

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND MECHANICAL PROPERTIES OF INSITU TITANIUM DIBORIDE REINFORCED ALUMINIUM-COPPER ALLOY COMPOSITES

ROSMAMUHAMADANI BIN RAMLI

FK 2016 45

CHARACTERIZATION AND MECHANICAL PROPERTIES OF *IN-*SITU TITANIUM DIBORIDE REINFORCED ALUMINIUM-COPPER ALLOY COMPOSITES

By

ROSMAMUHAMADANI BIN RAMLI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2016

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

 \mathbf{G}

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION AND MECHANICAL PROPERTIES OF *IN-SITU* TITANIUM DIBORIDE FIBRE REINFORCED ALUMINIUM-COPPER ALLOY COMPOSITES

By

ROSMAMUHAMADANI BIN RAMLI

March 2016

Chair : Shamsuddin bin Sulaiman, PhD Faculty : Engineering

Aluminium (Al) based *in-situ* metal matrix composites (MMCs) have better properties and performance when compared to *ex-situ* MMCs. Al-MMCs alloys are quite attractive due to their low density, their capability to be strengthened by precipitation, their good corrosion resistance, high thermal and electrical conductivity. Aluminiumcopper (Al-Cu) alloys is the one of most MMCs have important high-strength Al alloys. The Al casting alloys, based on the Al-Cu system are widely used in lightweight constructions and transport applications requiring a combination of high strength and ductility. Recently, *in-situ* techniques have been developed to fabricate Al-based MMCs, which can lead to better adhesion at the interface and hence better mechanical properties. *These in-situ* routes provide many advantages such as the *insitu* formed reinforcement phases are thermodynamically stable, disperse more uniformly in matrix, free of surface contamination and leading to stronger particle matrix bonding.

In this research, Al-Cu master alloy was reinforced with 1 to 6wt.% titanium diboride (TiB₂) obtained from salts route reactions which were potassium hexafluorotitanate (K_2TiF_6) and potassium tetrafluoroborate (KBF₄) salts. The salts route reaction process done at 800 °C. Then the Al-Cu alloy has characterized on the mechanical properties and microstructure characterization. The Instron tensile machine, Vickers and Rockwell hardness tester, and pin on-disc machine were used to characterize the tensile, hardness and wear properties of Al-Cu alloys respectively. Salts spray fog test and Gamry-electrode potentiometer were used to determine the corrosion rate of this alloys. From results obtained, the increasement of TiB₂ contents will increased the value of tensile and hardness properties to Al-Cu alloy. The study also indicates that TiB₂ particles have giving improvement the wear performance of the Al–6wt.%Cu alloy. For a constant load and sliding speed, the wear rate decreases as a function of amount of TiB_2 in the composite. However, addition of TiB_2 particle to the Al-6 wt%.Cu matrix has show the coefficient value of wear decreases regardless of applied load. Microstructure from scanning electron microscope (SEM) shows the composites synthesized using *in-situ* techniques exhibit the presence a uniform distribution of reinforcement that tends to be fine, and associated with a clean interface with the metallic matrix. Morphology observed that the particles of the TiB_2 phase show a hexagonal morphology with straight and sharp edges. In order to achieve a good mechanical and wear properties it is important to control Al₃Ti phase formation during the synthesis of *in-situ* Al-Cu/TiB₂ composites. In corrosion test that conducted by salt spray fog and Gamry-electrode potentiometer, Al-Cu with composition of $3wt.\%TiB_2$ gave the good properties in corrosion characterization compare to cast Al-Cu alloy itself. As comparison, Al-Cu with $3wt.\%TiB_2$ gave the lowest value of corrosion rate, which means alloy has a good properties in corrosion characterization.

The results obtained show that *in-situ* Al-Cu alloy composites containing different weight of TiB_2 phase were synthesized successfully by the salt-metal reaction method and the particles were distributed evenly in the matrix of the composites.

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENCIRIAN DAN SIFAT MEKANIK KOMPOSIT ALOI ALUMINIUM-KUPRUM DISEDIAKAN SECARA *IN-SITU* DIPERKUATKAN OLEH TITANIUM DIBORID

Oleh

ROSMAMUHAMADANI BIN RAMLI

Mac 2016

Pengerusi : Shamsuddin bin Sulaiman, PhD Fakulti : Kejuruteraan

Aluminium (Al) berasaskan *in-situ* komposit matrik logam (MMCs) mempunyai sifat dan prestasi yang agak baik jika dibandingkan dengan MMC disediakan secara *ek-situ*. Aloi Al-MMC menarik perhatian kerana memiliki ketumpatan yang rendah, berkebolehan untuk penguatan dalam pemendakan, kerintangan pengaratan yang baik dan kekonduksian terma dan elektrik yang tinggi. Aloi aluminium-kuprum (Al-Cu) adalah salah satu komposit matrik logam yang memiliki kekuatan yang tinggi dalam aloi Al. Aloi Al yang disedia secara tuangan berasaskan kepada sistem Al-Cu telah diguna meluas dalam penggunaan pembinaan berat yang ringan dan penggunaan untuk pengangkutan disebabkan memiliki kombinasi sifat kekuatan yang tinggi dan mulur. Kebelakangan ini, teknik *in-situ* telah dibangunkan untuk memfrabikasikan Al komposit berasaskan matrik logam yang mana membawa kepada lekatan pada antara muka yang baik dan juga meningkatkan sifat mekanik yang baik. Teknik ini memberikan banyak kelebihan seperti pembentukan *in-situ* yang terhasil daripada fasa penguat stabil dari segi termodinamik, berserakan secara seragam dalam matrik, bebas daripada kekotoran dan memberikan ikatan zarah terhadap matrik.

