GROWTH AND ANTIOXIDANT CONTENT OF PEGAGA (Centella asiatica (L.) Urban), INOCULATED WITH PLANT GROWTH-PROMOTING RHIZOBACTERIA

ADILAH BINTI SURIMIN

FP 2017 23
GROWTH AND ANTIOXIDANT CONTENT OF PEGAGA (*Centella asiatica* (L.) Urban), INOCULATED WITH PLANT GROWTH- PROMOTING RHIZOBACTERIA

By

ADILAH BINTI SURIMIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

November 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

GROWTH AND ANTIOXIDANT CONTENTS OF PEGAGA (Centella asiatica (L.) Urban) INOCULATED WITH PLANT GROWTH-PROMOTING RHIZOBACTERIA

By

ADILAH BINTI SURIMIN

November 2016

Chairman : Professor Zulkifli Hj. Shamsuddin, PhD
Faculty : Agriculture

Pegaga (Centella asiatica) has been recognized as a medicinal plant which contains valuable antioxidant compounds; phenolic and flavonoid, the pharmacologically active ingredients which are beneficial for human body system. Unfortunately, these bioactive compounds are present at lower concentrations in plant extracts. Plant Growth-Promoting Rhizobacteria (PGPR) which work as elicitors, can be an effective method to stimulate growth and expression of antioxidants in Pegaga. The experiments were conducted under soilless conditions to clearly observe the effect of PGPR on plant growth and bioactive compound. Beneficial PGPR were isolated from Pegaga roots and was evaluated based on plant biochemical assays, formation of phytohormone Indole-3-acetic acid (IAA), N₂-fixation, and P and K-solubilizations.

From the 16 isolates, two bacterial strains C3E2 (UPMB30) and C1R1 (UPMB31) showed maximum plant growth promoting abilities and were further identified based on colony morphology, Gram-staining and characterized through 16S rRNA gene sequencing. UPMB30, an endobacterial isolate was 99% identified as Bacillus subtilis and UPMB31, a rhizobacterial isolate, as an Stenotrophomonas maltophilia. To achieve the second objective, a few factors and critical issues were verified to ensure these PGPR isolates could function under soilless condition. The selected PGPR strains were then exposed to various soilless culture conditions: pH (4.0, 5.0 and 6.0), fertilizer concentrations (50%, 100%, 200%) and bacterial population densities (10⁴cfu/mL, 10⁹cfu/mL and uninoculated) to determine the optimum combination of fertilizer and inoculum sized. The results showed high survivability and growth of bacterial strains in the following descending order; pH 4.0>5.0>6.0 and fertilizer concentration 50%>100%>200%. Application of 10⁴cfu/mL bacteria with 50% fertilizer rate increased 12% of yield and saves 50% of chemical fertilizer input. The high inoculum size, 10⁹cfu/mL however, reduced plant growth length and led to over colonization and possibly became harmful to the plant. Antioxidant and their interactions with PGPR were evaluated in the final experiment. Free radical scavenging assay (DPPH): 1,1- diphenyl-2- picrylhydrazyl; Total Phenolic Content
(TPC): Folin-Ciocalteu assay; and Total Flavonoid Content (TFC): Aluminium chloride method assay were analyzed. Results demonstrated high concentrations of DPPH, TPC and TFC in extracts taken from all the three parts of Pegaga (roots, leaves, stems), irrespective of PGPR strains. The increase in antioxidant synthesis presumably represents a defensive response to colonization by PGPR. Results showed all strains highly colonized in the roots (10⁶ to 10⁷ CFU/mL). Highly reduced levels of proline content were observed in the inoculation treatment for all strains compared to the uninoculated control; UPMB10 (52.06 µg/fw), UPMB31 (44.33 µg/fw), UPMB30 (31.54 µg/fw) and uninoculated control (98.69 µg/fw). In conclusion, this study clearly indicated that two potential isolated strains (UPMB30 and UPMB31) could be applied as elicitors to significantly increase vegetative growth of Pegaga and antioxidant contents in the plants.
Pertumbuhan serta penghasilan antioksida Pegaga (Centella asiatica (L.) Urban), melalui bakteria penggalak pertumbuhan pokok

