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Power amplifier (PA) is a major source of nonlinearity in a communication system since it 

often has to operate close to the saturation region to achieve high power efficiency. The 

nonlinearity includes out-of-band emission which causes adjacent channel interference 

and in-band distortion that degrades the bit error rate performance. In modern high speed 

communications, transmission schemes with high spectral efficiency such as Code 

Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing 

(OFDM) are more sensitive to PA nonlinearity and memory effects. In order to overcome 

the conflict between the linearity and the power efficiency of the PA, a linearization 

technique is required. One of the most cost-effective linearization techniques is Digital 

Pre-Distortion (DPD). The main justification for a DPD is to improve PA efficiency since 

PA is the most power consuming device in a transmitter. However, high complexity DPD 

leads to high power consumption due to intensive processing. Therefore, it is essential 

that the power saved by using DPD is not spent on a high complexity DPD algorithm.  

In this thesis, a low-complexity DPD model is proposed, verified, and experimentally 

evaluated for linearizing power amplifiers with memory effects. The proposed model 

derived from Volterra-series includes three parallel dynamic branches. This proposed 

model is constructed by treating the linear and nonlinear memory effects separately, 

which will provide an effective way to present efficient distortion compensation with low-

complexity for PA linearization. The performance of the proposed model is assessed 

using a commercial class-AB power amplifier driven by a 2-carrier Wideband CDMA 

(WCDMA) signal of 15 MHz bandwidth and Long-Term Evolution (LTE) signals of 15 

MHz and 20 MHz bandwidth. The simulation and experimental results show that the 

proposed model outperforms the MP model in terms of Adjacent Channel Leakage power 

Ratio (ACLR) performance by 7 dB and 6 dB, respectively for the 15 MHz bandwidth 

and by 6.8 dB and 6.5 dB, respectively for the 20 MHz bandwidth. These results were 

achieved with a reduction in the complexity by 16% in terms of number of floating point 

operations (FLOPs) as compared to the MP’s model complexity. This work demonstrates 
that a high linearity performance was achieved while the computational complexity of the 

proposed DPD model was minimized. These improvements will lead to reduction in 

transmitter power consumption and also reduction in hardware resources required for on-

chip DPD implementation. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi 

keperluan untuk Ijazah Doktor Falsafah 

PRAHEROTAN DIGIT KURANG KEKOMPLEKSAN UNTUK PENGUAT KUASA 
FREKUENSI RADIO 

Oleh 

SIBA MONTHER YOUSIF 

Jun 2016 

Pengerusi : Prof. Madya Roslina Mohd. Sidek, PhD 
Fakulti  : Kejuruteraan

Penguat kuasa (PA) adalah sumber utama ketaklelurusan dalam sistem komunikasi kerana 

sering beroperasi berhampiran dengan kawasan tepu untuk mencapai kecekapan kuasa 

yang tinggi. Ketaklelurusan tersebut merangkumi pancaran luar jalur yang menyebabkan 

gangguan saluran bersebelahan dan herotan dalam jalur yang menurunkan prestasi kadar 

ralat bit. Dalam komunikasi moden berkelajuan tinggi, skim penghantaran dengan 

kecekapan spektrum tinggi seperti Code Division Multiple Access (CDMA) dan 

Orthogonal Frequency Division Multiplexing (OFDM) adalah lebih sensitif kepada 

ketaklelurusan dan kesan memori PA. Dalam usaha untuk mengatasi konflik di antara 

kelelurusan dan kecekapan kuasa PA, teknik pelelurusan diperlukan. Salah satu teknik 

pelelurusan yang efektif dari segi kos adalah praherotan digit (DPD). Justifikasi utama 

bagi teknik DPD adalah untuk memperbaiki kecekapan PA kerana PA merupakan peranti 

yang menggunakan kuasa yang paling tinggi dalam penghantar. Walaubagaimanapun, 

DPD yang kompleks boleh meningkatkan penggunaan kuasa disebabkan pemprosesan 

yang intensif. Oleh itu, adalah penting bahawa penjimatan kuasa oleh DPD tidak disia-

siakan pada algoritma DPD yang kompleks.  