Dalam penyelidikan ini, aloi Al-Cu diperkuatkan dengan dengan 1 hingga 6 %bt. titanium diborid (TiB₂) yang diperoleh daripada tindakbalas laluan garam. Tindakbalas laluan garam dilakukan pada suhu 800 °C di antara garam kalium heksaflorotitanat (K₂TiF₆) dan kalium tetrafloroborat (KBF₄) yang kemudiannya dicirikan oleh sifat mekanik dan mikrostruktur. Mesin Universal Instron, alat penguji kekerasan Vickers dan Rockwell dan mesin ujian haus masing-masing digunakan bagi mencirikan sifat regangan, kekerasan dan sifat haus aloi Al-Cu. Teknik semburan garam dan Gamryelektrod potentiometer pula digunakan bagi menentukan kadar pengaratan bagi aloi ini. Daripada keputusan yang diperoleh, didapati peningkatan kandungan TiB₂ akan meningkatkan nilai sifat regangan dan kekerasan aloi Al-Cu. Kajian juga menunjukkan bahawa partikel TiB₂ memberikan peningkatan dalam prestasi haus aloi Al-6%bt. Cu. Dengan menetapkan beban, dan kelajuan sliding, kadar haus menurun berbanding dengan kandungan TiB₂ dalam komposit. Walau bagaimanapun, dengan penambahan kandungan TiB₂ terhadap Al-6%bt. Cu menunjukkan nilai pekali berkurangan berbanding dengan beban yang digunakan. Mikrostruktur daripada mikroskop imbasan elektron (SEM) pula menunjukkan komposit yang disintesiskan melalui teknik in-situ menghasilkan pembahagian bahan penguat yang seragam dan cenderung untuk menjadi halus dan berlakunya pergabungan antara muka dengan bahan matrik logam. Morfologi yang dilihat pada fasa TiB₂ menunjukkan bentuk heksagon berkeadaan lurus dengan bucu yang tajam. Untuk mencapai sifat mekanik dan haus yang terbaik ia penting untuk mengawal pembentukan fasa Al₃Ti semasa penghasilan komposit Al-Cu/TiB₂ secara *in-situ*. Ujian pengaratan menggunakan semburan garam dan Gamryelektrod potentiometer menunjukkan Al-Cu dengan komposisi 3% bt. TiB₂ menghasilkan sifat yang terbaik bagi pencirian pengaratan berbanding dengan aloi Al-Cu itu sendiri. Sebagai perbandingannya, aloi Al-Cu dengan 3% bt. TiB₂ menghasilkan nilai kadar pengaratan yang rendah, bermaksud sesuatu logam itu mempunyai sifat pengaratan yang baik.

Keputusan-keputusan yang diperoleh menunjukkan bahawa aloi komposit Al-Cu disediakan secara *in-situ* dengan kandungan peratusan berat TiB_2 yang berbeza berjaya disintesiskan menggunakan teknik tindak balas laluan garam di mana partikel diserakkan secara seragam dalam matrik komposit.

ACKNOWLEDGEMENTS

In the name of Allah, most gracious, most merciful, all praise and thanks are due to Allah, and peace and blessings be upon His Messenger, Muhammad SAW. I would like to express the most sincere appreciation to those who made this work possible; advisor, member of advisory committee, technicians, my family and friends.

I would like to thank Prof. Dr. Shamsuddin bin Sulaiman for providing me the opportunity to complete my PhD studies under his valuable guidance, for the many useful advice and discussions, for his constant encouragement and guidance, and for co-authoring and reviewing some of my publications, where his practical experience and technical knowledge made this research and those publications more interesting and relevant. In addition, special thanks extend to the supervisory committee members from Universiti Putra Malaysia, Dr. Mohd Idris Shah bin Ismail and Dr. Azmah Hanim binti Mohamed Ariff and also from Universiti Teknologi Mara, Shah Alam, Dr. Mahesh Kumar Talari. I am grateful for their willingness to serve on my supervisory committee, constant encouragement, helpful advice and many fruitful discussions.

Special thanks dedicate to Dr. Mohamad bin Harun, a Research Officer and their Laboratory Assistant, En. Sharif bin Sattar, a technician from Agensi Nuklear Malaysia, Kajang to guide how to use wear test machine of 'pin-on-disk', and Pn. Sabrina Mohd. Yahya (PhD student from Faculty of Applied Sciences UiTM Shah Alam), to guide a corrosion test used Gamry-electrode potentiometer by Linear Polarization Resistance (LPR) technique in Universiti Teknologi Mara, Jalan Othman, campus Petaling Jaya, Selangor.

To the sponsors, I am grateful to Ministry of Education and Universiti Teknologi Mara for offering me the scholarship and FRGS grant for pursuing the PhD degree and for funding this research at Universiti Putra Malaysia.