oleh

Adilah binti Surimin

November 2016

Pengerusi : Profesor Zulkifli Hj. Shamsuddin, PhD
Fakulti : Pertanian

Pegaga (Centella asiatica) telah dikenali sebagai tumbuhan ubatan yang mengandungi bahan antioksida yang tinggi seperti fenolik dan flavonoid, yang juga merupakan bahan farmakologi aktif yang bermanfaat untuk sistem badan. Walau bagaimanapun, bahan bioaktif ini hadir di dalam ekstrak tumbuhan pada kuantiti yang amat sedikit. Dengan memanipulasi tekanan pada pokok Pegaga dengan menggunakan PGPR boleh dijadikan sebagai kaedah berkesan dalam merangsang pertumbuhan pokok dan penghasilan antioksida dalam Pegaga. Eksperimen telah dijalankan dibawah keadaan tanpa tanah untuk melihat lebih jelas keberkesanan PGPR pada kadar pertumbuhan dan penghasilan bahan bioaktif Pegaga. Bakteria berfaedah PGPR telah diasikan dari akar pokok Pegaga dan dinilai menerusi aktiviti biokimia; pengikatan nitrogen, penglarutan P dan K dan penghasilan hormone asid indol-3-asetik (IAA). Daripada 16 bakteria, dua daripadanya C3E2 (UPMB30) dan C1R1 (UPMB31) telah menunjukkan penggalakkan pertumbuhan pokok yang maksima dan seterusnya dikenalpasti melalui morfologi koloni, pewarnaan Gram dan melalui penjujukan gen 16SrRNA. Endobakteria UPMB30 telah dikenalpasti 99% kesamaan dengan Bacillus subtilis, manakala rhizobakteria UPMB31 sebagai Stenotrophomonas maltophilia. Bagi mencapai objektif kedua, ada beberapa faktor dan isu kritikal yang perlu dikenalpasti bagi memastikan PGPR mampu berfungsi di bawah keadaan penanaman tanpa tanah. PGPR yang terpilih ini telah didedahkan kepada pelbagai pH (4.0, 5.0, 6.0), kepekatan baja (50%, 100%, 200%) dan saiz inokulasi bakteria (10^4 cfu/mL, 10^9 cfu/mL dan tanpa inokulasi). Kombinasi optima antara baja kimia dan saiz inokulasi ditentukan. Keputusan menunjukkan pertumbuhan dan ketahanan bakteria pada turutan menurun seperti berikut; pH 4.0 > 5.0 > 6.0 dan kepekatan baja, 50% > 100% > 200%. Kombinasi 10^4 cfu/mL inokulasi bakteria bersama 50% kepekatan baja telah meningkatkan hasil tanaman sebanyak 12% dan ini menjimatkan sebanyak 50% penggunaan baja kimia. Walau bagaimanapun, kepekatan saiz inokulasi yang tinggi, 10^9 cfu/mL, telah menurunkan pertumbuhan pokok, mungkin disebabkan oleh kepekatan inokulasi yang menjurus kepada kolonisasi yang tinggi dan terlalu padat dan mengakibatkan pokok

iii
lemah dan mati. Interaksi antara PGPR dan antioksida Pegaga dinilai dalam eksperimen terakhir. Penangkapan radikal bebas: 1,1-difenil-2-pikrilhidrazil (DPPH), jumlah kandungan fenolik (TPC): asai Folin-Ciocalteu, dan jumlah kandungan flavonoid (TFC): asai Aluminium chloride, telah dianalisa. Endobakteria. Kandungan antioksida DPPH, TPC dan TFC yang tinggi telah diekstrak daripada tiga bahagian pokok Pegaga (akar, daun, batang), hasil dari inokulasi. Peningkatan kandungan antioksida mungkin daripada tindakbalas pertahanan pokok terhadap kolonisasi PGPR yang tinggi dibahagian akar (10^6 to 10^7 CFU/mL). Kandungan prolind yang rendah didapati pada semua rawatan inokulasi; UPMB10 (52.06 µg/berat basah), UPMB31 (44.33 µg/berat basah), UPMB30 (31.54 µg/berat basah) dan tanpa inokulasi (98.69 µg/berat basah). Kesimpulannya, dua bakteria berpotensi ini (UPMB30 and UPMB31) mampu digunakan sebagai elisitor bagi meningkatkan hasil vegetatif Pegaga dan kandungan antioksida dalam pokok.
ACKNOWLEDGEMENTS

