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The transition from solvent-borne to waterborne polyurethane (PU) coatings is driven by 

the stringent regulations to reduce emissions of volatile organic compounds (VOCs) 

from the products, enhanced by the increasing awareness of the consumers of safety and 

health issues. On the other hand, a low cost, abundant, and renewable vegetable oil 

source is now receiving increasing attention for polyurethane production. Previous 

studies reported the possibility of the production of PU coatings, adhesives and 

elastomers from non-edible jatropha oil. However, as far as is known, no study has 

reported on waterborne PU synthesis from jatropha oil. In this research, jatropha oil is 

modified to polyol to be used as a starting material for the production of a waterborne 

PU dispersion. A series of jatropha oil-based polyols (JOLs) were synthesised from 

jatropha oil by a two-step process, namely epoxidation and oxirane ring opening. The 

effect of epoxidation conditions on the properties of the JOLs was investigated. The JOLs 

are liquid under room conditions with a hydroxyl number in a range of 138 to 217 mg 

KOH/g. 

The jatropha oil-based waterborne polyurethane (JPU) dispersions were produced by 

polymerising the JOLs with isophrene diisocyanate (IPDI) and dimethylol propionic acid 

(DMPA). The colloidal stability of the resulting JPU dispersions were studied by particle 

size analysis and rheology measurements. Inclusion of up to 5.4 wt.% of DMPA as an 

internal emulsifier produced a wide range of particle sizes from 84 nm to 825 nm. 

However, further increasing the DMPA content up to 6.8 wt.% resulted in smaller 

particles but a multimodal particle size distribution was obtained for the dispersion 

synthesised from low OH number polyol. The dispersions have a solid content of 22.9 to 

26.9 wt.% with a relatively low viscosity in the range 5.6-53.1 mPa.s. The JPU 

dispersions exhibited the typical flow behaviour of the commercial polyurethane 

dispersions, ranging from almost Newtonian to a shear thinning fluid, and the 

experimental data correlated well with the Cross model. The samples were stable after 

18 months of storage under room conditions. 
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A films with up to 62 wt.% bio-based content were successfully produced after 

evaporation of water from the JPU dispersion. The chemical, physical, mechanical and 

thermal properties of the films were characterised. The experimental data revealed that 

the OH number of the JOLs, DMPA content and the hard segments were the key 

parameters which control the structure and the properties of the JPU films. The JPU film 

derived high OH number polyol and high hard segment content exhibited the highest 

crosslinking density. This contributed to higher hardness, better mechanical properties, 

and hydrophobic surface character. The films show an elastomeric polymer behaviour 

and good thermal stability. 

The JPU dispersions were applied on a wood surface and the performance of the coatings 

were evaluated. The JPU films have excellent adhesion to the substrate, excellent optical 

properties as well as chemical and abrasion resistance. The PU dispersions synthesised 

in this work possess good properties with a promising application as a standalone coating 

or binder for wood and decorative coatings.  
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SINTESIS DAN PENCIRIAN DISPERSI POLIURETANA BERBASIS AIR 

YANG BERASASKAN MINYAK JATROPHA 

Oleh 

SARIAH BINTI SAALAH 

Mac 2016 

Pengerusi :   Profesor Luqman Chuah Abdullah, PhD 
Fakulti     :   Kejuruteraan 

Peralihan daripada poliuretana (PU) berbasis pelarut kepada dispersi PU berbasis air 

adalah didorong oleh peraturan ketat untuk mengurangkan pembebasan sebatian organik 

meruap (VOC) daripada produk, ditambah pula dengan peningkatan kesedaran pengguna 

mengenai isu-isu keselamatan dan kesihatan. Minyak sayuran yang merupakan sumber 

boleh diperbaharui dan boleh diperolehi dengan harga yang murah kini mendapat 

perhatian utama dalam penghasilan PU. Kajian lepas mendapati minyak jatropha boleh 

digunakan untuk membuat bahan penyalut, perekat dan elastomer. Walaubagaimanapun, 

tiada kajian dilaporkan mengenai pembuatan dispersi PU berbasis air daripada minyak 

jatropha. Dalam kajian ini, minyak jatropha diubah suai kepada poliol untuk digunakan 

sebagai  bahan untuk pembuatan PU berbasis air. Satu siri poliol telah dihasilkan melalui 

dua langkah, iaitu pengepoksidaan dan pembukaan cincin oksiran. Kajian dilakukan 

untuk mengenalpasti kesan kondisi epoksidasi terhadap sifat poliol yang dihasilkan. 