To all my family, thanks and acknowledgements to my mother, Maznah binti Mat Jusoh, my wife, Rozihan binti Mahmood and childrens, Rafie'uddin (12), Nur Wirdani (10), Suci Ramadhani (6), Nur Saffiyah Irdina (5) and Adam Addeney (2) who deserve my deepest appreciation. I am grateful for the countless sacrifices they made to ensure that I could pursue my ambition and always being there for me.

I certify that a Thesis Examination Committee has met on 9 March 2016 to conduct the final examination of Rosmamuhamadani bin Ramli on his thesis entitled "CHARACTERIZATION AND MECHANICAL PROPERTIES OF *IN-SITU* TITANIUM DIBORIDE FIBRE REINFORCED ALUMINIUM-COPPER ALLOY COMPOSITES" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the (insert the name of relevant degree).

Members of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD Edi Syams b. Zainudin (Associate Professor) Faculty of Engineering Universiti Putra Malaysia (Chairman)

Name of Examiner 1, PhD Mohd Sapuan b. Salit

(Professor Ir) Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Name of Examiner 2, PhD Faizal Mustapha

(Associate Professor Ir) Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Name of External Examiner, PhD Faiz Mohammad

(Professor) Faculty of Engineering and Technology Aligarh Muslim University India (External Examiner)

> (Prof. Dr. Zulkarnain bin Zainal) Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of (Doctor Philosophy). The members of the Supervisory Committee were as follows:

Shamsuddin bin Sulaiman, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd. Idris Shah bin Ismail, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Azmah Hanim binti Mohamed Ariff, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Mahesh Kumar Talari, PhD

Senior Lecturer Faculty of Applied Sciences Universiti Teknologi MARA (Member)

(BUJANG KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	
0	•

Date:

Name and Matric No.: Rosmamuhamadani bin Ramli, GS34430

Declaration by Members of Supervisory Committee

This is to confirm that:

G

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory Committee:	Prof. Dr. Shamsuddin bin Sulaiman
Signature:	
Name of Member of	
Supervisory	
Committee:	Dr. Mohd. Idris bin Ismail
Signature: Name of Member of Supervisory Committee:	Dr. Azmah Hanim binti Mohamed Ariff
Signature: Name of Member of Supervisory Committee:	Dr. Mahesh Kumar Talari

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGMENT	v
APPROVAL	vi
DECLARATION	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER

5)

1.	INTE	RODUCTI	ON	
	1.1	Backgr	ound of Study	1
	1.2	Problem	n Statements	1
	1.3	Objecti	ves of Study	2
	1.4	Scope of	of Study	2
	1.5	Thesis	Layout	3
2.	LITE	RATURE	REVIEW	
	2.1	Introdu	ction	4
	2.2	Metal N	Matrix Composites	4
	2.3	Alumin	ium Matrix Composites	4
	2.4	In-situ '	Technique	5
		2.4.1	In-situ Al-Metal Matrix Composites	6
		2.4.2	Advantages of In-Situ	7
		2.4.2	Disadvantages of In-Situ	7
	2.5	Titaniu	m Diboride (TiB ₂)	8
		2.5.1	TiB ₂ as Reinforcement	8
		2.5.2	Synthesis of TiB ₂	9
		2.5.3	Properties and Applications of TiB ₂	9
	2.6	Fabrica	tion of alloy by Ex-Situ Technique	9
		2.6.1	Powder Metallurgy	9
		2.6.2	Spray Deposition Technique	11
		2.6.3	Mechanical Alloying	11
		2.6.4	Diffusion Bonding	12
	2.7	Grain R	Refinement	13
		2.7.1	Grain Refinement as Innoculation	13
		2.7.2	Effect of Grain Size on	14
			Properties of Aluminum Alloys	
		2.7.3	Titanium-Boron-Aluminum (Ti-B-Al)	14
			Grain Refiners	
	2.8	Alumin	um-Copper (Al-Cu) Alloy	15
		2.8.1	Al-Cu Phase Diagram	15
		2.8.2	Properties of Al-Cu Alloy	16
		2.8.3	Applications of Al-Cu Alloy	17

	2.9	Mechanical Properties of Al-Cu Composites	18
		2.9.1 Tensile Properties of Al-Cu Composites	10
		2.9.2 Hardness Flopentes Al-Cu Composites	19
	2 10	Corrosion Resistant of A1 Cu Composites	20
	2.10	2 10.1 Corrosion in Al Cu Composites	20
		2.10.1 Corrosion Bate of A1 Cu Composites	21
		2.10.2 Corrosion Current of Al Cu Composites	22
	2 11	Characterization of A1 Cu Composites	23
	2.11	2 11 1 Microstructure Observation of Al-Cu	23
		Composites	23
		2 11 2 X-Ray Diffraction (XRD) of Al-Cu Composites	24
	2 1 2	Summary	24
	2.12	Summary	24
3.	METH	ODOLOGY	
	3.1	Introduction	25
	3.2	Materials	25
	3.3	Samples Preparation	25
	3.4	Casting Processing	27
		3.4.1 Stainless Steel Mould Design	27
		3.4.2 Induction Melting Furnace	28
	3.5	Heat Treatment	29
	3.6	Mechanical Characterizations	29
		3.6.1 Tensile Properties	29
		3.6.2 Hardness Properties	31
		3.6.3 Wear Characterization	32
	3.7	Sample Characterization	34
		3.7.1 X-Ray Diffractometer (XRD)	34
		3.7.2 Optical Microscope	34
		3.7.3 Scanning Electron Microscope (SEM)	35
	3.8	Corrosion by Salts Spray Fog Test	36
		3.8.1 Sample Preparation	36
		3.8.2 Sample After Testing	36
		3.8.3 Position of Specimens During Exposure	37
		3.8.4 Cleaning After Testing	37
		3.8.5 Calculation of Wear Rate	37
	3.9	Corrosion by Gamry-Electrode Potentiometer	38
		3.9.1 Cold Mounting	38
		3.9.2 Cutting	39
		3.9.3 Grinding and Polishing	39
		3.9.4 Linear Polarization Resistance (LPR)	40
4.	RESU	LTS AND DISCUSSIONS	
	4.1	Introduction	42
	4.2	Mechanical Properties of Al-Cu-TiB2 Composites	42
		4.2.1 Tensile Properties Al-Cu-TiB ₂ Composites	42
		4.2.2 Hardness Properties Al-Cu-TiB ₂ Composites	46
		4.2.3 Effect of Aging on Hardness of Al-Cu-TiB ₂	49
		Composites	

