UNIVERSITI PUTRA MALAYSIA

COPLANAR UHF RFID TAG ANTENNA WITH U-SHAPED INDUCTIVELY COUPLED FEED FOR METALLIC APPLICATIONS

KARRAR NAJI SALMAN AL KHANJAR

FK 2016 51
COPLANAR UHF RFID TAG ANTENNA WITH U-SHAPED INDUCTIVELY COUPLED FEED FOR METALLIC APPLICATIONS

By

KARRAR NAJI SALMAN AL KHANJAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia.
DEDICATIONS

In the name of Allah, Most Gracious, Most Merciful
This thesis is dedicated to:

My parents
(Father & Mother)
My brothers & Friends

To every striving muhsin person who is constantly improving aspects of life...
To those who are compassionate towards achieving perfection...
To the consistent pursuers of knowledge aiming for positive change...

A special contribution to my home country Iraq and to Malaysia;
With lots of gratitude
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

COPLANAR UHF RFID TAG ANTENNA WITH U-SHAPED INDUCTIVELY COUPLED FEED FOR METALLIC APPLICATIONS

By

KARRAR NAJI SALMAN AL KHANJAR

April 2016

Chair: Assoc. Prof. Alyani Binti Ismail, PhD
Faculty: Engineering

RFID stands for Radio Frequency Identification. The major purpose that RFID system is built for is to transfer data on a transponder (tag) that can be regained with a transceiver by means of a wireless connection. The contactless Identification (ID) system depends on data transmission by radio frequency electromagnetic (EM) signals, and accordingly, the whole functionality is weather independent and non-line-of-sight. These features for ID system copes the optical barcodes limitations, which are weather dependent, line-of-sight, and manual operation requirement. Most of RFID tags consisted of integrated circuit (IC) or a Chip and an antenna. The IC executes all of the data processing and is energized by extracting the power from the interrogation signal transferred by the RFID reader. The tag antenna controls the amount of power transmitted from the reader to the tag and the reflect signal from the tag to the reader. Nevertheless there are no restrictions on the physical parameters of the readers antenna, such as being small or planar in size, these restrictions do stratify on the tags antenna. In a matter of fact, the tag miniaturizing in size is limited by the tag antenna size.

This thesis reports on the design, fabrication, and measurement of Ultra High Frequency (UHF) RFID tag antennas (860 to 960 MHz), which can be used in metallic applications. The introduced tag antennas are designed and fabricated to accomplish low tagging costs, good performance, as well as tagging metallic objects with small size tags.

First, high gain compact coplanar RFID tag antenna was designed and tested. In this design, a coplanar slim antenna is proposed and designed for metallic objects UHF RFID (860-960)MHz as First stage. The antenna structure etched on FR4
epoxy substrate. The slim antenna has been presented with proximity coupled feeding, two symmetrical coplanar ground layer, and transmission line fed by U-shaped inductively coupled feed. Furthermore, U-shaped inductive feeder consists of two opposing symmetrical U-shaped structures to feed the top radiator for antenna. The antenna size is 97.5×50×1.5 mm3 at 915 MHz. The peak gain and efficiency for the antenna reached to 5 dBi and 62% at 915 MHz respectively. The antenna bandwidth is 24.875 MHz (900.125-925) MHz (power reflection coefficient lower than -3 dB). The measurement result shows very good impedance matching due to the flexibility given by the U-shaped inductive feeder; moreover there is a very good agreement with simulations results. The design shows very high gain and good efficiency. This antenna introduced to fill up the need for tagging for long range and mounted for metallic objects such as oil barrels tagging in petrol refineries and gas cylinders.