Dalam tesis ini, satu model DPD dengan kekompleksan yang rendah dicadangkan, 

disahkan, dan dinilai secara eksperimen untuk meleluruskan penguat kuasa dengan kesan 

memori. Model yang dicadangkan diterbitkan dari siri Volterra. Ia dibina dengan 

mengendalikan kesan memori lelurus dan taklelurus secara berasingan yang mana akan 

menyediakan pampasan herotan yang cekap dengan pelelurusan PA yang 

berkekompleksan rendah. Prestasi model yang dicadangkan dinilai menggunakan penguat 

kuasa kelas AB yang dikenakan dengan isyarat masukan jalur lebar dwi pembawa CDMA 

(WCDMA) dengan lebar jalur 15 MHz dan isyarat Evolusi Jangka Panjang (LTE) dengan 

labar jalur 15 MHz dan 20 MHz. Simulasi dan keputusan eksperimen menunjukkan 

bahawa model yang dicadangkan melebihi prestasi model MP dari segi prestasi nisbah 

kuasa kebocoran saluran bersebelahan (ACLR) masing-masing sebanyak 7 dB dan 6 dB 

bagi jalur lebar 15 MHz dan sebanyak 6.8 dB dan 6.5 dB bagi jalur lebar 20 MHz. 

Keputusan tersebut dicapai dengan pengurangan kekompleksan sebanyak 16% dari segi 

bilangan operasi titik-apung (FLOPs). Penyelidikan ini menunjukkan bahawa prestasi 

kelelurusan yang tinggi telah dicapai dan pada masa yang sama kekompleksan model 

DPD yang dicadangkan telah dikurangkan dengan ketara. Penambahbaikan ini akan 



© C
OP

UPM

iii
 

membawa kepada pengurangan kuasa dalam pemancar dan juga pengurangan sumber 

perkakasan yang diperlukan dalam pelaksanaan DPD atas cip. 



© C
OP

UPM

iv
 

ACKNOWLEDGEMENTS

I would like to express my deepest thanks and gratitude to my supervisor Assoc. Prof. Dr. 

Roslina Mohd. Sidek for her guidance, suggestions, and encouragement throughout this 

work. I have benefited from her deep knowledge and instructions on research. Without her 

support and help, this work would not been finished. 

I would like to convey thanks and gratitude to my co-supervisor Dr. Nasri Bin Sulaiman for 

his support, guidance, and help. Also, I would like to thank my co-supervisor Dr. Pooria 

Varahram for his comments on this research.  

I would like to extend my thanks to all the academic and administrative staff of Universiti 

Putra Malaysia for their help. Thanks and gratitude are extended to all my friends and 

colleagues for their support. 

I am deeply grateful to my husband for his valuable help that he provided during my study. 

Also, I extend my deepest thanks and special appreciation to my daughters for their 

patience and support. 

Finally, I would like to express my most affectionate thanks and gratitude to my mother for 

her unconditional love, encouragement, and great support throughout my whole life.  



© C
OP

UPM



© C
OP

UPM

vi
 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The 

members of the Supervisory Committee were as follows: 

Roslina Mohd. Sidek, PhD  
Associate Professor 

Faculty of Engineering 

Universiti Putra Malaysia  

(Chairman) 

Nasri Sulaiman, PhD  
Senior Lecturer  

Faculty of Engineering 

Universiti Putra Malaysia  

(Member) 

Pooria Varahram, PhD  
Lecturer  

Faculty of Engineering 

Universiti Putra Malaysia  

(Member) 

                              

                                                                                 

                                                                                BUJANG KIM HUAT, PhD 
                                                                              Professor and Dean 

                                                                                School of Graduate Studies 

                                                                                Universiti Putra Malaysia 

                                                                                Date: 



© C
OP

UPM



© C
OP

UPM

viii 
 

Declaration by Members of Supervisory Committee  

This is to confirm that: 

� The  research conducted and the writing of this thesis was under our supervision; 

� Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) are adhered to. 