xi

4.3	Wear Characterization Al-Cu-TiB ₂ Composites	50
	4.3.1 Wear Properties Al-Cu-TiB ₂ Composites	50
	4.3.2 Wear Surfaces Al-Cu-TiB ₂ Composites	54
4.4	X-Ray Diffraction (XRD) of Al-Cu-TiB ₂ Composites	56
4.5	Microstructure Characterization of Al-Cu-TiB ₂ Composites	57
	4.5.1 Optical Microscope	57
	4.5.2 Scanning Electron Microscope (SEM)	58
4.6	Corrosion Resistance of Al-Cu-TiB ₂ Composites	60
	4.6.1 Salts Spray Fog Test	61
	4.6.2 Gamry-Electrode Potentiometer	63
4.7	Summary	67
CONC	LUSIONS AND RECOMMENDATIONS FOR	
FUTU	RE RESEARCH	
5.1	Introduction	68
5.2	Conclusions	68
5.2	Recommendations For Future Research	69
ERENCE		70
ENDICES		77

85

86

REFERENCES APPENDICES BIODATA OF STUDENT LIST OF PUBLICATIONS

5.

(G)

LIST OF TABLES

Table		Page	
3.1	Sample compositions of Al-Cu alloy with TiB ₂ by weight percentage (wt.%)	25	
3.2	Corrosion rate units and constant (<i>K</i>) in corrosion rate equation (ASTM B-117, 2011)	38	
4.1	Tensile properties of (a) un-aged and (b) aged Al-6 wt.%Cu alloy with different TiB ₂ contents	44	
4.2	Vickers and Rockwell hardness properties of un-aged and aged Al-6 wt.%Cu with different TiB ₂ contents	48	
4. <mark>3</mark>	Corrosion rate of Al-6 wt.%Cu alloys at different time exposure in hours	62	
4.4	Electrochemical parameters for Al-6 wt.%Cu with different TiB_2 alloys in 0.5 M HCl solution	64	

LIST OF FIGURES

	Figures		Page
	2.1	<i>In-situ</i> processing by controlled unidirectional solidification eutectic alloy (Chawla and Chawla, 2013)	6
	2.2	Powder metallurgy processes (Adel et. al., 2008)	10
	2.3	Mechanical alloying process (Wu, et. al., 2000)	12
2.4 2.5	2.4	Diffusion bonding processes (Chawla and Chawla, 2013)	13
	2.5	The different grain structure between the unrefined (left) and refined (right). Apelian (2009)	14
	2.6	The phase diagram of Al-Cu alloys (Talamantes et. al., 2008)	16
	2.7	Anodic and cathodic polarized curves to pure Al and the Al-Cu alloys in 0.1 M HCl solution (Abd. Rahem et. al., 2002)	22
	3.1	Flow chart of methodology and research activities	26
	3.2	Schematic setup for composite preparation in furnace (Rajesekaran and Sampath, 2001)	27
	3.3	Cross-section and dimension (mm) of die steel Mould	28
	3.4	Induction furnace to melt Al-Cu master alloy and TiB_2	29
	3.5	Instron universal tensile machine	30
	3.6	Dumb bell shape specimen for tensile test	30
	3.7	Vickers indentation and measurement	31
	3.8	Vickers hardness tester	32
	3.9	Pin-on-disc wear machine	33
	3.10	Sample holder to hold Al-Cu sample	33
	3.11	Wear test samples of Al-Cu alloy	33