Hasil ujikaji mendapati semua JOL bersifat cecair pada keadaan bilik dengan nilai 

nombor hidroksil antara 138 hingga 217 mg KOH/g. 

Dispersi PU berbasis air yang berasaskan minyak jatropha (JPU) telah berjaya dihasilkan 

melalui tindak balas pempolimeran antara JOL dengan isoprena diisosianat (IPDI), dan 

dimetilol asid propionik (DMPA). Kestabilan koloid JPU dalam air dikaji melalui 

analisis saiz partikel dan juga reologi. Penambahan sehingga 5.4% DMPA sebagai 

pengemulsi dalaman menghasilkan pelbagai saiz partikel daripada 84 nm hingga 825 nm. 

Apabila kandungan DMPA ditingkatkan sehingga 6.8 %, partikel yang lebih kecil 

terhasil tetapi beberapa mod taburan saiz partikel telah diperolehi bagi JPU yang 

disintesis daripada poliol dengan nombor OH yang rendah. Semua JPU ini disediakan 

dengan kandungan berat pepejal 22.9-26.9 %, dan kelikatan yang rendah dalam julat 5.6-

53.1 mPa.s. JPU ini mempamerkan kelakuan dispersi poliuretana komersial, iaitu sama 

ada hampir Newtonian atau shear-thinning, dan data eksperimen ini boleh diwakili oleh 

model Cross. Sampel JPU didapati stabil di bawah 18 bulan penyimpanan pada keadaan 

bilik. 
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Filem yang mengandungi sehingga 62% berat kandungan berasaskan bio telah berjaya 

dihasilkan selepas air disejatkan dari dispersi JPU. Ini menunjukkan kebolehan 

pembentukan filem yang baik. Sifat-sifat kimia, fizikal, mekanikal dan haba filem yang 

terhasil telah ditentukan. Data eksperimen menunjukkan bahawa kandungan kumpulan 

berfungsi OH pada JOL, DMPA dan segmen keras adalah parameter utama yang 

mengawal struktur dan sifat-sifat filem JPU. Filem yang disintesis daripada poliol yang 

memiliki nombor OH tertinggi dan juga tinggi kandungan segmen kerasnya 

mempamerkan ketumpatan silang yang paling tinggi, seterusnya menyumbang kepada 

kekerasan yang lebih tinggi, sifat mekanikal yang lebih baik, dan mempamerkan 

permukaan hidrofobik. Semua filem JPU mempamerkan kelakuan polimer lentur 

mempunyai kestabilan terma yang tinggi. 

Dispersi JPU berbasis air telah digunakan sebagai bahan pelapis untuk kayu dan prestasi 

lapisan tersebut dinilai. JPU juga merekat sempurna terhadap substrat kayu JPU juga 

merekat sempurna terhadap substrat kayu. Selain itu, lapisan tersebut mempamerkan ciri-

ciri optik yang sangat baik, begitu juga dengan rintangan kimia dan rintangan lelasannya. 

Keseluruhannya, dispersi JPU berbasis air yang telah disintesis dalam kajian ini 

mempunyai ciri-ciri yang baik dan berpotensi digunakan sebagai bahan pelapis atau 

pengikat untuk formulasi bahan pelapis kayu dan hiasan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the study  