Signature:

Name of Chairman 

of Supervisory 

Committee:

Associate Professor 

Dr. Roslina Mohd. Sidek

Signature:

Name of Member

of Supervisory 

Committee: Dr. Nasri Sulaiman

Signature:

Name of Member 

of Supervisory 

Committee: Dr.Pooria Varahram



© C
OP

UPM

ix
 

TABLE OF CONTENTS 

Page
ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iv

APPROVAL v

DECLARATION vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem statement 2

1.3 Research objectives 3

1.4 Scope of the research 3

1.5 Research contribution 4

1.6 Thesis organization 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Parameters of a power amplifier 7

2.2.1 Output power 7

2.2.2 Efficiency 8

2.2.3 Power gain 8

2.2.4 Linearity 9

2.3 Two-tone power amplifier test 11

2.4 Classification of power amplifiers 14

2.4.1 Class-A power amplifier 15

2.4.2 Class-B power amplifier 17

2.4.3 Class-AB power amplifier 19

2.5 Trade-off between efficiency and linearity 20

2.6 Memory effects of power amplifiers 20

2.7 Modeling of power amplifiers 21

2.7.1 Modeling power amplifier without memory 

effects

22

2.7.2 Modeling power amplifier with memory 

effects

23

2.8 Linearization techniques of power amplifiers 24

2.8.1 Feedback linearization technique 24

2.8.2 Feedforward linearization technique 26

2.8.3 Linear amplification using nonlinear 

components

27

2.8.4 Envelope elimination and restoration 

technique

28

2.8.5 Predistortion linearization technique 29

2.9 Model computational complexity 33



© C
OP

UPM

x
 

2.10 Linearization with memory effects 33

2.11 Digital predistortion with memory effects 34

2.11.1 Memory polynomial model 36

2.11.2 PLUME model 38

2.11.3 ACR-GMP model 40

2.12 Discussion 41

2.13 Summary 42

3 RESEARCH METHODOLOGY 44

3.1 Overview 44

3.2 Proposed predistorter model 45

3.3 Identification procedure of proposed model 47

3.4 Complexity of proposed design 49

3.5 Measurement setup 50

3.6 Modeling of power amplifiers 52

3.6.1 Modeling of actual ZVE power amplifier 52

3.6.2 Modeling of actual HMC power amplifier 54

3.7 Modeling of memory polynomial predistorter 56

3.8 Modeling of proposed predistorter 56

3.9 Complexity evaluation of proposed design 58

3.10 Summary 60

4 SIMULATION RESULTS 61

4.1 Introduction 61

4.2 Simulation results 61

4.2.1 ZVE power amplifier model 61

4.2.2 HMC power amplifier model 63

4.3 Discussion 67

4.4 Summary 68

5 MEASUREMENT RESULTS 69

5.1 Introduction 69

5.2 Experimental results 69

5.2.1 MP predistorter validation 72

5.2.2 Proposed predistorter validation 75

5.3 Comparison between simulation and experimental 

results  

78

5.4 Comparison between proposed model and other works 79

5.5 Discussion 80

5.6 Summary 81

6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
WORK

82

6.1 Conclusions 82

6.2 Suggestions for future work 83

REFERENCES 84

APPENDICES 94

BIODATA OF STUDENT 116

LIST OF PUBLICATIONS 117



© C
OP

UPM

xi 
 

LIST OF TABLES 

Table Page

2.1 Efficiency vs. linearity for different classes of PAs 15

2.2 Review on DPD models with complexity consideration 42

3.1 Model coefficients of the power amplifiers 56

3.2 Model coefficients of the proposed and MP predistorters 58

3.3 Comparison of model complexity for several DPDs 59

4.1 Comparison of ACLR performance of the HMC PA model excited by 

LTE signal with two different bandwidth

68

A.1 Number of FLOPs for each operation 94