	3.12	Optical microscope	35
	3.13	Scanning Electron Microscope (SEM)	36
	3.14	Test specimens for salt spray test of Al-6 wt.% Cu-TiB ₂	37
	3.15	Sample in mould for cold mounting	39
	3.16	Linear precision saw (Buehler IsoMet@5000)	39
	3.17	Grinding and polishing machine	40
	3.18	Gamry-electrode potentiometer for corrosion test	41
	4.1	Tensile strength (MPa) of un-aged and aged Al-6 wt.%Cu alloys with different of TiB ₂ contents	43
	4.2	0.2% yield stress (MPa) of un-aged and aged Al-6 wt.% Cu alloys with different of TiB_2 contents	45
	4.3	Young's modulus (MPa) of un-aged and aged Al-6 wt.%Cu alloys with different of TiB ₂ contents	46
	4.4	Vickers hardness (Hv) of Al-6 wt.%Cu with different TiB ₂ contents with 5N loads	48
	4.5	Rockwell hardness of Al-6 wt.%Cu with different TiB ₂ contents with 60kgf loads	49
	4.6	Hardness of Al-6 wt.%Cu-TiB ₂ composites with different aging time	50
	4.7	Weight loss (g) in wear test conducted at 1000 m distance with different load applied (N)	51
	4.8	Wear coefficient of Al-6 wt.%Cu with different TiB ₂ contents conducted in 1 km distance	52
()	4.9	Wear rate (g/min) in wear test conducted in 1000 m within 1 hour at different load (N)	53
	4.10	Wear test conducted at 100 N at difference distance (in meter)	54
	4.11	Optical micrograph of wear sample Al-6wt.%Cu with different TiB_2 contents (a) 0% wt TiB_2 , (b) 3% wt of TiB_2 and (c) 6% wt of TiB_2	55

4.12	XRD pattern of un-aged Al-6 wt.%Cu-TiB ₂ Composites	56
4.13	XRD pattern of aged Al-6 wt.%Cu-TiB ₂ composites of 170 °C for 2 hours	57
4.14	Microstructure of Al-6 wt.%Cu alloy (a) 0 wt.% TiB ₂ , (b) 3 wt.% TiB ₂ , (c) 6 wt.% TiB ₂ observed by optical Microscope with 100 X magnification	58
4.15	Micrograph of Al-6 wt.%Cu alloy (a) 0 wt.%TiB ₂ , (b) 1 wt.%TiB ₂ , (c) 3 wt.%TiB ₂ , (d) 6 wt.%TiB ₂ observed by SEM with 500 X magnification	59
4.16	Tensile fracture morphology of <i>in-situ</i> Al-6 wt%Cu alloy containing (a) 3 wt.%TiB ₂ and (b) 6 wt.%TiB ₂ observed by SEM with 2.0 K X magnification	60
4.17	Weight lost of Al-6 wt.% Cu with 3 and 6 wt.% TiB ₂ in 5% NaCl	61
4.18	Corrosion rate of Al-6 wt.%Cu reinforced with TiB ₂ in 5 %NaCl measured by salt spray fog test	62
4.19	Test specimen of Al-6 wt.%Cu-TiB ₂ composite used for salt spray fog test	63
4.20	Anodic and cathodic polarized curves of Al-6wt.% Cu-TiB ₂ composites in 0.5 M NaCl solution	64
4.21	Corrosion current, I _{corr} measured from LPR of Al-6 wt.%Cu with different TiB ₂ contents	65
4.22	Corrosion potential E_{corr} measured from LPR of Al-6 wt.% Cu with different TiB ₂ contents	66
4.23	Corrosion rate measured from LPR of Al-6 wt.% Cu with different TiB_2 contents	66

LIST OF ABBREVIATIONS

AgCl Al Al-Cu Al-Cu-Fe Al-Cu-Mg Al-Cu-Mg Al-Ti-B Al/TiB ₂ Al-Ti-B Al/SiC Al-Zn-Mg-Cu Al/Mg(ZnCu) ₂	Argentum chloride Aluminium Aluminium-copper Aluminium-copper-ferum Aluminium-copper-magnesium Aluminium-titanium diborde Aluminium-titanium-boron Aluminium-silicon carbide Aluminium-silicon carbide Aluminium-zinc-magnesium-copper Aluminium/magnesium(zinc(II) copper)
Al ₂ O ₃	Aluminium oxide
Al ₃ Ti	Aluminium titanium
AMCs ASTM B	Aluminium Matrix Composites American Society for Testing and Materials Boron
BC	Boron carbide
Bap	Bagasse ash
CeO ₂	Cerium oxide
	Perchlorate ion
C _s	Solid formed
CuAla	Copper (II) aluminium
Ds	Self diffusion coefficient
Ecorr	Corrosion potential
EDS	Energy Dispersive Spectroscopy
EDX	Energy-Dispersive X-Ray
ELTA	Electrolytic Low-Titanium Aluminum
F	Faraday constant
GPa	Gega Pascal
HCl	Hydrochloric acid
HIP	Hot isostatic pressing
HNO ₃ H ₂ BO ₂	Nutric acid
H ₃ DO ₃ H _v	Vickers hardness
Icorr	Corrosion current
K	Kelvin
KBF_4	Potassium tetrafluoroborate
K_2TiF_6	Potassium hexafluorotitanate
KFA1F ₃	Cryolite
KF	Kalium flouride
Kgi I	Kilogram force
L LPR	Liquid phase Linear Polarization Resistance
M	Atomic weight of the metal
mA/cm ²	Mili Ampere/centimeter square
mm/y	Millimeter per year
mV	mili Volt
MPa	Mega Pascal