Alhamdulillah to the uncreated the creator Almighty Allah, who granted me the opportunity and for His willingness that made the completion of this study possible. My unreserved gratitude goes to my supervisory committee, Prof. Dr. Zulkifli Hj. Shamsuddin, Assoc. Prof Dr. Wong Mui Yun and Assoc. Prof Dr. Radziah Othman for their numerous contributions, guidance, advice, suggestions and assistance. I would like to thank the Ministry of Higher Education for the KPT grant, which provided me the opportunity to pursue my Master degree. Acknowledgment also goes to my beloved parents and relatives for their love, support and encouragement. Special thanks for the help, cooperation and joyful time to my friends, colleagues and students: Mrs. Nur Farhana Che Hassan, Mrs. Siti Suheda Sofi, Ms. Zahidah Abd Razak, Ms. Nur Fatinah Ibrahim, Mr. Kuan Khing Boon and Mr. Mohd Yamin Shaari.
I certify that a Thesis Examination Committee has met on 28 November 2016 to conduct the final examination of Adilah binti Surimin on her thesis entitled "Growth and Antioxidant Content of Pegaga (*Centella asiatica* (L.) Urban), Inoculated with Plant Growth-Promoting Rhizobacteria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15-March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Ridzwan bin Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimi bin Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Sreeramanan Subramaniam, PhD
Associate Professor
Universiti Sains Malaysia
Malaysia
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 4 September 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zulkifli Hj. Shamsuddin, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Wong Mui Yun, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduated student

I hereby confirm that:

- this thesis is based on my original work
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or electronic form) for communication, including books, journal, modules, proceedings, popular writings, seminar paper, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012.
- there is no plagiarism or data falsification/ fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: ________________________

Name and Matric No: Adilah Binti Surimin, GS36332
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to:

Signature: _____________________________________
Name of Chairman of Supervisory Committee: _____________________________________

Signature: _____________________________________
Name of Member of Supervisory Committee: _____________________________________

Signature: _____________________________________
Name of Member of Supervisory Committee: _____________________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Herbal Industry in Malaysia

2.2 Pegaga

2.2.1 Morphological Description

2.2.2 Nutrient Compositions

2.2.3 Pegaga in Malaysia

2.2.4 Bioactive Compounds and Medicinal Value

2.3 Antioxidant Activities

2.3.1 Oxidation and Natural Antioxidants

2.3.2 Phenolic

2.3.3 Flavonoid

2.4 Manipulation of Secondary Metabolite Production: Biotechnology Techniques to Enhance Bioactive Compounds in Plants

2.4.1 Cell and Tissue Culture

2.4.2 Genetic Transformation

2.4.3 Microbial Treatment

2.5 Beneficial Bacteria

2.5.1 Plant Growth-Promoting Bacteria (PGPB)

2.5.2 Plant-Microbe Interactions

2.5.3 Plant Growth- Promoting Rhizobacteria as a Source of Secondary Metabolites in Herbs

2.5.4 Inocula Dosage

3 ISOLATION AND DETERMINATION OF BENEFICIAL CHARACTERISTICS OF PLANT GROWTH- PROMOTING RHIZOBACTERIA FROM PEGAGA

3.1 Introduction

3.2 Materials and methods

3.2.1 Isolation of Rhizospheric Bacteria

3.2.2 Isolation of Endophytic Bacteria

3.2.3 Colony Morphology Characterization

3.2.4 Determination of Gram reaction (Gram stain)
3.2.5 Determination of Bacterial Characteristics
 3.2.5.1 Nitrogen Fixation
 3.2.5.2 Phosphate Solubilizing Bacteria (PSB)
 3.2.5.3 Potassium Solubilizing Bacteria (KSB)
3.2.6 Indole- Acetic Acid (IAA) Production
 3.2.6.1 Preparation of Salkowsky Reagent A
 3.2.6.2 Preparation of L- Tryptophan
 3.2.6.3 Determination of Indole- Acetic Acid (IAA) Production
3.2.7 Starch Hydrolysis
3.2.8 Catalase Production
3.2.9 Strain Identification using Polymerase Chain Reaction (PCR)
3.2.10 Determination of Growth and pH Tolerance of PGPR
3.2.11 Determination of Growth and Nutrient Fertilizer Concentrations Tolerance by PGPR

3.3 Results
 3.3.1 Bacterial Colony Morphology
 3.3.2 Biochemical Assay of Bacterial Isolates from Pegaga
 3.3.3 Starch Hydrolysis and Catalase Production of Selected Isolates
 3.3.4 Bacterial Identification using Polymerase Chain Reaction (PCR)
 3.3.5 Bacterial Population in Nutrient Fertilizer with Different pH
 3.3.6 Bacterial Population in Different Nutrient Concentration