The thesis presented a compact coplanar tag electrically small antenna (ESA) as Final stage. The antenna structure etched on polytetrafluorethylene (PTFE) as an upper layer substrate, whereas the bottom layer is FR4 epoxy substrate. This coplanar tag antenna gives us ultimate size reduction as well as better efficiency. The presented tag antenna designed with a proximity-coupled feed through, two symmetrical via-load coplanar grounds fed by U-shaped inductively coupled feed through embedded transmission line. This configuration led to antenna size to be 31.×19.5×3.06 mm3 at 915 MHz, while the total gain and efficiency for the antenna are 0.12 dBi and 24% respectively. The vias-coplanar load gives and the U-Shaped inductive coupled feed the antenna flexible tuning for antenna impedance. The antenna realized gain bandwidth at half power bandwidth is 14.5 MHz (908-922.5) MHz at 915 MHz. The impedance of the suggested antennas were simulated then measured to validate the design. At the same time, a figure of merit was applied for this proposed tag antenna and the results were exposed. This antenna measurement shows very good agreement with the simulation part. The presented RFID Tag antennas are low cost, compact, and with good efficiency and good gain that make it fit for tagging metallic applications. Finally, Figure of Merit was applied for Final stage of compact electrically small antenna (ESA) and comparison was presented to provide good validation for the proposed design. In this work, the proposed tag antenna was assessed throughout the study of the ESA performance. The tag antenna assessed with new Figure of Merit, namely, Normalized Bandwidth Gain product (NBG) and Normalized bandwidth Efficiency product (NBE). The presented comparison was carried out by (NBG) and (NBE). The results were calculated for both NBG and NBE where they are found to be 0.57 and 0.05 respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

TAG ANTENA UHF RFID SESATAH DENGAN SUAPAN INDUCTIF BERBENTUK U UNTUK APLIKASI LOGAM

Oleh

KARRAR NAJI SALMAN AL KHANJAR

April 2016

Pengerusi: Prof. Madya Alyani Binti Ismail, PhD
Fakulti: Kejuruteraan

Tesis ini melaporkan mengenai reka bentuk, fabrikasi, dan pengukuran tag antena (860-960 MHz) frekuensi ultra tinggi (UHF) RFID, yang boleh digunakan dalam aplikasi logam. Tag antena yang diperkenalkan and difabrikasi untuk mencapai kos tagging yang rendah, prestasi yang baik, dan penandaan logam dengan tag saiz kecil.

Pertamanya, tag antena RFID padat sesatah bergandaan tinggi telah direka dan diuji. Dalam reka bentuk ini, antena sesatah langsing telah dicadangkan dan direka untuk objek logam UHF RFID (860-960) MHz sebagai peringkat pertama.

Tesis telah megemukakan tag antena elektrik padat sesatah kecil(ESA) sebagai peringkat akhir. Struktur antena terukir pada polytetrafluorethylene (PTFE) sebagai substrat lapisan atas, manakala lapisan bawah adalah FR4 epoxy substrat. Tag antena sesatah ini membolehkan pengurangan saiz secara muktamad serta kecekapan yang lebih baik. Tag antena yang dibentangkan telah direka dengan penyua proksimiti terganding melalui dua muat sesatah bumi yang simetri disambung dengan penyua inductif berbentuk-U melalui talian penghantaran terbenam. Konfigurasi ini menyebabkan saiz antena menjadi 31 x 19.5 x 3.065 mm³ pada 915 MHz, manakala jumlah gandaan antena adalah 0.12 dBi dan kecekapan untuk antena adalah 24%. Muat sesatah dan penyua inductif berbentuk-U membolehkan pelarasan impedans antena yang fleksibel. Gandaan jalur lebar yang diperolehi oleh antena pada jalur lebar setengah-kuasa 14.5 MHz (908-922.5) MHz pada 915 MHz. Impedans antena yang dicadangkan telah disimulasikan, kemudian diukur untuk mengesahkan reka bentuk yang dihasil. Pada masa yang sama, angka merit telah digunakan pada tag antena ini dan keputusan telah diperolehi. Ukuran antena mempunyai prestasi yang salaras dengan ukuran dalam sebahagian simulasi. Tag antena RFID yang dibentangkan adalah berciri kos rendah, padat, berkecekapan yang baik dan gandaan yang baik. Ini menjadikan ia sesuai untuk tag aplikasi logam. Akhirnya, angka merit telah digunakan untuk antena elektrik padat kecil(ESA) peringkat akhir dan perbandingan telah dibentangkan untuk mengesahkan reka bentuk yang dicadangkan. Dalam karya ini, tag antena yang dicadangkan telah dinilai sepanjang kajian prestasi ESA. Tag antena telah dinilai dengan angka merit, iaitu produk gandaan jalur lebar ternomal (NBG) dan produk kecekapan jalur lebar ternormal(NBE). Perbandingan yang dibentangkan telah dijalankan dengan (NBG) dan (NBE). Keputusan telah dikira mendapati bahawa NBG adalah 0.57 dan NBE adalah 0.05.
ACKNOWLEDGEMENTS

Of all that exists in the entire universe, my sheer gratitude is dedicated to no other than the Most Compassionate Allah S.W.T. Who had Generously Bestowed me a golden chance to further my master degree in Universiti Putra Malaysia.