G

Mg	Magnesium
MMCs	Metal Matrix Composites
M/n	Equivalent weight
nm	Nano meter
nm/s	Nano meter per second
Ν	Newton
Na_2SO_4	Natrium sulphate
NaCl	Sodium chloride
NaBr	Natrium bromide
$NaBH_4$	Sodium borohydride:
Na ₃ AlF ₆	Sodium hexafluoroaluminate
NaI	Natrium iodide
PM	Powder metallurgy
R _M	Corrosion rate
rpm	Revolusion per minute
SEM	Scanning Electron Microscope
SiC	Silicon carbide
Ti	Titanium
TiB_2	Titanium diboride
TiO_2	Titanium carbide
TiO ₂ -Al-B	Titanium oxide-aluminium-boron
TiO ₂ -Al-B-CuO	Titanium oxide-aluminium-boron-copper oxide
TiO ₂ -Al-B ₂ O ₃ ,	Titanium oxide-aluminium-boron trioxide
TiCl ₄	Titanium chloride
TiC	Titanium carbide
TiC/Al	Titanium carbide/aluminium
TEM	Transmission electron microscope
UTS	Ultimate tensile stress
wt.%	Percentage of weight
XRD	X-Ray Diffractometer
YS	Yield stress
ZrO ₂	Zirconium dioxide
°C	Degree celcius
α	Alpha
βρ	Density
μm	Micron meter
η	Charge number
σ_{y}	Yield stress
σο	Friction stress

CHAPTER 1

INTRODUCTION

1.1 Background of Study

In order to meet the demands of the aerospace, automotive and military industries such as guns, ammunition, missiles, military aircraft, military vehicles, ships and electronic systems, the necessity of lightweight and high performance structural materials has provided the necessary momentum for the development and emergence of metal-matrix composites (MMCs). Further, these MMCs are attractive and viable alternatives to the traditional engineering alloys, with majority of them having metallic matrices reinforced with high strength high modulus and brittle ceramic phases (Krishna et. al., 2011). Particulate reinforced MMCs appear to be the most popular choice because they can offer relative ease in processing, lower fabrication cost, and nearly isotropic properties in comparison to fiber reinforced materials (Christy et. al., 2010).

Aluminium-copper (Al–Cu) alloys are one of the most MMCs have important highstrength Al alloys. They have been employed extensively in the aircraft and military industries, in which materials are frequently subjected to elevated temperature. The aluminum (Al) casting alloys, based on the Al–Cu system are widely used in lightweight constructions and transport applications requiring a combination of high strength and ductility (Wang et. al., 2010).

Recently, *in-situ* techniques have been developed to fabricate Al-based MMCs, which can lead to better adhesion at the interface and hence better mechanical properties (Krishna et. al., 2011). Al-MMCs fabricated by *in-situ* routes provide many advantages such as reinforcement phases are thermodynamically stable, disperse more uniformly in matrix, free of surface contamination and leading to stronger particle matrix bonding (Wang et. al., 2009). At the same time, *in-situ* Al-MMCs formed reinforcement with phase finer size. According to Sun and Ahlatci (2011), *in-situ* processes can create a variety of reinforcement morphologies, ranging from discontinuous to continuous, and the reinforcement may be either ductile or ceramic phases.

1.2 Problem Statements

There are two methods to synthesized aluminium matrix composites (AMCs) which are *ex-situ* and *in-situ* synthesis. The difficulties in the development of *ex-situ* particulate MMCs such as poor wettability, inhomogeneous distribution of reinforcement particles, formation of unwanted reaction products at the interface between the matrix and reinforcement, have led to the attempts to synthesize new generation *in-situ* composites (Wang et. al., 2009).

Most of the Al-based *ex-situ* composites have low reinforcement or matrix bonding strength. To overcome this problem, *in-situ* synthesis techniques were developed in the last few years. It was observed during *in-situ* synthesis, unwanted brittle phases can occur resulting in poor mechanical properties (Kumar et. al., 2007).

In-situ processes involve the synthesis of composites such that desirable reinforcements, matrices and interfaces are formed during processing. The successful synthesis of *in-situ* composites involves a good understanding of thermodynamics and reaction kinetics in order to obtain the desirable end product. Besides, the composites synthesized by *in-situ* techniques exhibit the presence of a uniform distribution of reinforcement that tends to be fine and associated with a clean interface with the metallic matrix, which assists in the formation of a stronger bond between the reinforcement and the metallic matrix (Lakshmi et. al., 1998).

However Al-MMCs that already use in automotive industries are not strong enough to withstand high pressure, low specific stiffness and low strength, and low wear resistance (Wang et. al., 2010). Hence the desire in the engineering community to develop a new material with greater wear resistance, finer grain structure and better mechanical properties, without much compromising on the strength to weight ratio led to the development of MMCs. So, as a solution, fabricate of *in-situ* of Al-6wt.%Cu as matrix and react with TiB₂ as reinforcement was introduced. This is believed, *in-situ* can lead to better adhesion at the interface and hence better mechanical properties. Lu et. al., (2001) stated that TiB₂ is chosen because it is particularly suitable as reinforcement for Al-based due to high exothermic and thermodynamic stability in Al.

1.3 Objectives of Study

The objectives of the study are;

- i. To synthesize *in-situ* TiB_2 reinforced Al-Cu alloys with different TiB_2 contents.
- ii. To determine mechanical properties of Al-Cu alloys reinforced TiB_2 and the influence of reinforcement, TiB_2 on the aging behaviour of the Al–Cu matrix.
- iii. To analyse microstructures and phase distribution characterization of Al-Cu alloys reinforced TiB₂ by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).
- iv. To determine the corrosion resistance of Al-Cu alloys reinforced TiB₂ and the effect of reinforcements, TiB₂ on Al-Cu alloys.

