Highly weathered soils characteristics 4 2.2 Contamination of soils by heavy metals 4 2.3 Sewage sludge as Source of Heavy Metals 6 2.4 Mobility of heavy metals 8 2.4.1 Factors affecting mobility 8 2.4.2 Effects of heavy metals mobility 9 2.5 Downward movement of heavy metals in soil column 9 2.6 Adsorption- Desorption 10 2.7 Phytoremediation techniques 11 2.7.1 Phytoremediation efficiency 12 2.7.2 Advantages of phytoremediation 13 2.7.3 Disadvantages of phytoremediation 13 2.7.4 Future trends of phytoremediation 13 2.8 Hyperacaccumulators plants 14 2.9 Using woody plant species to remove heavy metals 15 2.9.1 Acacia mangium (Akasia) 16 2.9.2 Jatropha (Jarak) 16 2.9.3 Hibiscus cannabinus (Kenaf) 17 2.9.4 Syzygium cumini (Jambul) 17 2.10 Summary of literature review 18

3 MATERIALS AND METHODS
3.1 Materials 19 3.1.1 Soil Samples 19 3.1.2 Sewage sludge sample 19 3.1.3 Plants 20 3.2 Methods 21 3.2.1 Glasshouse experiments 21 3.2.2 Movement and Distribution of heavy metals in soil column 21
3.2.3 Adsorption Vs Desorption Behaviour of Zn and Cu

3.3 Measurements and Analysis

3.3.1 Plant heights, leafs number and biomass

3.3.2 Physico-chemical Parameters

3.3.2.1 Soil pH

3.3.2.2 Determination of Soil Texture

3.3.2.3 Bulk Density (BD)

3.3.2.4 Soil Particle Density

3.3.2.5 Soil Porosity

3.3.2.6 Determination of Cation Exchange Capacity (CEC) and Exchangeable Bases (Mg, Ca and K)

3.3.2.7 Determination of Total Carbon and Total Nitrogen

3.3.2.8 Determination of organic matter content

3.3.2.9 Determination of Total Zn and Cu

3.3.2.10 Heavy metal (Zn and Cu) sequential extraction

3.3.2.11 Determination of Zn and Cu in plant tissue

3.3.2.12 Determination of Available Phosphorus

3.3.2.13 Mineralogy of soils by using XRD

3.4 Remediation Indices

3.5 Statistical Analysis

4 USING PLANT SPECIES AS PHYTOACCUMULATORS OF ZINC AND COPPER OCCURRING IN HIGHLY WEATHERED SOILS AMENDED WITH SEWAGE SLUDGE