I am too touched being fated an ardently obliging beloved family members who are incessantly empowering my drive towards completing the painstaking processes throughout the tribulations of the study. In addition to the dynamic spur of enthusiasm, which is inexplicably bursting from the fierce love I deeply feel for my parents and my brothers towards the betterment of our future life. So goes to other inspiring family members.

Anyhow, all the way through, I am truly indebted to my flexible but efficient supervisor: Associate Professor Dr. Alyani binti Ismail for her clear-cut style of supervision yet promoting students’ freedom of ideas expression to stand upright with her securing offer of unwavering support - really, I am among the lucky few. In addition, I wish to express my appreciation to the members of my committee, Associate Professor Dr. Raja Syamsul Azmir Raja Abdullah for offering their valuable time and comments. I would also like to thank Professor Dr. Widad binti Ismail and her team in Universiti Sains Malaysia (USM), Engineering Campus, Seberang Perai Selatan, Penang, Malaysia, for letting me use their laboratory and those others that have helped in the thesis work directly or indirectly.
I certify that a Thesis Examination Committee has met on 22 April 2016 to conduct the final examination of Karrar Naji Salman Al Khanjar on his thesis entitled "Coplanar UHF RFID Tag Antenna with U-Shaped Inductively Coupled Feed for Metallic Applications" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Nor Kamariah bt Noordin, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Aduwati binti Sali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sharul Kamal bin Abdul Rahim, PhD
Associate Professor, Ir
Faculty of Electrical Engineering
Universiti Teknologi Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 June 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

Alyani Binti Ismail, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Raja Syamsul Azmir Raja Abdullah, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013 and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: ______________________

Name and Matric No.: Karrar Naji Salman, GS38860
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of the thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Assoc. Prof. Dr. Alyani binti Ismail

Signature: ________________________________
Name of Member of Supervisory Committee: Assoc. Prof. Dr. Raja Syamsul Azmir Raja Abdullah
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii

CHAPTER

1 INTRODUCTION

1.1 Background
1.2 Problem statement and motivation
1.3 Aim and Objectives of Research
1.4 Scope of Research
1.5 Overview of Research Methodology
1.6 Organization of the Thesis

2 LITERATURE REVIEW

2.1 Introduction
2.2 Background of RFID
2.3 RFID Tag Types and Classification
 2.3.1 RFID Tags Types Based on Power Supply
 2.3.2 RFID Tags Operating Frequencies
 2.3.3 RFID Tags Classes
2.4 RFID Tag Antenna Design Considerations
 2.4.1 Antenna Size and Shape
 2.4.2 Bandwidth
 2.4.3 Radiation Pattern
 2.4.4 Directivity and Gain
 2.4.5 Polarization
 2.4.6 Impedance Matching
 2.4.7 The realized gain
 2.4.8 Read Range
 2.4.9 Deformation
 2.4.10 Fabrication Materials and Process
 2.4.11 Proximity to Objects
2.5 Impedance Measurement of RFID Tag Antenna
2.6 RFID Tag Antenna Method Considerations

x
2.6.1 Coplanar Structure 23
2.6.2 High Impedance Surface (HIS)-based topologies 25
2.6.3 Loaded Via-patch Structures. 26

2.7 Overview of RFID Tag Antennas 27
2.7.1 A Miniature RFID Tag Antenna Design for Metallic Objects Application 27
2.7.2 A Compact UHF RFID Tag Antenna Design for Metallic Objects 28
2.7.3 A Miniaturized Via-Patch Loaded Dual-Layer RFID Tag Antenna for Metallic Object Applications 29
2.7.4 A Looped-Bowtie RFID Tag Antenna Design for Metallic Objects 29
2.7.5 A Novel Metal-Mountable Electrically Small Antenna for RFID Tag Applications. 30
2.7.6 A Dual-Layer Broadband Compact UHF RFID Tag Antenna for Platform Tolerant Application. 31
2.7.7 UWB UHF RFID Tag Antenna with Branch-Line Slots For Metallic Objects. 32
2.7.8 Compact RFID Tag Antenna With Circular Polarization and Embedded Feed Network for Metallic Objects. 33
2.7.9 Compact Circularly Polarized RFID Tag Antenna with an Embedded U-shaped Feedline for Metallic Surfaces. 34
2.7.10 A Compact Circularly Polarized Crossed-Dipole Antenna for an RFID Tag. 35
2.7.11 Low Profile Flexible Metal Mountable UHF RFID Tag Antenna. 35