Polyurethane (PU) is a versatile polymer which has been employed in a wide range of 

applications, such as coatings, adhesives, sealants, foams, elastomers, and others. With 

a proper selection of reactant, PU ranges from high performance elastomers to tough and 

rigid plastics can be easily fabricated (Lu & Larock, 2008). PU based coatings have an 

established place in the coatings industry due to the high level of quality such as 

outstanding chemical and corrosion resistance, excellent abrasion resistance, low 

temperature flexibility, high toughness, and a wide range of mechanical strength (Kong, 

et al., 2013; Melchiors et al., 2000). Basically, polyurethane backbone structures consist 

of a soft segment from polyol, and a hard segment from isocyanate. The hard segments 

govern the hardness, strength and toughness of the PU films, while the soft segments 

determine the flexibility and glass transition temperature. The versatile mechanical 

properties of PU arise from phase separation of the thermodynamically incompatible 

hard and soft segments, which arrange themselves in microdomains as a result of a 

hydrogen bonding bridge between the urethane groups (Kanda et al., 2008). The 

hydrogen bridge bond forms a stable physical network, ensuring the outstanding 

mechanical properties of the PU film, while the urethane groups helps to protect the 

polymer chain against solvents, acids, bases and other chemicals (Melchiors et al., 2000).  

Traditional PU coatings have been diluted with an organic solvent that helps to carry the 

coatings from the applicator to the substrate. Organic solvents often contain volatile 

organic compounds (VOCs). The emission of VOCs during the formulation of coatings, 

inks, and paints has caused a wide variety of air quality problems (Nanda & Wicks, 

2006). With enforcement of stringent regulations aimed at preventing pollution, such as 

the Clean Air Act, the application of solvent-borne coatings has been phased out and 

replaced with coatings free of VOCs such as waterborne coatings and ultraviolet (UV) 

curable coatings (100 % solid) (Athawale & Kulkarni, 2010; DeVito, 1999; Ristić et al., 

2012). In Europe, waterborne technology has been accepted as it has become the largest 

volume of coatings particularly in terms of decorative coatings (Scrinzi et al., 2011). 

These products fulfil many of the requirements related to conventional solvent-borne 

coatings, e.g., low viscosity at a high molecular weight and good applicability (Cakić et 

al., 2013). The transition from solvent-borne to waterborne PU may lower the 

manufacturing costs associated with solvent cost, and reduce the health and fire risks 

(Garrison et al., 2014). It has been forecast that the global PU dispersion market will 

grow at a CAGR of 7.5 % in the years 2012 to 2018, with the market value estimated to 

be worth US $ 1.18 billion by 2018 (Transparency Market Research, 2015b).  
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Waterborne polyurethane (PU) dispersion is a typical colloid system consisting of PU 

particles stabilised in a continuous water phase. In preparing a waterborne PU dispersion, 

ionomers which contain hydrophilic groups are incorporated into the side chain or the 

backbone of the polymer to enable dispersibility of the water-insoluble polyurethane. 

Anionic ionomers such as dimethylol propionic acid (DMPA) act as an emulsifier to 

provide dispersion stability for longer storage of the waterborne PU dispersion. 

Currently, most waterborne PU dispersions are derived from a petroleum based polyol 

which is non-renewable. As fossil resources become depleted, coupled with awareness 

of environmental issues related to non-biodegradable products, utilisation of more 

sustainable and environmentally friendly raw materials for fabrication of bio-based 

polymers is gaining increasing attention. Recently, the successful synthesis of 

waterborne PU dispersions from vegetable oil based polyol derived from soybean oil, 

castor oil, rapeseed oil and linseed oil has been reported (Chang & Lu, 2013; Lu & 

Larock, 2008; Ni et al., 2010). However, to the best of the knowledge of the authors, no 

research has been reported on the production of waterborne PU dispersions from non-

edible jatropha oil. In Malaysia, jatropha has become one of the most important crops 

after palm oil and rubber, mainly planted for biodiesel production. BATC Development 

Berhad has been actively engaged in jatropha plantation and the bio-fuel industry since 

2007. Up to 2011, about 600,000 acres of planted area, 3.3 million acres in landbanks 

and more than 300 nurseries and collection centres were reported in Malaysia (Bionas, 

2011). 