3.4 Discussion
3.5 Conclusion

4 EFFECT OF CHEMICAL FERTILIZER LEVELS AND PGPR INOCULUM SIZE ON GROWTH OF PEGAGA
 4.1 Introduction
 4.2 Materials and methods
 4.2.1 Experimental Design
 4.2.2 Nutrient Solution
 4.2.3 Preparation of Inoculum
 4.2.4 Plant Growth Measurement
 4.2.5 Determination of Bacterial Populations
 4.2.6 Determination of Plant Biomass
 4.2.7 Total Proline Analysis
 4.2.8 Scanning Electron Microscope (SEM) for Root Colonization
 4.2.9 Data Analysis

 4.3 Results
 4.3.1 Effects of Bacterial Inoculum Sizes on Vegetative Growth of Pegaga
 4.3.2 Total Plate Count (cfu/mL) in Different Part of Pegaga (Roots and Stems)
 4.3.3 Total Proline Content of Pegaga in Inoculated Size (10^4 and 10^9 cfu/mL)
4.3.4 Total Length Plant in Nutrient Concentration 50%, 100% and 200% with Two Inoculum Sizes
4.3.5 Effect Inoculum Size on Plant Growth
4.3.6 Scanning Electron Microscopy (SEM)
4.3.7 Plant Diseases
4.4 Discussion
4.5 Conclusion

5 EVALUATION OF ANTIOXIDANT ACTIVITIES OF PEGAGA INOCULATED WITH PGPR
5.1 Introduction
5.2 Materials and methods
5.2.1 Experimental Design
5.2.2 Nutrient Solution
5.2.3 Preparation of Inocula
5.2.4 Determination of Bacterial Populations
5.2.5 Plant Growth Measurements
5.2.6 Tissue Analyses
5.2.7 Total Antioxidant Assay
5.2.7.1 Preparation of Extract for DPPH Method.
5.2.7.2 DPPH Free Radical Scavenging Assay
5.2.8 Preparation of Extract for Total Phenolic Acids and Total Flavonoid Assay
5.2.8.1 Total Phenolic Acid Assay
5.2.8.2 Total Flavonoid Assay
5.2.9 Proline Analysis
5.2.10 Statistical Analysis
5.3 Results
5.3.1 Vegetative Growth Parameters
5.3.2 Tissue Analysis for N, P, K
5.3.3 Total Plate Count of Strains (UPMB10, UPMB30 and UPMB31) in Roots and Stems
5.3.4 Radical Scavenging Activity
5.3.5 Total Flavonoid
5.3.6 Total Phenolic
5.3.7 Total Proline
5.3.8 Scanning Electron Microscope (SEM)
5.4 Discussion
5.5 Conclusion