© C
OP

UPM

xii 
 

LIST OF FIGURES 

Figure Page

1.1 Block diagram of a transmitter 1

1.2 Block diagram of the research scope 4

2.1 Description of output power 7

2.2 Description of Efficiency 8

2.3 Description of compression and intercept point 10

2.4 AM/AM and AM/PM characteristics of a PA 10

2.5 Description of OBO, PBO and PAR for PAs 11

2.6 Description of Harmonic Spectrum 12

2.7 Input and output spectra of a PA with WCDMA modulated signal 13

2.8 Error Vector representation 14

2.9 Configuration of a BJT power amplifier 15

2.10 Input and output signal of a class-A power amplifier 16

2.11 Conduction angle of classes A and B PAs 17

2.12 Input and output signal of a class-B power amplifier 18

2.13 Class-B push-pull power amplifier 19

2.14 Illustration of crossover distortion 19

2.15 Simple feedback block diagram to linearize PAs 25

2.16 Block diagram of a feedforward technique 26

2.17 Simple LINC block diagram 27

2.18 Block diagram of an EER linearization technique 28

2.19 Block diagram of an analog predistortion system 30

2.20 Operation of a predistortion system 30

2.21 Block diagram of a digital predistortion system 32



© C
OP

UPM

xiii 
 

2.22 Basic architecture of the MP model 36

2.23 PLUME model 39

2.24 ACR-GMP model 41

3.1 Flowchart of the research methodology 45

3.2 Basic architecture of the proposed model 47

3.3 Block diagram of modeling DPD 48

3.4 Measurement setup used for the proposed DPD validation 50

3.5 Photograph of the measurement setup 51

3.6 Schematic diagram of applying 15-MHz bandwidth LTE signal to the 

real PA 

51

3.7 Flow chart of PA modeling process 52

3.8 Dynamic AM/AM characteristics of the measured ZVE PA 53

3.9 Dynamic AM/PM characteristics of the measured ZVE PA 53

3.10 Calculated NMSE of the ZVE PA model 54

3.11 Dynamic AM/AM characteristics of the measured HMC PA 55

3.12 Dynamic AM/PM characteristics of the measured HMC PA 55

3.13 Power spectral density of the ZVE PA model with 15-MHz WCDMA 

signal excitation

57

4.1 Power spectral density of the ZVE PA excited by 15-MHz WCDMA 

signal. 

62

4.2 Dynamic AM/AM characteristics of the ZVE PA driven by 2-carrier 

WCDMA signal before and after applying the proposed and MP models

62

4.3 Dynamic AM/PM characteristics of the ZVE PA driven by 2-carrier 

WCDMA signal before and after applying the proposed and MP models

63

4.4 Power spectral density of the HMC PA excited by 15-MHz LTE signal. 64

4.5 Dynamic AM/AM characteristics of the HMC PA driven by 15-MHz 

bandwidth LTE signal before and after applying the proposed and MP 

models.

64

4.6 Dynamic AM/PM characteristics of the HMC PA driven by 15-MHz 

bandwidth LTE signal before and after applying the proposed and MP 

models.

65



© C
OP

UPM

xiv 
 

4.7 Power spectral density of the HMC PA excited by 20-MHz LTE signal. 66

4.8 Dynamic AM/AM characteristics of the HMC PA driven by 20-MHz 

bandwidth LTE signal before and after applying the proposed and MP 

models.

66

4.9 Dynamic AM/PM characteristics of the HMC PA driven by 20-MHz 

bandwidth LTE signal before and after applying the proposed and MP 

models.

67

5.1 Measured power spectral density of the actual PA driven by 15-MHz 

LTE signal

69

5.2 (a) IQ constellation of the output signal of the PA excited by 15-MHz 

LTE signal before applying DPD technique. (b) Measurement error 

summary.