Jatropha oil (JO) which is extracted from the seeds of the jatropha fruit is a promising 

candidate for chemical purposes as it contains 78.9 % unsaturated fatty acids, mainly of 

oleic acid (43.1 %) and linoleic acid (34.4 %) (Sarin et al., 2007). This high degree of 

unsaturation provides a broad alternative for chemical modification to produce polymers 

with the desired properties. Furthermore, the utilisation of a non-edible jatropha oil will 

reduce the dependency on edible oils for chemical purposes (Rios et al., 2011). Previous 

research has revealed the potential usage of jatropha oil for production of various 

polymers with promising properties such as alkyd resin, PU coatings, PU adhesive and 

PU elastomer (Aung et al., 2014; Boruah et al., 2012; Harjono et al., 2012; Hazmi et al., 

2013). In this research, an attempt is made to extend the potential of jatropha oil as a 

starting material for the production of a waterborne PU dispersion. 
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1.2 Problem statement  

Malaysia is among the largest of the world’s producers of palm oil. In the coating 

industry, successful utilisation of such oil has been reported to produce alkyd resin, 

epoxy palm oil, oleic acid acrylate resin and PU acrylate for wood coatings and overprint 

varnish applications (Rozman et al., 2013). Due to the low unsaturation in palm oil 

composition, production of a coating polymer from palm oil is more towards ultra-violet 

(UV) curable acrylate resin from palm oil derivatives such as oleic acid and palm oil 

monoglyceride (Rozman et al., 2013; Salleh et al., 2010; Wan Rosli et al., 2003). 

Realising the importance of reducing the dependency on edible oil for polymer 

fabrication, the non-edible jatropha oil is a new alternative. With almost 80 % 

unsaturated fatty acids, the double bond in the oil triglyceride structure could be directly 

functionalised to hydroxyl in polyol preparation.  

Generally, vegetable oil with a high degree of C=C unsaturation will result in a high OH 

number polyol for crosslinking with isocyanate to produce polyurethane with good 

mechanical properties (Meier et al., 2007). The fatty acid composition of the starting 

vegetable oil and the polyol production method determine the properties of the final 

polyol such as OH number, molecular weight and rheology. As the polyol and isocyanate 

are the main ingredients in PU, the higher amount of polyol loading will increase the bio-

based content. Typically, up to 60 wt.% bio-based content has been reported (Lu & 

Larock, 2008). Therefore, depending on the specific application, the properties of the PU 

could be tailored by varying the OH number of the polyol. The OH numbers will 

determine the appropriate amount of hard segment required for polymerisation. If a high 

bio-based PU is targeted, a low OH functionality polyol is selected, but the final film 

properties should be considered. The non-functional groups in the polyol may result in a 

tacky product which is undesirable for coating applications, but may be a characteristic 

of a pressure sensitive adhesive (Wool, 2005). On the other hand, the high functionality 

of some vegetable oil polyols may gel during polymerisation due to the higher 

crosslinking and therefore present potential difficulties in dispersing the PU prepolymers 

into water (Lu & Larock, 2008).  

It is worth mentioning that the properties of the polyol also depend on the production 

method. As far as an industrially important two-step method, i.e. epoxidation followed 

by oxirane ring opening route, is concerned, various parameters should be controlled at 

each consecutive stage (Goud et al,, 2010; Saurabh et al., 2011). Therefore, it is very 

important to conduct a systematic study of the effect of epoxidation parameters on the 

properties of jatropha oil-based polyol especially the OH numbers, as these will affect 

the properties of the waterborne polyurethane dispersions in the wet colloidal state as 

well as in the dry film state. 

In general, the characteristics of the colloidal dispersions do not directly affect the 

mechanical properties of the resulting dry films. However, information on the colloidal 

stability and rheology of the dispersion is important with respect to storage and 

application. For example a low viscosity and molecular weight independent of the 

dispersed polymer is necessary for spray applications, but low zero shear rate viscosity 

is subject to sedimentation of the PU particles upon storage (Duffy, 2015; Kastner, 2001). 

A few factors have been reported to affect the stability of colloidal PU dispersions such 

as the degree of neutralisation and the stirring procedure. However, these are less 

important when compared to the ionic emulsifier content (Philipp & Eschig, 2012). The 
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ionic groups in the DMPA are reported to improve the mechanical properties, but tend 

to make the dispersion film more sensitive to water and chemicals (Bullermann et al., 

2013). Therefore, the amount of DMPA should be controlled to be as low as possible yet 

sufficient to stabilise the PU particles upon storage. In addition, a balanced composition 

between soft segment (polyol) and the hard segment in the PU formulation is an 

important criterion to determine the mechanical properties of the polymers (Ni et al., 

2010).  