2.8 Summary of Previous Work 36
2.9 Summary 38

3 METHODOLOGY 39
3.1 Introduction 39
3.2 General Methodology 39
3.2.1 Coplanar Structure 39
3.2.2 U-Shaped Inductively Coupled Feeder 41
3.2.3 High Impedance Surface (HIS)-based topologies 43

3.3 Design of High Gain Coplanar UHF RFID Tag Antenna. 43
3.3.1 First Stage Coplanar Structure 43
3.3.2 U-Shaped Inductively Coupled Feeder for First Stage 43
3.3.3 High Impedance Surface topologies For First Stage 44

3.4 Design of Compact Coplanar UHF RFID Electrically Small Tag Antenna. 45
3.4.1 Final Stage Coplanar Structure 45
3.4.2 U-Shaped Inductively Coupled Feeder for Final Stage 45
3.4.3 High Impedance Surface topologies For Final Stage 46
3.4.4 Loaded Via-patch Structures. 46

3.5 Figure of Merit (FoM). 48

3.6 Summary 48
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 RFID tag operating frequencies.</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Summary of the reviewed work on metal mount RFID tag antenna</td>
<td>37</td>
</tr>
<tr>
<td>designs</td>
<td></td>
</tr>
<tr>
<td>4.1 Antenna dimensions</td>
<td>50</td>
</tr>
<tr>
<td>4.2 Simulated and measured antenna impedances</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Simulated and measured half-power bandwidths of the tag antennas</td>
<td>56</td>
</tr>
<tr>
<td>4.4 Calculated and measured read range of the tag antenna</td>
<td>58</td>
</tr>
<tr>
<td>5.1 Antenna dimensions</td>
<td>62</td>
</tr>
<tr>
<td>5.2 Simulated and measured antenna impedances</td>
<td>67</td>
</tr>
<tr>
<td>5.3 Simulated and measured half-power bandwidths of the tag antenna</td>
<td>69</td>
</tr>
<tr>
<td>5.4 Calculated and measured read range of the tag antenna</td>
<td>73</td>
</tr>
<tr>
<td>5.5 Characteristics of Electrically Small Coplanar Tag Antenna Proposed For Metallic Applications.</td>
<td>77</td>
</tr>
<tr>
<td>5.6 Overall performance comparisons of electrically small RFID tag antennas for metallic object applications based on the NBG and NBE.</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Scope of Research</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Methodology Design Flowchart of RFID Tag Antennas</td>
<td>5</td>
</tr>
<tr>
<td>2.1 The Component for RFID System</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Block Diagram Passive UHF RFID Tag Antenna</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Field Regions of an antenna</td>
<td>13</td>
</tr>
<tr>
<td>2.4 The Equivalent Circuit of an RFID Tag</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Antenna Impedance, Chip Impedance and Range versus Frequency for a Typical RFID Tag.</td>
<td>16</td>
</tr>
<tr>
<td>2.6 Two-Port Impedance Model of an Antenna and Feed</td>
<td>20</td>
</tr>
<tr>
<td>2.7 Schematic Representation of a Dipole Antenna and its Impedances</td>
<td>21</td>
</tr>
<tr>
<td>2.8 Photograph of the Two-Port Measurement Jig</td>
<td>21</td>
</tr>
<tr>
<td>2.9 Connections Using the Proposed Two-Port Jig to Measure the Impedance of a Dipole</td>
<td>22</td>
</tr>
<tr>
<td>2.10 Configuration for a CPW sandwiched.</td>
<td>24</td>
</tr>
<tr>
<td>2.11 Schematic of conductor backed coplanar waveguide.</td>
<td>25</td>
</tr>
<tr>
<td>2.12 Geometry of Proposed HIS Design (a) Side view, (b) Top view.</td>
<td>25</td>
</tr>
<tr>
<td>2.13 Configuration of the proposed HIS RFID metal tag antenna.</td>
<td>26</td>
</tr>
<tr>
<td>2.14 (a) Medium Model (b) Equivalent Circuit of the Absorption HIS Structure.</td>
<td>26</td>
</tr>
<tr>
<td>2.15 Structure of the proposed PIFA with the via-patch loading (a) Top view. (b) 3-D view. (c) Side view.</td>
<td>27</td>
</tr>
<tr>
<td>2.16 Prototype of RFID Tag Antenna.</td>
<td>28</td>
</tr>
<tr>
<td>2.17 Photograph of Compact Antenna Structure.</td>
<td>28</td>
</tr>
<tr>
<td>2.18 Structural of the proposed dual-layer antenna. (a) Top radiator. (b) Parasitic radiator. (c) Side view.</td>
<td>29</td>
</tr>
<tr>
<td>2.19 Proposed Antenna Structure For RFID Metallic. (a) Dimensional parameters for antenna. (b) Lower Operating frequency mode. (c) Middle Operating frequency mode. (d) Higher Operating frequency mode.</td>
<td>30</td>
</tr>
<tr>
<td>2.20 Structural configuration of the proposed antenna: (a) top radiator, (b) feed radiator, and (c) side view.</td>