4.1 Introduction

4.2 Materials and Methods

4.2.1 Materials

4.2.2 Methods

4.2.3 Statistical analysis

4.3 Results

4.3.1 Physico-chemical Characteristics of the Untreated Soils

4.3.2 Chemical properties of the sewage sludge

4.3.3 Physico-chemical Characteristics of the treated Soils

4.3.4 Chemical Properties of the Soils at Harvest

4.3.5 Plant Biomass and growth rate

4.3.6 Zinc and copper in the Plant Parts

4.3.7 Translocate factor (TF) and Bio-concentration factor (BCF)

4.4 Discussion

4.4.1 Impacts of Sewage Sludge Addition

4.4.2 Influence Growth of the Tested Plants on Heavy Metals in the Soils at Harvest

4.4.3 Influence of Sewage Sludge on Plants Biomass and growth rate

4.4.4 Influence of Sewage Sludge on Heavy Metals in the tested Plants

4.4.5 The Uptake of zinc and copper
4.4.6 Phytoremediation Efficiency 50
4.5 Conclusion 51

5 PHYTOREMEDIATION OF COPPER AND ZINC IN SEWAGE SLUDGE AMENDED SOILS USING JATROPHA CURCAS AND HIBISCUS CANNABINUS 52
5.1 Introduction 52
5.2 Materials and Methods 53
5.2.1 Materials 53
5.2.2 Methods 54
5.2.3 Statistical analysis 54
5.3 Results 55
5.3.1 Characterization of the soils at harvest 55
5.3.2 Changes in Zn and Cu in the soils 56
5.3.3 Fractionation of zinc and copper in sewage sludge and soils 58
5.3.4 Plants biomass 61
5.3.5 Zinc and copper concentrations in the plant parts 62
5.3.6 The uptake of zinc and copper 64
5.3.7 Removal coefficients 66
5.4 Discussion 66
5.4.1 Changes in the chemical properties of soils 66
5.4.2 Changes in zinc and copper concentration in soils 67
5.4.3 The availability of zinc and copper 67
5.4.4 Changes in the biomass of plants 68
5.4.5 Accumulation and distribution of Zn and Cu in the plant tissues 68
5.4.6 Plant uptake 69
5.4.7 Translocation and bio-concentration factors 69
5.5 Conclusion 69

6 ZINC AND COPPER MOBILITY IN EXPERIMENTALLY DISTURBED OXISOL AND ULTISOL SOIL COLUMNS 70
6.1 Introduction 70
6.2 Materials and Methods 70
6.2.1 Materials 70
6.2.2 Methods 71
6.2.2.1 Column Leaching Experiments 71
6.2.2.2 Packing the columns 71
6.2.2.3 Leaching Process 71
6.2.2.4 Leachates analysis 72
6.2.2.5 Soil analysis 72
6.2.3 Statistical analysis 72
6.3 Results 72
6.3.1 General Characteristic of Soil and Sewage Sludge 72
6.3.2 Leachate properties 75
6.3.2.1 Leachates pH 75
6.3.2.2 Zinc and copper in leachate 75
6.3.3 Cumulative Zn and Cu concentrations in the leachate 77
6.3.4 Relation between leachability of Zn, Cu and leachate pH 78
6.3.5 Anion concentrations in the leachates 80
6.3.6 Principal Component Analysis 82
6.3.7 Zinc and copper down movement due to leaching process 84

6.4 Discussion 86
6.4.1 Leachate as a source of Zn and Cu 86
6.4.2 Leachability of Zn and Cu as a function of pH 86
6.4.3 Downward Movements of zinc and copper in soil columns 87

6.5 Conclusion 87

7 ADSORPTION-DESORPTION CHARACTERISTICS OF ZINC AND COPPER IN OXISOL AND ULTISOL AMENDED WITH SEWAGE SLUDGE 88
7.1 Introduction 88
7.2 Materials and Methods 88
7.2.1 Materials 88
7.2.2 Methods 89
7.2.3 Batch adsorption study 89
7.2.4 Desorption Study 89
7.2.5 Data analysis 89
7.2.5.1 Distribution coefficient 90
7.2.5.2 Freundlich Adsorption Isotherm 90
7.2.5.3 Langmuir Isotherms 91
7.2.5.4 Desorption 91
7.2.6 Statistical analysis 92

7.3 Results 92
7.3.1 Soils and sewage sludge characterization 92
7.3.2 Adsorption isotherm and distribution coefficients 94
7.3.3 Freundlich and Langmuir isotherms 97
7.3.4 Desorption of Zn and Cu from the soils 100
7.3.5 Adsorption-desorption phenomena of Zn and Cu in soil 103

7.4 Discussion 104
7.4.1 Zinc and copper adsorption isotherms studies 104
7.4.2 Kinetics of zinc and copper desorption 105
7.4.3 Role of sewage sludge in adsorption-desorption of Zn and Cu 105

7.5 Conclusion 106

8 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS 107
8.1 Summary 107
8.2 Conclusion 108
8.3 Recommendations for future research 110