In this study, jatropha oil based waterborne PU dispersions will be prepared and 

characterised. The effect of polyol OH number, DMPA content and hard segment content 

with the stability of the wet jatropha oil-based polyurethane (JPU) dispersion and the 

physical, mechanical and thermal properties of the dry JPU films will be studied. On the 

other hand, the performance of the JPU dispersion as wood coatings will be evaluated. 

These properties will have an influence on the practical design of products as the PU 

dispersion can be used as a standalone coating or as a binder in wood and decorative 

coatings.  

1.3 Objectives of the study  

The main objective of this study is to investigate feasibility of producing jatropha oil-

based waterborne polyurethane dispersions for coating applications. To achieve this 

objective, specific objectives have been identified: 

a. To investigate the effect of epoxidation conditions (molar ratio, time, 

temperature) on the properties of jatropha oil-based polyol.  

b. To investigate the effect of hard segment, hydroxyl number, and ionic 

emulsifier content on the colloidal stability and rheological properties of 

jatropha oil-based waterborne polyurethane dispersions. 

c. To relate the effect of hard segment, hydroxyl number and ionic emulsifier 

content on the physical, mechanical and thermal properties of jatropha oil-based 

waterborne polyurethane films. 

d. To evaluate the coating performance of jatropha oil-based waterborne 

polyurethane. 

1.4 Scope of the study 

The scope of the study can be expressed as follows. 

a. Preparation of jatropha oil based polyol by epoxidation and oxirane ring 

opening. Two series of epoxidised jatropha oil (EJO) to be obtained by varying 

the molar ratio formic acid to oil double bond from 0.4 to 1.0, at different 

temperatures, 50 °C and 60 °C. The third series to be produced at a fixed molar 

ratio of 0.6, temperature of 60 °C but with different reaction times. Only the 

third series will be selected for the oxirane ring opening step to produce jatropha 

oil-based polyols (JOL). The chemical and rheological properties of the EJO 

and JOL are to be investigated. 

b. Preparation of a jatropha oil based waterborne polyurethane (JPU) dispersion 

by the acetone method. Two group samples will be prepared: 1) a fixed molar 
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ratio with varied hard segment (34-45 wt.%), and 2) a fixed hard segment at 45 

wt.%. 

c. The colloidal stability of the JPU dispersion is to be evaluated by particle size 

analysis as well as rheological analysis. 

d. The chemical, physical, mechanical and thermal properties of the JPU films are 

to be investigated and correlated with the composition of the JPU.  Four samples 

will be selected for a coating application on wood substrate, and the 

performance of the coatings evaluated.  

In this study, a waterborne JPU dispersion with properties that are comparable to a 

commercial PU dispersion is targeted. The specification of the commercial waterborne 

petro-based PU dispersion is provided in Table 1.1.  

 

Table 1.1. Specification of commercial PU dispersion (Adapted from Kamsons 

Chemicals Pvt. Ltd. (n.d.)) 

Product name:  Kamthane K-1432 

Type Anionic, aliphatic 

Appearance Milky white 

Total solids (% w/w) 38 

pH 7.0-8.5 

Viscosity (mPa.s) 30-90 (at 30 °C) 

Elongation at break (%) 550 

Konig hardness (s) 40 

1.5 General overview of the thesis 

The thesis is organised in five chapters. The first chapter provides the background of the 

research with an introduction to the waterborne polyurethane, followed by the problem 

statement, as well as the objectives and the scope of the present research. 

In the second chapter, literature related to the modification of vegetable oil to polyol as 

well as the previous study on waterborne polyurethane is reviewed. 

The third chapter focuses on the materials and methodology involved in the multistage 

preparation and characterisation of waterborne polyurethane from jatropha oil. 

Chapter four covers the results and discussion of all experimental works. To facilitate 

the reading, the chapter is divided into four parts; 1) Production of jatropha oil-based 

polyol by epoxidation and oxirane ring opening, 2) Synthesis, stability and rheology of 

jatropha oil-based waterborne polyurethane dispersion, 3) Properties of jatropha oil-

based waterborne polyurethane films, and 4) Performance of the waterborne 

polyurethane as wood coating. 

Finally, the conclusions and recommendations are summarised in Chapter five.  
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