1.4 Scope of Study

In this research, Al-6 wt.%Cu alloys and TiB₂ as reinforcement will be used. Al-Cu alloys will be reinforced with *in-situ* TiB₂ particles and are synthesized by salt route reaction. TiB₂ was introduced into the Al-Cu MMCs alloy by the reaction of the molten alloy with halide salts which are potassium hexafluorotitanate (K₂TiF₆) and potassium tetrafluoroborate (KBF₄) at 800 °C for 60 minutes. The contents of reinforcement used were 1 to 6 wt. %TiB₂ which are fabricated by this technique. The focus of study will give more attention especially in dynamic and static mechanical properties such as tensile, hardness, wear performance and corrosion properties. Besides that, microstructure and phase distribution also were characterized by SEM and XRD.

1.5 Thesis Layout

The layouts of this thesis are the Introduction, Literature Review, Methodology, Results and Discussions and Conclusions and Recommendations for Future Research. The layouts of the thesis are as discussed and listed below.

In Chapter 1, background study of Al-MMCs alloy and reinforcement TiB_2 used in this research were briefed. Also the general information of *in-situ* technique that will use in this investigation is discussed. Besides that, the statement of the problems and the objectives of research are also being highlighted in this chapter.

In Chapter 2, the discussions from previous study which were related with materials and processing used were highlighted. Besides *in-situ*, other techniques that used in fabrication of alloys also highlighted. It is important to discuss and study the previous result from other researchers especially in mechanical properties such as tensile, hardness and wear properties performance of Al-Cu composites.

In Chapter 3, selected of materials, equipments and instruments used for this investigation are highlight and discussed. Besides, the procedures and the selection of methods also were discuss according to test were applied. Most of mechanical tests follow according to ASTM methods. The mechanical characterization involved tensile properties (ASTM E-345, 2002), wear performance (ASTM G-99, 2010) and hardness properties (ASTM E-92, 2003). The characterization of XRD and SEM also were done to study the phase distribution and microstructure observation of Al-Cu reinforced with TiB₂. For corrosion study, two types of tests are choosing which are salts spray fog tests according to ASTM B-117, (2011) and Gamry-electrode potentiometer by Linear Polarization Resistance (LPR) technique.

In Chapter 4, discussion on research results of Al-Cu alloy reinforced with TiB_2 were discusses. The results mainly can be divided to mechanical properties, such as tensile properties (Tensile strength, yield strength, young's modulus and elongations), hardness and wear performance test. Besides, corrosion tests also were done by salts spray test and Gamry-electrode potentiometer. Microstructures and phase distribution characterization were observed by SEM and XRD. The results obtained then be compared to previous results have been studied by previous researcher.

And lastly, in Chapter 5, a conclusions and recommendations for future research were listed. In this chapter, all the results obtained by data and figures were summarized and concluded. For the general conclusion are *in-situ* Al-Cu alloy composites containing different TiB₂ contents were synthesized successfully by the salt-metal reaction method and the particles were distributed evenly in the matrix of the composites. Besides, the recommendation what the next plan and activities for future study were also highlighted.

REFERENCES

- Abdel Rehim, S.S., Hassan, H.H. and Amin, M.A. (2002). Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. *Applied Surface Science* 187: 279-290.
- Adel, M.H, Ahmad, T.M., Abdalla, A. and Mohammed, T. H. (2008). Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. *Journal* of Materials Science 43 (15): 5368-5375.
- Afseth, J.H., Nordlien, G.M. and Scamans, K. (2002). Nisancioglu; Filiform corrosion of binary aluminium model alloys. *Corrosion Science* 44: 2529-2542.
- Aigbodion, V.S., Hassan, S.B., Nyior, G.B. and Ause, T. (2010). Effect of Bagasse ash reinforcement on the wear behavior of Al-Cu-Mg/Bagasse ash particulate composites. *Acta Metallurgica Sinica (English Letter)* 3(2): 81-89.
- Al-Rawajfeh, A.E and Al Qawabah, and S.M.A. (2009). Investigation of copper addition on the mechanical properties and corrosion resistance of commercially pure aluminum. *Emirates Journal for Engineering Research* 14 (1):47-52.
- Amin, M.A., Abd. El-Rehim, S.S., Moussa, S.O. and Ellithy, A.S. (2008). Pitting corrosion of Al and Al-Cu alloys by ClO₄⁻ ions in neutral sulphate solutions. *Electrochimica Acta* 53: 5644-5652.
- Apelian, D. (2009). NADCA. Worldwide Report Aluminum Cast Alloy. *Enabling Tools for Improved Performance*: 1-59.
- ASTM B-117 (2011). Standard Practice for Operating Salt Spray (Fog) Apparatus. (2011). Annual Book or ASTM Standards, American Society for Testing and Materials 03(02)
- ASTM E-345 (2002). Standard Test Methods of Tension Testing of Metallic Materials. Annual Book or ASTM Standards, American Society for Testing and Materials 3(01).
- ASTM E-92 (2003). Standard Test Method for Vickers Hardness of Metallic Materials. Annual Book or ASTM Standards, American Society for Testing and Materials 82.
- ASTM G-99 (2010). Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. Annual Book or ASTM Standards, American Society for Testing and Materials 05.
- Bethencourt, M., Botana, F.J. and Cano, M.J. (2009). Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms. *Journal of Corrosion Science* 51: 518–524.