REFERENCES 111
APPENDICES 130
BIODATA OF STUDENT 151
LIST OF PUBLICATIONS 152
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The description of tow soil types used in the experiments</td>
</tr>
<tr>
<td>3.2</td>
<td>The taxonomy of four woody species used in the experiments</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental treatments in the glasshouse</td>
</tr>
<tr>
<td>4.1</td>
<td>Physico-chemical properties of the Oxisol, Ultisol and sewage sludge</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of sewage sludge application on the properties of Oxisol and Ultisol</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of sewage sludge application on the properties of the Oxisol at harvest</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of sewage sludge application on the properties of the Ultisol at harvest</td>
</tr>
<tr>
<td>4.5</td>
<td>Total biomass of cultivated plants in Oxisol and Ultisol</td>
</tr>
<tr>
<td>4.6</td>
<td>Growth parameters and growth rate of cultivated plants in Oxisol and Ultisol</td>
</tr>
<tr>
<td>4.7</td>
<td>Growth rate of cultivated plants in Oxisol and Ultisol</td>
</tr>
<tr>
<td>4.8</td>
<td>Zinc and copper uptake in the plant species cultivated in Oxisol and Ultisol</td>
</tr>
<tr>
<td>4.9</td>
<td>The translocation factor (TF) and Bio-concentration factor (BCF) of Zn and Cu of tested plant species</td>
</tr>
<tr>
<td>5.1</td>
<td>Properties of the sewage sludge and soils before planting and at harvest</td>
</tr>
<tr>
<td>6.1</td>
<td>Physico-chemical properties of the soils and sewage sludge</td>
</tr>
<tr>
<td>6.2</td>
<td>Changes in leachate pH with time.</td>
</tr>
<tr>
<td>6.3</td>
<td>Pearson correlation coefficient (r) between Zn and Cu in the leachate and pH.</td>
</tr>
<tr>
<td>7.1</td>
<td>Chemical, physical and mineralogical properties of the Oxisol and Ultisol.</td>
</tr>
<tr>
<td>7.2</td>
<td>Desorption of Zn and Cu from the Oxisol and Ultisol.</td>
</tr>
<tr>
<td>7.3</td>
<td>Pearson correlation coefficient between Zn and Cu Adsorption-desorption and soil properties.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>X-ray diffractograms of the untreated clay fraction of the soils</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of sewage sludge application on plant dry biomass: cultivated plants in Oxisol (A), cultivated plants in Ultisol (B).</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of sewage sludge application on Zn and Cu in tested plant species: Zn concentration in plants cultivated in Oxisol (A), Zn concentration in plants cultivated in Ultisol (B), Cu concentration in plants cultivated in Oxisol (C), Cu concentration in plants cultivated in Ultisol (D).</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of sewage sludge application on the uptake of heavy metals by the tested plant species: (A) Zn uptake by plants cultivated in Oxisol, (B) Cu uptake by plants cultivated in Oxisol (C) Zn uptake by plants cultivated in Ultisol, (D) Cu uptake by plants cultivated in Ultisol.</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of sewage sludge application on TF and BCF values: TF and BCF values of Zn for plants cultivated plants in Oxisol (A), TF and BCF values of Cu for plants cultivated in Oxisol (B), TF and BCF values of Zn for plants cultivated in Ultisol (C), TF and BCF values of Cu for plants cultivated in Ultisol (D).</td>
<td>46</td>
</tr>
<tr>
<td>5.1</td>
<td>Changes in Zn and Cu in the soils: (A) Zn in Oxisol with J. curcas, (B) Zn in Oxisol with J. curcas, (C) Zn in Ultisol with J. curcas, (D) Cu in Ultisol with J. curcas, (E) Zn in Oxisol with H. cannabinus, (F) Cu in Oxisol with H. cannabinus, (J) Zn in Ultisol with H. cannabinus, and (H) Cu in Ultisol with H. cannabinus</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>Forms of Zn and Cu in the sewage sludge</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>Forms of Zn in untreated Oxisol (A and B), in treated Oxisol (C and D)</td>
<td>59</td>
</tr>
<tr>
<td>5.4</td>
<td>Forms of Cu in untreated Oxisol (A and B), in treated Oxisol (C and D)</td>
<td>60</td>
</tr>
<tr>
<td>5.5</td>
<td>Changes in plants biomass: J. curcas planted on Oxisol (A), J. curcas planted on Ultisol (B), H. cannabinus planted on Oxisol (C); and H. cannabinus planted on Ultisol (D).</td>
<td>61</td>
</tr>
<tr>
<td>5.6</td>
<td>Zn and Cu concentrations in plants at harvesting: Zn in J. curcas and H. cannabinus planted on Oxisol (A), Cu in J. curcas and H. cannabinus planted on Oxisol (B), Zn in J. curcas and H. cannabinus planted on Ultisol (B), Zn in J. curcas and H. cannabinus planted on Ultisol (D).</td>
<td>63</td>
</tr>
</tbody>
</table>
cannabinus planted on Ultisol (C), Cu in J. curcas and H. cannabinus planted on Ultisol (D).