6 GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The nutrient composition of Pegaga</td>
</tr>
<tr>
<td>2</td>
<td>Effects of Pegaga in medicinal and body system</td>
</tr>
<tr>
<td>3</td>
<td>Colony morphology of bacteria isolated from Pegaga roots</td>
</tr>
<tr>
<td>4</td>
<td>Biochemical assay of bacterial isolates from Pegaga roots</td>
</tr>
<tr>
<td>5</td>
<td>Starch hydrolysis and catalase production of selected isolator</td>
</tr>
<tr>
<td>6</td>
<td>BLAST output of isolate UPMB30</td>
</tr>
<tr>
<td>7</td>
<td>BLAST output of isolate UPMB31</td>
</tr>
<tr>
<td>8</td>
<td>Treatments of Hoagland solution concentrations (200%, 100% and 50%), with singly and two sizes of PGPR UPMB10 ((10^4 \text{ cfu/mL} \text{ and } 10^9 \text{ cfu/mL}))</td>
</tr>
<tr>
<td>9</td>
<td>Vegetative growth of Pegaga in nutrient concentrations (50%, 100% and 200%) with two inoculum sizes ((10^4 \text{ cfu/mL} \text{ and } 10^9 \text{ cfu/mL}))</td>
</tr>
<tr>
<td>10</td>
<td>Total plate count (cfu/mL) in different part of Pegaga (roots and stems)</td>
</tr>
<tr>
<td>11</td>
<td>Total proline content of Pegaga in inoculated size ((10^4 \text{ cfu/mL} \text{ and } 10^9 \text{ cfu/mL}))</td>
</tr>
<tr>
<td>12</td>
<td>Vegetative growth parameter of Pegaga</td>
</tr>
<tr>
<td>13</td>
<td>Tissue analysis for N, P, K</td>
</tr>
<tr>
<td>14</td>
<td>Total plate count of strains (UPMB10, UPMB30 and UPMB31) in roots and stems</td>
</tr>
<tr>
<td>15</td>
<td>Effects of inoculation on radical scavenging activity in three part of Pegaga (roots, stems and leaves)</td>
</tr>
<tr>
<td>16</td>
<td>Effects of inoculation on total flavonoid in three part of Pegaga (roots, stems and leaves)</td>
</tr>
<tr>
<td>17</td>
<td>Effects of inoculation on total phenolic in three part of Pegaga (roots, stems and leaves)</td>
</tr>
<tr>
<td>18</td>
<td>Effect of bacteria inoculations on total proline</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cell growth of UPMB10 (Bacillus subtilis), UPMB30 (Bacillus subtilis) and UPMB31 (Stenotrophomonas maltophilia) at different pH</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>Cell growth of UPMB10 (Bacillus subtilis), UPMB30 (Bacillus subtilis) and UPMB31 (Stenotrophomonas maltophilia) at nutrient concentration; a) 50 %; b) 100 %; c) 200 %</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Total length plant for treatment; a) 50% N.C; b) 100% N.C and c) 200% N.C.</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>A decay root in (A), 10^9 cfu/mL of inoculation and (B), 10^4 cfu/mL inoculation</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Scanning Electron Microscopic (SEM) for root colonization 10^9 cfu/mL</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Scanning Electron Microscopic (SEM) for root colonization 10^4 cfu/mL</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Fungus (Pythium sp.) infection in roots and stems</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of Scanning Electron Microscopic (SEM) in roots: A) Inoculation B) Control</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of Scanning Electron Microscopic (SEM) in stems: C) Inoculation D) Control</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>Comparison of Scanning Electron Microscopic (SEM) in leaves: E) Inoculation F) Control</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Proline content in treatments A) Inoculation, B) Control</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1. Nutrient Agar composition</td>
<td>95</td>
</tr>
<tr>
<td>2. Tryptic Soy Agar composition</td>
<td>95</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1. Isolation of bacteria</td>
<td>96</td>
</tr>
<tr>
<td>2. Pure culture of bacteria</td>
<td>96</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Biochemical assay of isolated strains</td>
<td>97</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Data of cell growth of UPMB10 (Bacillus subtilis), UPMB30 (Bacillus subtilis) and UPMB31 (Stenotrophomonas maltophilia) at different level of nutrient fertilizer concentrations (50%, 100%, 200%).</td>
<td>98</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Data of cell growth of UPMB10 (Bacillus subtilis), UPMB30 (Bacillus subtilis) and UPMB31 (Stenotrophomonas maltophilia) at different level of pH (4.0, 5.0, 6.0)</td>
<td>99</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Total length plant for treatment; a) 50% N.C; b) 100% N.C and c) 200% N.C with inoculum sizes 10^4 and 10^9 cfu/mL.</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Calculation of total proline content</td>
<td>101</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Result preliminary study (Chapter 4)</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>AMF</td>
<td>Arbuscular Mycorrizal Fungi</td>
</tr>
<tr>
<td>PGPB</td>
<td>Plant growth-promoting bacteria</td>
</tr>
<tr>
<td>iPGRP</td>
<td>Intracellular plant growth promoting rhizobacteria</td>
</tr>
<tr>
<td>ePGPR</td>
<td>Extracellular plant growth-promoting rhizobacteria</td>
</tr>
<tr>
<td>TE</td>
<td>Trace elements</td>
</tr>
<tr>
<td>Nfb</td>
<td>Nitrogen fixing bacteria</td>
</tr>
<tr>
<td>KSB</td>
<td>Potassium solubilizing bacteria</td>
</tr>
<tr>
<td>PSB</td>
<td>Phosphate solubilizing bacteria</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>DPPH</td>
<td>Free radical scavenging assay</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic compound</td>
</tr>
<tr>
<td>TFC</td>
<td>Total Flavonoid compound</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalents</td>
</tr>
<tr>
<td>CAE</td>
<td>Cathecin equivalent</td>
</tr>
<tr>
<td>TAE</td>
<td>Tannic acid equivalent</td>
</tr>
<tr>
<td>UNiCC</td>
<td>Microbial Culture Collection Unit</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Pegaga is a perennial creeping plant of the genus *Centella* from the Apiaceae family (Hashim, 2011). It has been recognized as a medicinal plant and listed as the five prominent herbs in Malaysia. Pegaga contains valuable bioactive compounds such as antioxidants and triterpenoids, the pharmacologically active ingredients which are beneficial for body and brain system and potentially useful in the prevention of cancer, diabetes, and arteriosclerosis (Subathra et al., 2005). Pegaga has gained worldwide demand for pharmaceutical and cosmetic products in the last few years (James and Dubery, 2008; Devkota et al., 2010, Singth et al., 2010). International Union for Conservation of Nature (IUN) has reported Pegaga as an endangered plant (Sharma and Kumar, 1998). Thus, a well-directed cultivation of Pegaga is to ensure plant materials with high quality and quantities of biological compounds are continuously produced. A collection of Pegaga from natural populations contains various composition and concentrations of secondary metabolites due to different growth conditions and genetic distinction (Randriamampionona et al., 2007; Thomas et al., 2010; Devkota et al., 2010).