<td>31</td>
</tr>
<tr>
<td>2.21 Antenna configuration: (a) top radiator; (b) parasitic radiator; (c) side view; and (d) fabricated tag.</td>
<td>32</td>
</tr>
<tr>
<td>2.22 Structure of proposed antenna and (b) Fabrication of proposed antenna.</td>
<td>33</td>
</tr>
<tr>
<td>2.23 Geometries and the prototype of the proposed compact patch tag antenna.</td>
<td>34</td>
</tr>
<tr>
<td>2.24 The geometry of the introduced circularly polarized patch tag antenna.</td>
<td>34</td>
</tr>
<tr>
<td>2.25 Photograph of the fabricated tag antenna.</td>
<td>35</td>
</tr>
<tr>
<td>2.26 Fabricated Antenna Photograph.</td>
<td>36</td>
</tr>
</tbody>
</table>
3.1 Flow Chart Coplanar Tag Antenna Design Process Integrated with U-shaped feeder.
3.2 Structure for proposed Coplanar tag Antenna.
3.3 Structure of U-Shaped inductively coupled feed.
3.4 Equivalent Circuit Model.
3.5 Configuration for the proposed Coplanar tag Antenna.
3.6 Structure of U-shaped inductively coupled feed for First stage.
3.7 (a) Conventional Slim Coplanar Tag Antenna, (b) Coplanar tag antenna structural configuration.
3.8 Configuration for the proposed Coplanar tag Antenna.
3.9 Structure of U-shaped inductively coupled feed for Final stage.
3.10 Configuration of the proposed coplanar multi-layer HIS RFID metal tag antenna.
3.11 (a) Conventional Coplanar Tag Antenna, (b) Coplanar tag antenna structural configuration.
4.1 Structural configuration of the proposed antenna: (a) top radiator, (b) feed radiator, and (c) side view.
4.2 Fabricated Antenna.
4.3 Input impedances of the proposed antenna mounted on a conductive ground plane that is 200 × 200 mm² in size with a variation of glw, where R-chip and Imag-chip represent the real and imaginary parts of the conjugate chip impedance respectively.
4.4 Simulated results of return loss (S_{11}) with different g2 distances.
4.5 Simulated results of return loss (S_{11}) with different U-shaped widths (uiw).
4.6 Current distributions of the proposed RFID tag antenna on a metallic ground plane 200 × 200 mm² in size: (a) top layer, (b) ground layer.
4.7 Return loss result (S_{11}).
4.8 Simulated far-field radiation pattern.
4.9 (a) Differential Probe, (b) Open-Ended Side of Semirigid Cables, (c) Measurement Setup of Coplanar Slim Tag Antenna.
4.10 Simulated, measured impedance and modeled on ground plat sized 200 × 200 mm².
4.11 Simulated and measured PRC.
4.12 Simulation Results of Antenna Radiation Patterns with Different Values of Metal Sheet Side Length.
5.1 Antenna Structure Structural configuration of the proposed antenna: (a) top radiator, (b) feed radiator, and (c) side view.
5.2 Fabricated Antenna.
5.3 Simulation Results of Antenna Input Impedances with Different Values of: (a) Gapes between the U-shaped feeder and transmission line (g_2), (b) U-shaped feeder width (uiw), (c) Transmission line width (tlw).
5.4 Equivalent circuit model of the proposed RFID Tag Antenna.
5.5 Equivalent circuit model for U-shaped inductively coupled feed. 65
5.6 Simulated Return Loss. 65
5.7 Simulated Far Field Radiation Patterns. 66
5.8 Measurement Setup for Metal Mount Tag Antenna. 66
5.9 Input impedances of the coplanar tag antenna mounted on metal ground plane that is $200 \times 200 \text{ mm}^2$ in size with a variation of (glw). 68
5.10 Impedance Simulation and Measurement Results for the Proposed Tag Antenna. 68
5.11 Simulated and Measured PRC of the Proposed Tag Antenna. 69
5.12 Current distributions of the introduced coplanar tag antenna on a metallic ground plane $200 \times 200 \text{ mm}^2$ in size: (a) top layer, (b) second layer, and (c) ground plane. 71
5.13 Simulated and measured realized gains and radiation efficiencies of the proposed coplanar tag antenna on a metallic sheet with dimensions of $200 \times 200 \text{ mm}^2$. 71
5.14 Simulated and measured read ranges of the proposed coplanar tag. 72
5.15 Simulation Results of Antenna Radiation Patterns with Different Values of Metal Sheet Side Length. 73
5.16 Comparisons of Electrically Small RFID tag antennas for metallic object applications based on the NBG. 79
5.17 Comparisons of Electrically Small RFID tag antennas for metallic object applications based on the NBE. 79

