UNIVERSITI PUTRA MALAYSIA

ISOLATION OF SERRATIA MARCESCENS (ISOLATE 30) AND PARTIAL PURIFICATION OF ITS ACRYLAMIDE-DEGRADING AMIDASE

NINA SUHAITY BINTI AZMI.

FBSB 2005 24
ISOLATION OF *SERRATIA MARCESCENS* (ISOLATE 30) AND PARTIAL PURIFICATION OF ITS ACRYLAMIDE-DEGRADING AMIDASE

By

NINA SUHAITY BINTI AZMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2005
A total of 217 bacterial isolates were isolated by an enrichment procedure from Malaysian soils which had been treated and non-treated with acrylamide. From the preliminary screening using MTT (3-[4,5-dimethylthiazol-2-yl]-,5-diphenyltetrazoliumbromide) assay, 10 bacterial isolates were found to be capable of utilizing acrylamide as a nitrogen source. Formation of the blue colour of formazan and high absorbance were the criteria in the selection of bacteria. These ten isolates were labeled as Isolate 5, 9, 10, 15, 30, 45, 60, 110, 115 and 145. The isolates were subjected to secondary screening using MTT assay, Direct Plate Count and High Performance Liquid Chromatography (HPLC). From the results obtained, five bacterial isolates, Isolate 9, 10, 15, 30 and 60 gave the highest colony count in CFU/mL and absorbance reading from the MTT assay. These five bacterial isolates were then selected for further of examined for their ability to degrade acrylamide by HPLC. Isolate 30 showed the best degradation of acrylamide with 99.84% degradation after 48 hours incubation in
enrichment culture with acrylamide as a substrate at a final concentration of 100 mg/L. Isolate 60 showed the second highest degradation of acrylamide at 70.53%, followed by Isolate 10 at 50.8% degradation and isolates 15 and 9 at 16.24% and 14.58% respectively. Control without bacteria accounted only 0.16% acrylamide degradation.

Isolate 30 was selected for optimization of growth media with six different parameters. These parameters were temperature, pH, different types of carbon sources, different concentrations of carbon source, different amides as the substrate and effect of different concentrations of selected amide substrate. From the results obtained, Isolate 30 showed an optimum growth temperature at 27 °C. Its highest colony count log_{10} cfu/ml was directly proportional to the growth of bacteria. This isolate showed the highest growth at pH 7.5 where this type of bacteria grew well near neutrality and slightly alkaline media. For the carbon sources optimization, glucose was selected due to the high colony count. Isolate 30 was found to grow best at the glucose concentration of 1%. Among the amide substrates, acrylamide was found to be the best sole nitrogen source which can support bacterial growth in enrichment cultures and the bacteria showed the highest colony count when 400 mg/L acrylamide was provided.

From the macroscopic and microscopic observations of Isolate 30, the bacteria was gram-negative rod, might become differentiated into a convex, pigmented and relatively opaque centre and an effuse, colourless, almost transparent periphery with an irregular crenated edge. Biochemical tests using Microbact 24E
Amidase (EC 3.5.1.4) produced by *Serratia marcescens* strain 30 was partially purified and characterized. The purification procedure used, including ion-exchange chromatography, Mono-Q™ strong-anion exchanger, ultrafiltration and gel filtration, yielded a partially purified amidase fraction having an overall purification factor of 13.83 fold and a yield of 48.33%. Indophenol blue method was used for the amidase assay and amidase characterization studies was done to determine the K_m and V_{max} value, the effect of temperature and pH on amidase activity and the effect of heavy metals on amidase activity. K_m values for acrylamide were determined by incubating amidase at 50° C with various concentrations of acrylamide (0.25 to 20mM) in phosphate buffer (50mM; pH 7.5). By using non-linear regression analysis, the K_m and V_{max} values were 0.9376mM acrylamide and 60.92 μmol ammonia disappeared/min respectively. The amidase exhibited maximal activity at 50° C and pH value at 7.5. The result of effects of heavy metals on amidase activity showed that AgNO$_3$ and CuCl$_2$ inhibited amidase activity while HBO$_3$ enhanced amidase activity. The enzyme is a monomer with an apparent molecular weight of 111 kDa.
Abstrak tesis yang dikesukakkan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENULENAN SEPARA DAN PENCIRIAN AMIDASE DARIPADA AKRILAMIDA YANG BOLEH DIURAI OLEH BAKTERIA STRAIN 30