It is a very challenging process to get a balanced direct correlation between high secondary metabolite content and plant growth yield. From the primary pathways, various compounds are derived such as polysaccharides, sugars, proteins and fats which make up the bulk of the plant. However, the secondary products are present at a much lower concentration. A few techniques have been developed as an alternative to produce these metabolites such as plant cell culture. However, this technique is faced with another problem where the secondary metabolites produced could be minimally extracted. Plant cell culture on a large scale produced only a few compounds that satisfy the commercial and biological criteria. Based on similar principles but in combination with a new technique, some strategies for triggering the production of secondary metabolites have been developed by using elicitor, signal compound and abiotic stress (Yukimune et al., 1996; Zhao et al., 2000, 2001a, b and Zhang et al., 2004). Application of beneficial microorganisms as biotization has been tried. Biotization is a metabolic response of plant materials to microbial inoculation under *in vitro*-culture, thus, leading to biotic and abiotic stress resistance through development and physiological changes enhancement. PGPR co-cultured plantlets produce high yield vegetative and secondary metabolite production (Soundarapandian and Dhandayuthapani, 2010).

The inoculation of Plant Growth-Promoting Rhizobacteria (PGPR) has been reported to induce yield enhancement and secondary metabolite production in various crops. Many research with PGPR have shown beneficial effects with increase in vegetative growth through the production of plant growth regulators (Zahir et al., 2004), fixation of atmospheric nitrogen, increased root growth and nutrient uptake (nitrogen, phosphate, potassium), and production of siderophores (Lucy et al., 2004). PGPR also synthesize phytohormone which can trigger secondary metabolite production. Lorena et al (2013)
reported *Azobacter brasilense* and *Pseudomonas fluorescens* gave beneficial impacts by increasing essential oil (EO) composition and phenolic content in Marigold (*Tagetes minuta*).

To get a consistent result without interference from the physical and chemical interactions in soil, the studies were conducted using soilless culture as a growth medium. In justification, the study offers the possibility of enhancing plant growth rate and biological compound production in Pegaga by PGPR under soilless condition. Thus, the general objective of this study is to increase plant growth and bioactive compounds of Pegaga (*Centella asiatica*) under hydroponic condition. The specific objectives of the study are:

1. To isolate and characterize beneficial biochemical abilities of indigenous beneficial PGPR from Pegaga (*Centella asiatica*).
2. To determine the effects of varying PGPR dosages and fertilizer concentrations on vegetative growth and yield of Pegaga (Glasshouse)
3. To evaluate the effect of PGPR application at appropriate dosages and fertilizer concentration on antioxidant compounds of Pegaga (Glasshouse)
BIBLIOGRAPHY

three polyketide synthase gene clusters in *Bacillus amyloliquefaciens* FZB 42. *J. Bacteriol.*, 188:4024–4036

Fuangthong, M., Herbig, A. F., Bsat, N. and Helmann, J. D. (2002). Regulation of the *Bacillus subtilis* fur and per genes by PerR: not all members of the PerR regulon are peroxide inducible. *J. Bacteriol.*, 184:3276-3286

Hucker, G. J. (1921) A new modification and application of the gram stain. J. Bact, 6:395-397

80

Sharma, B.L. and Kumar, A. (1998). Biodiversity of medicinal plants of Triyugi Narain (Garhwal Himalaya) and their conservation, National conference on recent trends in spices and medicinal plant research, Calcutta, WB. India. pp A-78

93