A.1 Circuit Model for a Complex Antenna Load when Both Ports of the Network Analyzer are Connected. 93
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDC</td>
<td>Auto Identification and Data Capture</td>
</tr>
<tr>
<td>AUT</td>
<td>Antenna Under Test</td>
</tr>
<tr>
<td>AMC</td>
<td>Artificial Magnetic Conductor</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuit</td>
</tr>
<tr>
<td>BW<sub>p</sub></td>
<td>Percentage Bandwidth</td>
</tr>
<tr>
<td>BW<sub>r</sub></td>
<td>Ratio Bandwidth</td>
</tr>
<tr>
<td>CST</td>
<td>Computer Simulation Technology</td>
</tr>
<tr>
<td>EAS</td>
<td>Electronic Article Surveillance</td>
</tr>
<tr>
<td>EIRP</td>
<td>Equivalent Isotropic Radiated Power</td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetrauoreylene</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EPC</td>
<td>Electronic Product Code</td>
</tr>
<tr>
<td>ERP</td>
<td>Effective Radiated Power</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HFSS</td>
<td>High Frequency Structure Simulator</td>
</tr>
<tr>
<td>HIS</td>
<td>High Impedance Surface</td>
</tr>
<tr>
<td>HPBW</td>
<td>Half-Power Beamwidths</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IFF</td>
<td>Identification of Friend or Foe</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial Scientific and Medical</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>PBG</td>
<td>Photonic Band Gap</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PIFA</td>
<td>Planar Inverted F Antenna</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PRC</td>
<td>Power Reflection Coefficient</td>
</tr>
<tr>
<td>PTC</td>
<td>Power Transmission Coefficient</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>SAW</td>
<td>Surface Acoustic Wave</td>
</tr>
<tr>
<td>SHF</td>
<td>Super High Frequency</td>
</tr>
<tr>
<td>SMA</td>
<td>Sub Miniature version A</td>
</tr>
<tr>
<td>SRD</td>
<td>Short Range Devices</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-Wideband</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector Network Analyzer</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Radio Frequency Identification (RFID) involves sending of a radio frequency query signal from a remote reader or interrogator to a tag or transponder and receiving the modulated signal scattered back from the tag. The tag encompasses information regarding the object it is attached to. The received signal decodes by the reader and sends the information of the object to unit which is called a central processing unit. This central processing unit is receiving from neighboring readers, situated at other locations communicating with neighboring tags. Hence a communication system is established by the means of any items, placed at different locations of a retail-store or a warehouse can be tracked and identified. The tag and the reader utilize the antenna for signal/power transfer and compose the back-bone of the system. The amount of power transferred from the reader to the tag and back from the tag to the reader is determined by the antennas. As a matter of fact, there are limitations in tag antenna design particularly in the tag miniaturization due to the small size of the antenna; however there are no restrictions on the physical parameters of the reader antenna such as small size and being planar.