5.7 The uptake of Zn and Cu: Zn uptake by J. curcas planted on Oxisol (A), Cu uptake by J. curcas planted on Oxisol (B), Zn uptake by J. curcas planted on Ultisol (C), Cu uptake by J. curcas planted on Ultisol (D), Zn uptake by H. cannabinus planted on Oxisol (E), Cu uptake by H. cannabinus planted on Oxisol (F), Zn uptake by H. cannabinus planted on Ultisol (J), and Cu uptake by H. cannabinus planted on Ultisol (H).

5.8 Phytoremediation efficiency of J. curcas and H. cannabinus planted in Oxisol and Ultisol.

6.1 Variation in the concentrations of Zn and Cu eluted from untreated Oxisol (control: T1) (A), Oxisol treated with 10% sewage sludge T2 (B) and; treated Oxisol after cultivated T3 (C).

6.2 Variation in the concentrations of Zn and Cu eluted from untreated Ultisol (control: T1) (A), Ultisol treated with 10% sewage sludge T2 (B) and; treated Ultisol after cultivated T3 (C).

6.3 Cumulative Zn and Cu concentrations in the leachates.

6.4 Variation in concentrations of anions eluted from untreated Oxisol (control:T1) (A), Oxisol treated with 10% sewage sludge T2 (B) and; treated Oxisol after cultivated T3 (C).

6.5 Variation in concentrations of anions eluted from untreated Ultisol (control:T1) (A), Ultisol treated with 10% sewage sludge T2 (B) and; treated Ultisol after cultivated T3 (C).

6.6 Plot of principal component analysis for leachates of untreated Oxisol (A), for leachates of untreated Ultisol (B), for leachates of Oxisol treated with 10% sewage sludge (C), for leachates of Ultisol treated with 10% sewage sludge (D), for leachates of cultivated Oxisol treated with 10% sewage sludge (E), for leachates of cultivated Ultisol treated with 10% sewage sludge (F).

6.7 Distribution of Zn and Cu in Oxisol columns: (A) Control (T1), (B) Oxisol with sewage sludge (T2), (C) Oxisol after cultivation (T3).

6.8 Distribution of Zn and Cu in Ultisol columns: (A) Control (T1), (B) Ultisol with sewage sludge (T2), (C) Ultisol after cultivation (T3).

6.7 Distribution coefficients of zinc for Oxisol amended with sewage sludge (A) and Ultisol (B).
7.2 Distribution coefficients of copper for Oxisol amended with sewage sludge (A) and Ultisol (B).

7.3 Freundlich adsorption isotherm of Zn for the Oxisol (A), Freundlich adsorption isotherm of Zn for the Ultisol (B), Freundlich adsorption isotherm of Cu for the Oxisol (C) and Freundlich adsorption isotherm of Cu for the Ultisol (D).

7.4 Langmuir adsorption isotherm of Zn for the Oxisol Figure (A), Langmuir adsorption isotherm of Zn for the Ultisol (B), Langmuir adsorption isotherm of Cu for the Oxisol (C) and Langmuir adsorption isotherm of Cu for the Ultisol (D).