OLEH

NINA SUHAITY BINTI AZMI

Mei 2005

Pengerusi: Profesor Mohd Arif Syed, PhD

Faculty: Bioteknologi dan Sains Biomolekul

Sejumlah 217 isolat bacteria telah dipencilkan menggunakan prosedur pengayaan daripada tanah-tanah di Malaysia yang telah dirawat dan tidak dirawat dengan akrilamida. Daripada keputusan penyaringan permulaan menggunakan ujian MTT, 10 isolat bakteria berupaya menggunakan akrilamida sebagai sumber nitrogen. Pembentukan warna biru formazan dan bacaan absorban tertinggi adalah kriteria dalam pemilihan bakteria. Sepuluh isolat ini adalah Isolat 5, 9, 10, 15, 30, 45, 60, 110, 115 dan 145. Isolat-isolat ini telah dilakukan penyaringan kedua menggunakan asai MTT, kaedah pengiraan koloni bakteria dan "High Performance Liquid Chromatography (HPLC)". Daripada keputusan yang diperolehi, lima isolat bakteria, Isolat 9, 10, 15, 30 dan 60 telah memberi bacaan tertinggi dalam pengiraan koloni bakteria dalam CFU/mL dan bacaan absorban daripada asai MTT. Kelima-lima isolat bakteria dipilih untuk analisis lanjutan degradasi akrilamida menggunakan HPLC. Isolat 30 menunjukkan degradasi akrilamida tertinggi dengan 99.84% degradasi selepas 48 jam pengeraman di dalam larutan pengayaan dengan akrilamida sebagai substrat dan kepekatan akrilamida terakhir adalah 100 mg/L. Isolat 60 menunjukkan degradasi kedua tertinggi akrilamida dengan 70.53%, diikuti dengan 50.8% degradasi
oleh Isolat 10, 16.24% dan 14.58% oleh Isolat 15 dan 9. Pengawalan tanpa bakteria menunjukkan hanya 0.16% degradasi akrilamida.

Isolat 30 dipilih untuk lanjutan optimasi media pertumbuhan termasuk enam parameter berbeza. Parameter-parameter ini adalah suhu, pH, sumber karbon berbeza, substrat amida berbeza dan konsentrasi kepekatan berbeza bagi substrat amida terpilih. Daripada keputusan yang diperoleh, Isolat 30 menunjukkan suhu optimum pada 27°C, koloni bakteria tertinggi log10 CFU/mL adalah berkadar kepada pertumbuhan bakteria. Isolat ini menunjukkan pertumbuhan bakteria tertinggi pada pH 7.5 di mana bakteria tumbuh dengan baik berhampiran sifat neutral dan sedikit media beralkali. Untuk optimasi sumber karbon, glukosa telah dipilih berdasarkan bacaan optimum koloni bakteria log10 CFU/mL. Bakteria strain 30 telah dijumpai tumbuh paling baik pada kepekatan glukosa 1%. Di kalangan substrat amida, akrilamida telah ditemui sebagai satu-satunya sumber nitrogen terbaik di mana pertumbuhan bakteria dapat disokong di dalam media pengayaan dan bakteria menunjukkan pengiraan koloni bakteria tertinggi apabila 400 mg/L akrilamida dibekalkan.

Amidase (EC 3.5.1.4) yang dihasilkan oleh *Serratia marcescens* strain 30 telah dilakukan penulenan separa dan pencirian. Prosedur penulenan yang digunakan termasuk kromatografi penukar ion, penukar anion- kuat Mono-Q^TM^, penurasan ultra dan penurasan gel menghasilkan fraksi amidase separa tulen yang mempunyai keseluruhan factor penulenan melebihi 13.83 ikatan dan kadar hasil 48.33%. Kaedah “Indophenol blue” digunakan untuk kajian asai dan pencirian amidase telah dijalankan untuk kajian pencirian amidase bagi menentukan K_m dan V_{max}, kesan suhu dan pH ke atas aktiviti amidase dan kesan logam berat ke atas aktiviti amidase. Nilai K_m untuk akrilamida dapat ditentukan dengan eraman amidase pada suhu 50°C dengan kepekatan akrilamida pelbagai (0.25 hingga 20 mM) di dalam penimbal fosfat (50mM; pH 7.5). Dengan menggunakan analisis regresi tidak linear, nilai K_m dan V_{max} adalah 0.9376 mM akrilamida dan 60.92 μmol ammonia dihasilkan/ min. Kemunculan aktiviti amidase yang maksimum adalah pada 50°C dan nilai pH 7.5. Daripada keputusan kesan logam berat pada aktiviti amidase menunjukkan AgNO₃ dan CuCl₂ merencat aktiviti amidase manakala HBO₃ meningkatkan aktiviti amidase. Enzim ini adalah monomer yang muncul dengan berat molekul 111 kDa.
ACKNOWLEDGEMENT