70

5.3 Measured power spectral density of the real PA driven by 20-MHz LTE 

signal

71

5.4 (a) IQ constellation of the output signal of the PA excited by 20-MHz 

LTE signal before applying DPD technique. (b) Measurement error 

summary

71

5.5 Schematic diagram of cascading the MP predistorter with the real PA 72

5.6 Measured output spectrum of the PA after applying MP predistorter 

driven by 15-MHz LTE signal

73

5.7 (a) IQ constellation of the output signal of the PA after applying MP 

predistorter excited by 15-MHz LTE signal. (b) Measurement error 

summary

73

5.8 Measured output spectrum of the PA after applying MP predistorter 

driven by 20-MHz LTE signal

73

5.9 (a) IQ constellation of the output signal of the PA after applying MP 

predistorter excited by 20-MHz LTE signal. (b) Measurement error 

summary

74

5.10 Schematic diagram of cascading the proposed predistorter with the real 

PA

74

5.11 Measured power spectral density of the real PA after applying proposed 

predistorter excited by 15-MHz LTE signal

75

5.12 (a) IQ constellation of the output signal of the PA after applying 

proposed predistorter excited by 15-MHz LTE signal. (b) Measurement 

error summary

76

5.13 Measured output spectrum of the PA after applying proposed predistorter 

excited by 20-MHz LTE signal

76



© C
OP

UPM

xv
 

5.14 (a) IQ constellation of the output signal of the PA after applying 

proposed predistorter excited by 20-MHz LTE signal. (b) Measurement 

error summary

77

5.15 Power spectral density of the HMC PA driven by 15-MHz bandwidth 

LTE signal

78

5.16 Power spectral density of the HMC PA excited by 20-MHz bandwidth

LTE signal

79



© C
OP

UPM

xvi 
 

LIST OF ABBREVIATIONS 

ACI Adjacent Channel Interference

ACPR Adjacent Channel Power Ratio

ACR-GMP Augmented Complexity-Reduced Generalized Memory Polynomial

ACLR Adjacent Channel Leakage Ratio

AM/AM Amplitude Modulation to Amplitude Modulation

AM/PM Amplitude Modulation to Phase Modulation

BER Bit Error Rate

CDMA Code Division Multiple Access

CGC Complex Gain Convergence

DPD Digital Predistortion

DSP Digital Signal Processing

EER Envelope Elimination and Restoration

FOM Figure Of Merit

EVM Error Vector Magnitude

FLOPs Floating point operations

FPGA Field Programmable Gate Array

GMP Generalized Memory Polynomial

IBO Input Power Back Off

IF Intermediate Frequency

IP3 Third-order Intercept Point

IMD Inter Modulation Distortion

LINC Linear amplification with Nonlinear Components

LTE Long Term Evolution

LUT Look Up Table

MP Memory Polynomial

NMSE Normalized Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

OPBO Output Power Back Off

PA Power Amplifier

PAE Power Added Efficiency

PAPR Peak to Average Power Ratios

PH Parallel Hammerstein

PLUME Parallel-Look Up Table-Memory Polynomial-Enhanced Memory 

Polynomial



© C
OP

UPM

xvii 
 

PSD Power Spectral Density

PTNTB Parallel Twin Non-linear Two-Box

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

VSA Vector Signal Analyzer

WCDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access



© C
OP

UPM

1
 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

In wireless communication systems, transmitters are fundamental parts that have different 

specifications according to their applications, such as mobile and satellite systems. A 

generic transmitter is shown in Figure 1.1. It includes source and channel encoders, digital 

modulator, Digital/Analog (D/A) converter, Local Oscillator (LO), mixer, power 

amplifier, filters, and antenna.  

Figure 1.1: Block diagram of a transmitter 

Initially, in Figure 1.1, the source encoder converts the input data to a stream of bits. The 

channel encoder codes these bits by introducing redundancy bits, which are used at the 

receiver, to combat the distortions due to the circuit nonlinearities, and the noise and 

interference introduced by the channel. Then, the digital modulator transforms the binary 

code sequence into signal waveform.  This waveform, which is the baseband input signal, 

is manipulated using Digital Signal Processing (DSP) block. Then, the signal is converted 

to analog form and up-converted to RF frequency for transmission. The Power Amplifier 

(PA) is a very significant part in the transmitter and it is used to amplify the modulated 

signal in order to transmit it through the antenna. However, this PA is considered as one 

of the most power consuming parts in transmitters (Nuyts, Reynaert, & Dehaene, 2014). 

In order to achieve high power-efficient Power Amplifiers (PAs), they are driven close to 

their saturation region. Consequently, these PAs are one of the main nonlinearity sources 

in transmitters. The nonlinearity contains out-of-band emission and in-band distortion. 

The former distortion causes adjacent channel interference (ACI) while the latter one 

reduces the bit error rate (BER) performance (Grebennikov, 2011). In modern high-speed 

wireless communications, increasing the demand of high spectral efficiency has resulted 

in the need to implement transmission formats, such as orthogonal frequency division 

multiplexing (OFDM) and code division multiple access (CDMA). However, these 
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modulation schemes are more sensitive to the nonlinearities of power amplifiers because 

of their non-constant envelope signals (Fadhel M. Ghannouchi & Hammi, 2009). This 

issue can be solved by backing-off the operating region of the PA into a linear mode at the 

expense of power efficiency degradation of the PA. To solve this conflict between the 

power efficiency and the linearity of the power amplifier, a linearization technique is 

required (Gharaibeh, 2012). 