7.5 Desorption of Zn and Cu from the Oxisol (A) and Ultisol (B)
LIST OF ABBREVIATIONS, UNITS AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BCF</td>
<td>Bio-concentration factor</td>
</tr>
<tr>
<td>BD</td>
<td>Bulk density</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>F1</td>
<td>Water soluble fraction of heavy metal</td>
</tr>
<tr>
<td>F2</td>
<td>Extractable fraction of heavy metal</td>
</tr>
<tr>
<td>F3</td>
<td>Carbonate Fraction of heavy metal</td>
</tr>
<tr>
<td>F4</td>
<td>Fe-Mn Oxides Fraction of heavy metal</td>
</tr>
<tr>
<td>F5</td>
<td>Organic Fraction of heavy metal</td>
</tr>
<tr>
<td>F6</td>
<td>Residual Fraction of heavy metal</td>
</tr>
<tr>
<td>ICP</td>
<td>inductively coupled plasma spectrometry</td>
</tr>
<tr>
<td>IWK</td>
<td>Indah Water Konsortium</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>mg kg⁻¹</td>
<td>Milligram per kilogram</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCV</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>PET</td>
<td>polyethylene terephthalate container</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>TC</td>
<td>Total Carbon</td>
</tr>
<tr>
<td>TF</td>
<td>Transfer factor</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General overview

The accruing benefits from sludge recycling generated from sewage treatment of municipal wastewater cannot be neglected because this sewage sludge has become a subject of research in different fields in recent years. A growing number of environmentalist scientists are becoming interestingly over the importance of sewage sludge recycling which is of great concern for environmental such as soil pollution. However, due to the increasing costs of chemical fertilizers; recycling sewage sludge as a fertilizer is economical option.

Increased population, a consequence of economic development and rapid urbanization has led to the production of huge amounts of sewage sludge around the world, which brings about considerable stresses on the environment and accumulation of various kinds of biological and chemical pollutants, especially on soils (Adriano, 2013). Sewage sludge has been used as an amendment to soil improvement conditions. The application of sewage sludge to tropical soils is one of the proposed methods of maintaining soil characteristics. It is also an alternative for the disposal of waste products. Sewage sludge has the potential to enhance soil productivity because it contains high organic matter (30 to 56%) and plant nutrients. Malaysian domestic sewage sludge is acidic in nature (pH 3.92 to 6.43) and it has variable chemical composition (nitrogen (N), phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg)) and heavy metals with higher concentrations of zinc (153 to 7012 mg kg\(^{-1}\)) and copper (63 to 732 mg kg\(^{-1}\)). However, environmental issues concerning contamination are increasing in heavy metals in soil which is derived from applying sewage sludge to soils (Indah Water Konsorttium, 2014). The disposal of sewage sludge from wastewater treatment plants is a problem of concern due to the challenges in disposal and the cost of disposal. However, in Malaysia, issues concerning the disposal of sewage sludge owing to the limited number of facilities of sewage sludge treatment have given rise to environmental pollution (Indah Water Konsorttium, 2014).

In the 21\(^{st}\) century, pollution control has turned out to be a big challenge because of a spectacular growth in contaminants caused from activities of human (Larue et al., 2010). Pollution of forest and agricultural soils is probably to continue and has become comparatively widespread already. Heavy metals, organic and inorganic pollutants are accumulating in soils from different resources such as transport, agricultural activities, industrial and sewage sludge (Salomons and Stigliani, 2012).

Higher costs of chemical fertilizers, higher prices of alternate disposal besides stricter guidelines on discharge of sewage sludge into water procedures have increased in application of sewage sludge in production of crop. Some studies have addressed the risks and benefits of agricultural usage of sewage sludge (Alvarenga et al., 2015).
Sewage sludge could improve the physio-chemical conditions of soil. But the most important discussion in using sewage sludge is the increase in heavy metals. Applying sewage sludge to soils must be limited by heavy metals presence as well as other pollutants (Fang et al., 2016). Soil application of sewage sludge is widely recommended in numerous countries due to its environmental advantage and economic benefits, obtained by the purposeful use of sewage sludge (Wu et al., 2012). In fact, there is limited information in the long-term impacts of sewage sludge on the structural and chemical properties of soils in the wet tropics lands (Nogueirol et al., 2013).

However, concerns were brought up on the fact that excessive and repeated addition of sewage sludge could lead to detrimental environmental risks, particularly in soils toxic metals pollution (Wu et al., 2012). It has also been claimed that heavy metal on soils has been increased due to applying sewage sludge and this would possibly present risk to humans, animals and plants (Bondarczuk et al., 2016). Most commonly found heavy metals in sewage sludge are zinc (Zn), copper (Cu), lead (Pb), nickel (Ni) and cadmium (Cd). Zinc and Cu must be carefully checked and controlled because when the sewage sludge is applied to soil.