First of all, I would like to convey my deepest appreciation to my supervisor, Prof. Dr. Mohd. Arif Syed for his endless advice, patience and encouragement that has led to the completion of this research.

My sincere appreciation to all committee members especially Dr. Mohd Yunus Abd. Shukor and Assoc. Prof. Dr. Nor Aripin Shamaan for their supervision, advice, constructive suggestions, review of my work during the period of this study, and for extending their time and effort to held a weekly research group meeting with us. I am much indebted to Prof. Abu Bakar Salleh for his advice and encouragement.

My warmest gratitude also goes to my labmates, Mrs. Neni, Mr. Azlan, Mr. Shahizal, Mr. Rajan, Mr. Sim Han Koh, Mr. Ariff, Ms. Fazuriana, Ms. Farrah, Ms. Aqlima, Ms. Lailatul, Mr. Anthony, Ms. Sukirah, Ms. Surini, Ms. Mimi, Ms. Fazilah, Ms. Taznim and Ms. Alia for their humble assistance, guidance and advice throughout the entire of this project.

Last but not least, I would like to take this opportunity to thank all my family members, fiancé and friends for being there when I needed them most. Indeed you have shown me the strength, courage, support and enlightenment that nobody else could persevere.
I certify that an Examination Committee met on 24th May 2005 to conduct the final examination of Nina Suhayt Azmi on her Master of Science thesis entitled “Isolation of *Serratia marcescens* (Isolate 30) and Partial Purification of its Acrylamide-Degrading Amidase” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

DATIN Khatijah Mohd. Yusoff, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Shuhaimi Mustafa, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Janna Ong Abdullah, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Abdul Jalil Abdul Kader, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

Gulam Resul Rahmat Ali, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 Jul 2005
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd. Arif Syed, PhD
Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Chairman)

Mohd. Yunus Abdul Shukor, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

Nor Aripin Shamaan, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 AUG 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NINA SUHAITY BINTI AZMI

Date: 19th July 2005
TABLE OF CONTENTS

Page

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENT viii
APPROVALS ix
DECLARATION xi
LIST OF TABLES xvi
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 4

2.1 Acrylamide 4
2.2 Physical and chemical properties of acrylamide 4
2.3 The uses of acrylamide and polyacrylamide 6
2.4 Production of acrylamide 12
2.5 Acrylamide toxicity 15
2.6 Acrylamide as a pollutant 20
2.7 Biodegradation 23
2.8 Amidase 29
2.9 Amide hydrolysis 32
2.10 Amide transfer activity 34
2.11 Ping Pong Bi Bi Reactions 35
2.12 Enzyme purification 38

3 METHODOLOGY 45
3.1 Equipments 45
3.1.1 Chemicals 45
3.1.2 Phosphate Buffered Medium (PBM) or Enrichment culture 45
3.1.3 Nutrient Agar (NA) 46
3.1.4 Nutrient Broth (NB) 46
3.2 Soil Sampling 46
3.3 Isolation and Culture technique 47
3.4 Measurement of Growth 47
3.4.1 Plate Count 48
3.4.2 Spectrophotometry 49
3.5 MTT Assay 50
3.6 Screening of acrylamide degraders 51
3.6.1 Preliminary screening of acrylamide degraders 52
3.6.2 Secondary screening of acrylamide degraders 53
3.6.3 Screening of the best acrylamide degrader using High Performance Liquid Chromatography (HPLC)