Digital predistortion (DPD) is one of the most cost-effective linearization techniques,

where linearization is achieved by predistorting the baseband signal, which is a standard 

modulated signal, before being applied to the PA. So, the DPD processing time is 

compatible with the source and channel encoders and is implemented as a nonlinear 

baseband component. This DPD represents the inverse of the nonlinearity behaviour of 

the PA. Therefore, by cascading these two nonlinearity subsystems,  a linear system can 

be achieved (Farooq, Ishtiaq Ahmed, & Al, 2013), (Bu, Li, & Chen, 2014), and (Oualid 

Hammi, Zerguine, Hassan Abdelhafiz, & Ghannouchi, 2014).  

1.2 Problem Statement 

Modern communication signals, such as WiMAX, WCDMA, and LTE, have three 

parameters that might influence the behavior of PAs. These are the signal’s average 
power, the signal’s statistics (peak-to-average power ratio (PAPR) and probability density 

function), and the signal’s bandwidth. Typically, the behavior of a PA is sensitive to 
variations in the operating average power with less than 1dB in some cases. Conversely, it 

is almost insensitive to the signal statistics (typically up to 3–4 dB variation in the signal’s 
PAPR). Consequently, the different modulation levels do not affect the behavior of a PA 

as long as the signals’ statistics follow the same distribution. On the other hand, the signal 
bandwidth has a direct impact on the memory effects exhibited by a PA and has a second-

order effect on the static nonlinearity (Fadhel M. Ghannouchi & Hammi, 2009).

Therefore, as the bandwidth of the modern signal gets wider, PA begins to exhibit 

memory effects where PA output depends not only on the present input but also on the 

past input values (Y. Li, Zhu, Prikhodko, & Tkachenko, 2010), and (Kumagai, 2012).

These memory effects result in a dynamic changing in the AM/AM and AM/PM 

characteristics of the PA. Hence, many complex schemes of DPD models have been 

introduced to accurately compensate the non-linearities with memory effects (Kumagai, 

2012), and (You jiang Liu, Chen, Zhou, Zhou, & Ghannouchi, 2013).  

However, high complexity predistorter algorithm leads to high power consumption 

(Tehrani et al., 2010). The complexity of DPD models includes number of coefficients 

used in the algorithms of these models and computational complexity when these models 

are utilized in real-time applications. Power consumption is a very important issue since 

PA is the most power consuming device in numerous applications, such as radio 

frequency transceivers (Jiwoo Kim, Roblin, Chaillot, & Xie, 2013) and wideband wireless 

communications (B. Gao, Xiao, Jin, Su, & Zhang, 2013). Therefore, designing low power 

consumption PA system while maintaining its performance is mostly required 

(Mohammady, Varahram, Sidek, Hamidon, & Sulaiman, 2010), (Sun, Yu, Liu, Li, & Li, 

2014), and (Guan & Zhu, 2012). 
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Therefore, the main issue addressed by this thesis is the highly model complexity of the 

recent DPD designs, when enhancing the linearization capability of the DPD algorithms 

for PAs nonlinearity distortion. The nonlinearity distortion includes out-of-band emission, 

which causes adjacent channel interference and in-band distortion. Moreover, to achieve 

high data rate in 3G/4G applications, the memory effects of the PA must be considered in 

DPD modeling techniques. Therefore, the proposed design has addressed the memory 

effects of the PA as well.  

1.3 Research Objectives  

In this thesis, the main objectives are to: 

1) Develope a digital predistortion model with low computational complexity in  

terms of number of floating operating points (FLOPs).

2) Enhance the PA linearity performance including out-of-band distortion in terms 

of Adjacent Channel Leakage Ratio (ACLR) and in-band distortion in terms of 

Error Vector Magnitude (EVM).

3) Compensate the linear and nonlinear memory effects, which cause the dynamic  

changes in the AM/AM and AM/PM of PA characteristics. 