1.2 Problem statement and motivation

The existence of RFID technology prolonged for many years, but it is only recently witness rapid growth which has arisen from application of this technology in different supply chains. The stimulus to the growth of RFID came after the introduction of the Electronic Product Code (EPC) concept by which each tagged object can have it’s information stored in a database elsewhere instead of in the tags attached to them. A unique identifier (due to the unique EPC in each tag) has given for each tagged objects and this identifier having it’s information stored in a database, this information associated with each of the physical objects which can be accessed and updated anytime and anywhere, thus allowing easy trace and track of physical objects all over supply chains. Moreover, this kind of tags have low cost due to no large memories are requested to store the object information. All these factors open the possibility of wide implementation of RFID technology by tagging and identifying every single physical object (or product) in supply chains for total visibility within those supply chains. The vision that led to expand the RFID technology to item level tagging can be summarized by giving each specific item a unique identifier number rather than the method of pallet and level tagging [1].

From inventory management to theft detection, RFID has been utilized in many areas such as in logistics and the automotive industry, as well as in retail stores and warehouses [2–6]. In many contexts, Passive RFID technology is widely embraced even quite remote from the canonical ones which are basically linked to
logistics. RFID-based sensor data transmission [7–10] Identification of goods containing liquid or made of metal [11–15] platform tolerant tags [8, 16] are only a few of the many possible examples where tags customized for specific applications are required. Over the last few years, the electromagnetic scientific community has been acknowledged for the necessity to put a great deal of effort into RFID projects. The resultant rapid breed of scientific works on tag design and optimization is an obvious fact [7–15, 17–33].

Although RFID brings forward the advantage of efficient supply chain management, many challenges are demonstrated due to the increasing implementation of RFID technology. Among the major challenges are:

1. Degradation of RFID system performance and reliability in presence of metal objects.
2. RFID tagging costs.
3. Tagging smaller objects at item level.
4. Impedance matching between antenna and chip.

Overview discussions on RFID challenges can be found in the literature such as in [34–37].

To permit a comprehensive and full deployment of RFID, and to bring into realization the vision of tagging objects down to item level, practicable solutions must be drawn to meet these RFID challenges from all aspects. In this thesis, the main focus is on tackling the first challenge listed above, with the complex material of concern being metallic objects and structures. One of the major RFID implementation problem is the degradation in performance when tagging metallic objects or operating in an environment containing metallic structures. The tagging of objects at pallet, case, and even item levels will most likely involve metallic objects. Meanwhile, the second and third challenges listed above (concerning cost and size respectively) should be emphasis on while tackling the first challenge. These second and third challenges become very important particularly when item level tagging is included. In order to lower the tags cost in comparison to the item to be tagged on, the tags should be made from inexpensive materials and simple to manufacture. Yet, the ohmic loss will increase with decreasing of size of the antenna [38], and thus the efficiency will decrease. Therefore, maintaining a balance between the tag performance, cost and size is a challenging task. A compact coplanar structure have been adopted throughout this thesis for the purpose of good gain and thus good read range with size reduction. The further size reduction achieved by load-via patch integrated with coplanar transmission line technology. The proposed antennas are fabricated at low cost using polytetrafluorethylene (PTFE) and Flame Retardant (FR4) substrate.

This thesis also itemizes on the fourth challenge listed above which is of an essential importance for proper tag antenna design. Chips vendors manufacture variety of Application Specific Integrated Circuits (ASIC) that are available in the market with different impedance values. Most microchips founded in market todays
exhibit an input reactance roughly ranging from -100 to -400 while the real part is smaller. Thus, Antenna designers should stick to these values which are already produced, where in most cases; they are not free to select the desired antenna size to accomplish the desired task. With good impedance matching can lead to ensure maximum power transfer between it’s antenna and the chip increasing the read range.

1.3 Aim and Objectives of Research

The main goal for this work is to design different structure for coplanar tag antenna designed technology, HIS-conventional technique, the load-via patch construction fed by U-shaped inductively coupled feed. This design is aimed for metallic objects.