3.7 Bacteria Identification

3.7.1 Gram staining method

3.7.2 Microbact kit and the principle of each reaction

3.7.2.1 Lysine test
3.7.2.2 Ornithine test
3.7.2.3 H₂S test
3.7.2.4 Glucose, mannitol and xylose test
3.7.2.5 ONPG test
3.7.2.6 Indole test
3.7.2.7 Urease test
3.7.2.8 VP test
3.7.2.9 Citrate test
3.7.2.10 TDA test
3.7.2.11 Gelatin test
3.7.2.12 Malonate test
3.7.2.13 Inositol, sorbitol, rhamnose, sucrose, lactose, 60 arabinose, adonitol, raffinose and salicin test
3.7.2.14 Arginine test

3.8 Growth and maintenance of bacteria culture

3.8.1 Microbank

3.9 Growth optimization of Isolate 30

3.9.1 Optimization of pH
3.9.2 Temperature optimization
3.9.3 Carbon source optimization
3.9.4 The effect of concentration of carbon sources on growth of Isolate 30
3.9.5 The effects of different amides on growth of Isolate 30
3.9.6 The effects of different concentrations of amide on bacterial growth

3.10 Biodegradation of acrylamide by Isolate 30 after growth optimization

3.11 Protein determination

3.12 Enzyme assay

3.13 Standard curve for ammonia

3.14 Partial purification of acrylamide-degrading enzyme

3.14.1 Preparation of crude enzyme
3.14.2 Ion-exchange chromatography using DEAE cellulose
3.14.3 Partial purification using Mono-Q™ strong anion Exchanger
3.14.4 Ultrafiltration
3.14.5 Partial purification using Superose™ gel filtration
3.14.6 Kinetic study of partially purified amidase after ion-exchange chromatography

3.14.6.1 Effect of pH on enzyme activity
3.14.6.2 Effect of temperature on enzyme activity
3.14.6.3 Effect of heavy metals on enzyme activity

3.15 Molecular weight determination
3.15.1 Gel filtration
3.15.2 SDS polyacrylamide gel electrophoresis

4.0 RESULTS
4.1 Soil sampling, isolation and culture techniques
4.2 Screening of acrylamide degraders
 4.2.1 Preliminary screening of acrylamide degraders
 4.2.2 Secondary screening of acrylamide degraders
4.3 Bacteria Identification
 4.3.1 Colony examination of Isolate 30
 4.3.2 Gram staining method
 4.3.3 Microbact kit
4.4 Optimization of growth media
 4.4.1 Temperature optimization
 4.4.2 pH optimization
 4.4.3 The optimization of carbon sources
 4.4.4 The effect of glucose at different concentrations
 4.4.5 The effects of different amides on growth of Isolate 30
 4.4.6 The effects of different concentrations of acrylamide on bacterial growth
4.5 Partial purification of acrylamide-degrading amidase
4.6 Amidase characterization studies
 4.6.1 Determination of Km and Vmax for amidase
 4.6.2 Effects of different temperatures on amidase activities
 4.6.3 Effects of different pH on amidase activity
 4.6.4 Effects of heavy metals on amidase activity
 4.6.5 Molecular weight determination
 4.6.5.1 Molecular weight from gel filtration on Superose™
 4.6.5.2 SDS polyacrylamide gel electrophoresis

5.0 DISCUSSIONS
5.1 Soil sampling, isolation and culture techniques
5.2 Screening of acrylamide degraders
 5.2.1 Preliminary screening of acrylamide degraders
 5.2.2 Secondary screening of acrylamide degraders
5.3 Bacteria identification
 5.3.1 Colony examination of Isolate 30
 5.3.2 Gram staining method
 5.3.3 Microbact kit
5.4 Optimization of growth media
 5.4.1 Temperature optimization
 5.4.2 pH optimization
 5.4.3 The optimization of carbon sources
 5.4.4 The effect of glucose at different concentrations
 5.4.5 The effects of different amides on growth
 5.4.6 The effects of different concentrations of acrylamide on bacterial growth
5.5 Partial purification of acrylamide-degrading amidase
5.6 Amidase characterization studies
5.6.1 Determination of amidase K_m and V_{max}
5.6.2 Effects of different temperatures on amidase activity
5.6.3 Effects of different pH on amidase activity
5.6.4 Effects of heavy metals on amidase activity
5.6.5 Molecular weight determination
5.6.5.1 Molecular weight from gel filtration on SuperoseTM
5.6.5.2 SDS polyacrylamide gel electrophoresis