Zinc and copper gained more attention because of their high concentrations in sewage sludge (7012 and 732 mg kg\(^{-1}\) for Zn and Cu respectively). Consequently, we chose to study Zn and Cu, which are essential to plants when in low concentrations, but toxic when in high concentrations. Yet Zn and Cu have a contrasting behavior in soils, with Cu typically found less mobile than Zn (Mehes-Smith et al., 2014).

High concentrations of heavy metals in soil lead to phytotoxic effect and led to bad development on vegetation (Wuana and Okieimen, 2011; Adriano, 2013). However, recognizing the chemical forms in which the metals are preserved in soil helps to predict their mobility to water sources (Rosazlin et al., 2006).

Consequently, remediation of soil polluted by heavy metals is needed in imperative to scale down the related hazards, create the soil obtainable for agricultural production, and improve food safety. So far different conventional remediation methods have been employed for the purpose of remediation soils. Efforts presented by various academics to clean up polluted soils are either too costly or not ecofriendly, where different type of conventional remediation methods have been used in earlier decades but limited methods have been applied successfully in practice. Presently, there is phenomenal attention in the methods of phytoremediation (Öztürk, 2016).

Phytoremediation is one of the unique methods of the remedial hopes for environment. The achievement of phytoremediation can be contingent in a high precision on the selection of the plants, agriculture conditions, land adjustments, and heavy metals movements which is soil and climate specific (Hernandez-Allica et al., 2008). Plant species grown in contaminated soils have the ability to uptake heavy metals in ions form soil solution and stored in different parts of the plant such as leaves, stems, fruits, seeds,
and roots (Tangahu et al., 2011). Plants readily assimilated metals through their roots in dissolve water and ionic forms (Bohra et al., 2015).

Soil pollution has become a major source of concern and has posed serious environmental problems within the last few years in many developed nations. Sewage sludge is one of the major sources of enrichment of heavy metals. It contains heavy metals such as Zn and Cu. Phytoremediation offers environmental friendly method to treat the polluted soil. It offers opportunities to use the biomass of plant for environmental benefits. Hence, this study is crucial in examining the ability of woody plants species as Zn and Cu accumulators for remediating Oxisol and Ultisol.

1.2 Justification

Sewage sludge applications onto soils offer multiple benefits and adverse environmental consequences. Variety pollutants, including heavy metals, are eventually transported to the environment. Thus, soil contaminants need to be cleaned up to improve environmental safety. This study was conducted to quantify the response of weathered highly soils to an increase in pollution due to sewage sludge application and to assess the ability of phytoremediation technology in remediating two Malaysian soils treated with sewage sludge.

1.3 The Objectives

This study was aimed to evaluate the efficacy of selected woody plants (Jatropha curcas, Hibiscus cannabinus, Acacia mangium and Syzigium cumini) as Zn and Cu accumulators in contaminated soils.

Considering the previous background, the specific objectives of the present study were:

i. To screen the ability of four woody plants species as heavy metals accumulators in Oxisol and Ultisol amended with sewage sludge;

ii. To elucidate the potential of two selected plants species to remediate heavy metal contaminated soils which have been treated with sewage, and to determine the availability and relative distribution of various forms of the metals in the sewage sludge and treated soils;

iii. To investigate the influence of sewage sludge on the leaching and downward movement characteristics of Zn and Cu; and

iv. To assess the adsorption and desorption of Zn and Cu for soils having different rates of sewage sludge.
REFERENCES

Hazelton P, Murphy B .2007. Interpreting Soil Test Results What Do All the Numbers Mean?. Csiro Publishing.

Ma, L.Q. and Dong, Y. 2004. Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Environmental Pollution. 130(3):.301-307.

Maiti, S. K., Kumar, A. and Ahirwal, J. 2015. Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden

Van der Perk, M., 2013. Soil and water contamination. CRC Press.