The research is focused on the following four main objectives:

1. To design coplanar RFID tag antenna and investigate the coplanar feature on RFID performance in presence of metallic objects.
2. To improve the radiation efficiency and thus, the antenna gain for high gain coplanar tag antenna and compact coplanar electrically small tag antenna .
3. To conduct measurement in order to validate the performance of the designed high gain coplanar tag antenna and compact coplanar electrically small tag antenna.
4. To validate the performance of the designed tag antennas through figure of merit for Electrically Small Antennas (ESA’s) .

1.4 Scope of Research

The scope of this thesis is to design a new coplanar transmission line for RFID applications integrated with U-shaped inductive feeder to improve their performance characteristics. The designed antennas used two type of planar transmission line which is considered newly utilized in RFID. The Coplanar tag antenna introduced together with via-load patch and HIS-structures. The flow of this study is demonstrated in Figure 1.1. The continuous-lines represent the direction followed in this thesis to achieve the objectives, while the dashed-lines are referring to other related research areas that are outside the scope of this work.
1.5 Overview of Research Methodology

Firstly, to accomplish the objectives of this work, comprehensive research on RFID tag antennas, coplanar transmission line was utilized and integrated with Loaded-via patch, HIS technology and U-shaped inductively coupled feed to give understanding prospective to their fundamentals. In addition, understand how these types of materials can be integrated with antennas. Next, inexpensive materials are located for antenna construction with suitable chips after identifying antenna parameters and obtaining used chip impedance. Then, a 3D full-wave electromagnetic simulator (CST Microwave Studio, Version 2013 [39]) was used to simulate the structures. Afterwards, unique methods of integration have been applied between the tag antennas after it was successfully designed for RFID applications. Finally, measurements have been performed on the RFID tag antennas to validate the design methods. The developed methodology for designing RFID tag antennas is illustrated in the flow chart depicted in Figure 1.2.
Figure 1.2: Methodology Design Flowchart of RFID Tag Antennas
1.6 Organization of the Thesis

This thesis is organized into six chapters, which are summarized as follows:

Chapter 1 provides a general introduction to the research area, and identifies the current problems in designing RFID tag antennas that motivated this research. It also introduces the goal, objectives, methodology, scope of research as well as the organization of thesis writing.

Chapter 2 presents a literature review on RFID system and RFID tag antennas. It first provides a background of RFID technology and some details about their classes and types. Then some details are provided about RFID tag antenna design considerations as well as some recent designs and applications. Finally, a summary ends the chapter.

Chapter 3 describes the methodology used to design the Coplanar transmission line structures that are used in antenna designs in Chapters 4 and 5 in an attempt for antenna gain enhancement. The performance of U-shaped inductively coupled feed behavior is investigated in terms of the lumped element equivalent circuits, and discusses effects of the feeder parameters to frequency resonant. Loaded-via patch and HIS technology were studied well in addition to the Parameters affecting for coplanar structure as well. Methodology is finally summarized.

Chapter 4 contains a description on new design of slim Coplanar tag antenna with gain enhancement for metallic objects which is based on the coplanar transmission line technology structure. Some antenna parameters are studied showing their effects on antenna self-resonant frequency. The effective parameters for U-shaped inductive feeder were investigated well compatible with coplanar parameters. Content is reviewed at the end of the chapter. This chapter considered as the first stage for the proposed tag antenna design.

Chapter 5 elaborates on a novel design of miniaturized metal mount double-layered for RFID applications. The tag antenna integrated with loaded-via patch, HIS technology and U-shaped feeder to achieve the gain enhancement. In addition, parametric study is also shown for different antenna parameters. Comprehensive analyses were done throughout the chapter concerning theoretical and simulation validation as well as the design techniques adopted. A study for Merit of Figure for ESA was introduced throughout this chapter. Furthermore, an equivalent circuit for the proposed antenna was designed. Finally, a summary on the chapter is reviewed at the end. This chapter considered as the final stage for the proposed tag antenna design.

In Chapter 6, the entire thesis is summarized and concluded, followed by discussion of the major contributions of the work. Eventually, potential ideas for future work are suggested.
BIBLIOGRAPHY

[66] D. A. Frickey, “Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances,” IEEE Transactions on Microwave Theory and Techniques (Institute of Electrical and Electronics Engineers); (United States), vol. 42, no. 2, 1994.

89