1.4    Scope of the Research  

The scope of this research is shown in Figure 1.2, where the grey boxes show the flow 

direction of it. In this work, it was assumed that the power amplifier and the digital 

predistorter were the only nonlinear devices in the transmitter system in which all the 

nonlinearity distortion occurred from other electronic circuits, such as D/A converter and 

oscillator, are not considered. Moreover, only class-AB power amplifier was chosen to be 

tested in order to validate the linearization capability of the proposed predistorter since

class-AB power amplifier can represent the current source amplifiers, which are A, B, and 

C classes. Meanwhile, the switches amplifiers, which are D, E, and F classes, are using 

different types of linearization techniques and therefore they are excluded from this 

research. The complex baseband input signals used were two-carrier WCDMA signal with 

15-MHz bandwidth, which is generated from AWR software, and LTE signals of 15-MHz 

and 20-MHz bandwidth generated from Matlab. Furthermore, field measurement is not 

covered in this research.
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Figure 1.2: Block diagram of the research scope 
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1.5 Research Contribution  

In this research, the contribution is to develope a low complexity DPD algorithm, which 

enhances the linearity performance of the PA with low computational cost consumed from 

the system. The PA linearity improvements include compensation of the spectral 

regrowth, which causes the adjacent channel interference, and the in-band distortion. 

Moreover, the proposed design addresses the PA memory effects, which cause dispersion 

of the signals utilized in modern wireless communication systems since these signals are 

wideband in order to gain high data rate.

Recent models have either limited linearity performance of PAs or high DPD 

computational complexity in practical applications. Therefore, it is essential to propose 

developed DPD models which reduce the model computational complexity and 

simultaneously achieve high linearization ability. Therefore, the proposed design 

consumes low running complexity and retains high linearization capabilities. This 

proposed design was verified using Matlab, validated using experimental measurements,

and evaluated by comparing it with other models in terms of model complexity and 

linearity performance. 

1.6 Thesis Organization 

This research work concentrates on the topic of linearizing PAs using DPD technique,

which is cost effective as well as maintains high overall efficiency of the system. The 

thesis is organized as follows: 

Chapter 1 describes the problem statement, objectives, research methodology, and 

contribution of this work. 

Chapter 2 presents the definitions of PA parameters and methods of amplification, while 

the trade-off between efficiency and linearity is revealed. Modeling PAs with and without 

memory effects is defined. An overview of the most existing linearization techniques 

including the feedback, feedforward, Linear Amplification using Nonlinear Components 

(LINC), Envelope Elimination and Restoration (EER), analog predistortion, and digital 

predistortion are introduced. The theoretical concept, main advantages, and drawbacks of 

each linearization technique are presented and discussed. The analysis of the model 

computational complexity is clarified in terms of FLOPs. The most commonly used 

digital predistortion methods with memory effects and the recent developments as well as 

the existing problems in the area of DPD linearization are highlighted.

In chapter 3, a low complexity digital predistortion model is proposed for linearizing PAs 

with memory effects. The derivative of the proposed design is demonstrated and the 

identification procedure for extracting the model coefficients is explained. Next, the 

proposed and MP models are analyzed to evaluate their model complexity in terms of

number of FLOPs and number of coefficients used in each model. Next, the measurement 

set-up utilized in this work to validate the effectiveness of the proposed DPD is clarified. 

Then, the modeling process for the two PAs, proposed DPD, and MP predistorter are 

explained.
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In chapter 4, the proposed predistorter for linearization of PAs with memory effects is 

verified using simulation environments. The simulation results based on linearity 

performance in terms of ACLR reduction are presented before and after applying the 

proposed and MP models. Moreover, dynamic AM/AM and AM/PM characteristics of 

PAs, before and after applying these predistorters, are illustrated to reveal the 

effectiveness of applying the proposed model as compared to the MP model.

In chapter 5, experimental measurements are performed to validate the effectiveness of 

the proposed predistorter. By using a real power amplifier driven by two input signals, the 

linearization capability of the proposed predistorter is evaluated and compared with the 

validity of the MP predistorter. This evaluation is based on the compensation of the in-

band and out-of-band distortion in terms of EVM and ACLR performance, respectively. 

Moreover, a comparison is carried out between the simulation and experimental ACLR 

performance at the PA output after applying the proposed predistorter. Furthermore, a 

comparison is made between the proposed model and other works in terms of modeling 

accuracy, ACLR performance, number of FLOPs, and number of model coefficients.

Chapter 6 describes the conclusions of this research and suggestions for future work.  
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