6.0 CONCLUSION
REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial application of anionic polyacrylamide</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Amidase purification</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>Locations of sample collection, pH, GPS location and temperatures of the soil and number of bacteria isolated from each location</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>The absorbance readings of seven isolates from the MTT assay during the preliminary screening</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>The absorbance reading of five isolates from the MTT assay during the secondary screening</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Microscopic and macroscopic observations of Isolate 30</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>Biochemical test result using Microbact 24E(12A+12B) kit</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Amidase purification table</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Chemical structures of polyacrylamide (A) and acrylamide (B)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Comparative flowsheet for the microbial and conventional processes</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Proposed pathway for mineralization of acrylamide by soil bacteria</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Fold of amidase</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>Chemical and enzymatic pathways for nitrile hydrolysis</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Ping Pong bisubstrate reaction</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Studies of Mycobacterium avium catalysed hydroxamate formation from butyric or valeric acid and hydroxylamine</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>General reaction pathway of the combined hydrolysis and acyl-transfer activity of amide-hydrolysing enzymes</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>Large scale growth of Isolate 30</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>Schematic representation of gel filtration</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td>MTT assay using 96 well microtitter plates</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>93</td>
</tr>
<tr>
<td>Acrylamide degradation by five isolates in acrylamide enrichment culture</td>
<td>93</td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>13</td>
<td>Bacterial growth curve using bacterial count method (CFU/mL)</td>
</tr>
<tr>
<td>14</td>
<td>Biodegradation of acrylamide by bacteria Isolate 30</td>
</tr>
<tr>
<td>15</td>
<td>Colonies formed on agar-containing medium on a Petri plate after 24 hours incubation period at room temperature</td>
</tr>
<tr>
<td>16</td>
<td>Photomicrograph of bacteria Isolate 30</td>
</tr>
<tr>
<td>17</td>
<td>Result of biochemical test using Microbact Identification kit 24E (12A+12B) for bacteria strain 30</td>
</tr>
<tr>
<td>18</td>
<td>The effect of temperatures for the growth of Serratia marcescens strain 30</td>
</tr>
<tr>
<td>19</td>
<td>The effect of pH on growth of Isolate 30</td>
</tr>
<tr>
<td>20</td>
<td>A study of different carbon sources to the growth of Serratia marcescens strain 30</td>
</tr>
<tr>
<td>21</td>
<td>The effect of glucose concentration to the growth Serratia marcescens strain 30</td>
</tr>
<tr>
<td>22</td>
<td>The effect of amides (substrate) to the growth Serratia marcescens</td>
</tr>
<tr>
<td>23</td>
<td>The effect of different concentrations of acrylamide (substrate) on the growth of Serratia marcescens strain 30</td>
</tr>
<tr>
<td>24</td>
<td>Amidase elution profile using ion-exchange chromatography (DEAE cellulose)</td>
</tr>
<tr>
<td>25</td>
<td>Amidase elution profile using Mono-Q™ strong anion exchanger column</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>Amidase elution profile using Superose™ gel filtration column</td>
</tr>
<tr>
<td>27</td>
<td>Michaelis-Menten curve for amidase with acrylamide as the substrate</td>
</tr>
<tr>
<td>28</td>
<td>Effect of assay temperatures on amidase activity with acrylamide as the substrate</td>
</tr>
<tr>
<td>29</td>
<td>Effect of different pH on amidase activity with acrylamide as the substrate</td>
</tr>
<tr>
<td>30</td>
<td>Effect of heavy metals on amidase activity</td>
</tr>
<tr>
<td>31</td>
<td>The molecular weight of standard proteins versus their retention time using Superose™ column bed</td>
</tr>
<tr>
<td>32</td>
<td>Molecular weight determination on Superose™ column bed</td>
</tr>
<tr>
<td>33</td>
<td>Relationship between the molecular weight of proteins and retention time during gel filtration in Superose™</td>
</tr>
<tr>
<td>34</td>
<td>Polyacrylamide gel electrophoresis of amidase after crude extraction</td>
</tr>
<tr>
<td>35</td>
<td>Polyacrylamide gel electrophoresis of amidase after gel filtration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>DDT</td>
<td>dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis Menten Constant</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institute</td>
</tr>
<tr>
<td>mAUs</td>
<td>milliabsorbance unit</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-,5-diphenyltetrazoliumbromide</td>
</tr>
<tr>
<td>PAM</td>
<td>Polyacrylamide</td>
</tr>
<tr>
<td>PBM</td>
<td>Phosphate buffered medium</td>
</tr>
<tr>
<td>V_{max}</td>
<td>maximum initial velocity</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Manufactured chemicals present in our environment present possible health hazards. The United States Environmental Protection Agency (USEPA) categorized chemicals by their known or suspected effects as carcinogens, mutagens or as developmental, reproductive, acute, chronic or neurological toxins, and many chemicals fall into more than one of these categories. Over 10,000 pounds of carcinogens, agents known to increase cancer risks, have been released into the soil of more than 50% of the United States. Obviously, exposure to these and other chemicals released into the environment can have both acute and cumulative effects on health (Skipper and Turco, 1995).

Acrylamide is an important industrial chemical, used primarily in the production of polymers and copolymers. The widespread use and indiscriminate discharge of acrylamide and polyacrylamide has led to the contamination of soil (Lande et al., 1979; Nawaz et al., 1992) and plants (Nishikawa et al., 1978; Nawaz et al., 1992). There is abundant evidence, however, that most chemicals are degraded or dissipated in our not-so-fragile environment, despite efforts by environmental ethicists and the media to convince us otherwise (Skipper and Turco, 1995). But for most scientists
involved in reduction of environmental contaminants, there is indeed room for improvement in virtually all spheres.

The desire to minimize health effects has led to large expenditures to combat pollution. Bioremediation is one technology which shows great promise in terms of cost-effective pollution abatement. Bioremediation is the use of microorganisms or plants to detoxify an environment, mostly by transforming or degrading pollutants. The utility of bioremediation in the degradation of pollutants in the environment has been successfully demonstrated for several chemical compounds. Biodegradation is an important removal mechanism for chemicals released in large quantities to aquatic and terrestrial environments. It results in a decrease in the mass or load of chemicals present in the environment and is important in preventing the accumulation and persistence of chemicals (Shimp et al., 1990; Babu et al., 1996).

Biodegradation is the major route of removal acrylamide from soils. In aerobic soils, the chemical is 74-94% degraded in 14 days. Depending on the soil type, estimated half-lives range from 21-36 hours. This study attempts to isolate and identify the bacteria, which utilize acrylamide as a carbon source. Microbial amidases (amidohydrolase, EC 3.5.1.4) catalyze the hydrolysis of aliphatic amides to their corresponding carboxylic acids and ammonia. Although numerous microorganisms catabolize aliphatic amides, acrylamide, because of its inhibitory effect on sulfhydryl proteins, inhibits their growth. Therefore, few microorganisms capable of degrading
acrylamide have been isolated (Nawaz et al., 1994).

The objectives of this study are firstly, to isolate and screen acrylamide-degrading bacteria from previously treated and untreated Malaysian soil. Secondly, to identify and characterized the best acrylamide degrading bacterium by measuring acrylamide degradation by the bacterium in the shortest period and lowest residue left. Thirdly, is to partially purify the enzyme(s) involved in acrylamide degradation from the chosen bacterium.
2.1 Acrylamide

Acrylamide (C.A.S. 79-06-1) is an odorless, free flowing white crystalline powder used as a chemical intermediate in the production and synthesis of polyacrylamides. These high-molecular weight polymers can be modified to develop nonionic, anionic, or cationic properties for specific uses. Acrylamide, an aliphatic amide, is extensively used in numerous industrial processes.

Global production of acrylamide has been estimated to be over 200,000 tons (ca. 180,000 metric tons) (Nawaz et al., 1994). Synonyms for acrylamide are acrylamide monomer, acrylic amide, propenamide, 2-propenamide, acrilamida (DOT Spanish), acrylamide (DOT French), acrylamide solution, acrylic acid amide (50%), acrylic amide (50%), ethylene carboxamide, ethylenecarboxamide, propenamide (50%), propenoic acid, amide, RCRA Waste Number U007, UN 2074, and vinyl amide (WHO, 1985).

2.2 Physical and chemical properties of acrylamide

Acrylamide occurs in crystalline form and in aqueous solution. The solid monomer is a colorless to white, free flowing crystal that is soluble in water, methanol, ethanol, dimethyl ether, and acetone, are insoluble in benzene and heptane. The chemical formula of acrylamide is C₃H₅NO and its molecular