- Boppana, S.B. and <u>Chennakeshavalu</u>, K. (2009). Preparation of Al-5Ti master alloys for the *In-Situ* Processing of Al-TiC Metal matrix composites. *Journal* of Minerals & Materials Characterization & Engineering 8(7): 563-568.
- Caracostas, C.A., Chiou, W.A., Fine, M.E. and Cheng, H.S. (1992). Wear mechanism during lubricated sliding of XDTM 2024/TiB₂ metal matrix composites against steel. *Scripta Metallurgical Materials* 27: 167-172.
- Casellas, D., Beltran, A., Prado, J.M., Larson, A. and Romero, A. (2004). Microstructural effects on the dry wear resistance of powder metallurgy Al-Si alloys. Wear 257: 730-739.
- Chawla, N and Chawla, K.K. (2013). Metal Matrix Composites–Diffusion bonding. 2nd Edition. Springer, New York.
- Chen, Z.Y., Chen, Y.Y., An, G.Y., Shu, Q., Li, D. And Liu, Y.Y. (2000). Microstructure and properties of *in-situ* Al/TiB₂ composite fabricated by in-melt reaction method. *Metallurgical and Materials Transactions A* 31 (8): 1959-1964.
- Christy, T.V., Murugan, N. and Kumar, S. (2010). A Comparative Study on the Microstructures and Mechanical Properties of Al 6061 Alloy and the MMC Al 6061/TiB₂/12_P. Journal of Minerals & Materials Characterization & Engineering 9(1): 57-65.
- Cooke, R. W., Hexemer, R. L., Donaldson, I. W. and Bishop, D. P. (2012). Powder metallurgy processing of Al-Cu-Mg alloy with low Cu/Mg ratio. *Powder Metallurgy* 55 (1): 29-35.
- Cueva, G., Sinatora, A., Guesser, W.L. and Tschiptschin, A.P. (2003). Wear resistance of cast irons used in brake disc rotors. *Wear* 255(7–12): 1256–1260.
- Das S., (2004). Development of aluminium alloy composites for engineering applications. *Transactions of the Indian Institute of Metals* 57(4): 325-334.
- Deuis, R.L., Subramanian, C. and Yellupb, J.M. (1997). Dry sliding wear of aluminium composites-a review. *Composites Science and Technology* 57: 415-435.
- Dhokey, N.B. and Rane, K.K (2011). Wear behavior and its correlation with mechanical properties of TiB₂ reinforced aluminium-based composites. *Advances in Tribology* 55: 837-844.
- Feng, G., Xin, F.J., Ji, Z.L. and Zhao, F.W. (2006). Wear behavior of Al-Si alloy matrix composites reinforced by y-Al₂O₃ decomposed from AACH. *Transactions of Nonferrous Metals Society of China* 16: 1159-1162.

- Geng, H., Wu, X., Wang, H. and Min, Y. (2008). Effects of copper content on the machinability and corrosion resistance of martensitic stainless steel. *Journal of Material Sciences* 43: 83-87.
- Gunduz, M. and Cadirli, E.C. (2002). Directional solidification of aluminium-copper alloys. *Materials Science and Engineering* A327: 167-185.
- Gupta, M., Lai, M.O. and Soo, C.Y. (1996). Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites. *Materials Science and Engineering A* 210 (1–2): 114–122.
- Hamed, S.P.F. and Hamidreza, B. (2011). Preparation of titanium diboride powders from titanium alkoxide and boron carbide powder. *Bulletin Material Sciences* 34(4): 883–886.
- Han, Y.F., Xiangfa, L. and Xiufan, B. (2002). *In-situ* TiB₂ particulate reinforced near eutectic Al-Si alloy composite. *Composites*: Part A 33: 439-444.
- He, X., Xiong, B., Sun, Z., Zhang, Y., Wang, F. and Zhu, B. (2008). Solidification microstructures of Al-Zn-Mg-Cu alloys prepared by spray deposition and conventional casting methods. *Rare Metals* 27(2). 210–215.
- Hu, B. And Li, H. (1998). Grain refinement of DIN226S alloy at lower titanium and boron addition levels. *Materials Science and Engineering* A 74: 56-60.
- Huang, W., Zhou, C., Liu, B., Wang, W., Wang, H. and Ma, N. (2012). Improvement in the corrosion resistance of TiB₂/A356 composite by molten-salt electrodeposition and anodization, *Surface and Coatings Technology* 206(23): 4988-4991.
- Hwang, Y. and Lee, J.K. (2002). Preparation of TiB₂ powders by mechanical alloying. *Materials Letters 54 (1): 1–*7.
- Jokhio, M.H., Panhwar, M.I. and Unar, M.I. (2011). Manufacturing of aluminum composite. Material using stir casting process. *Journal of Engineering & Technology* 30(1): 23-28.
- Jang, J.H., Nam, D.G., Park, Y.H. and Park, Y.H. (2013). Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al-Cu alloy. *Transactions of Nonferrous Metals Society of China* 23(3): 631-635.
- Jing, X., Jun, W., Han, Y.F., Chong, C. and Sun, B.D. (2012). Behaviour of CeO₂ additive in situ TiB₂ reinforced 2014 Al alloy composite. *Transaction Nonferrous Society of China* 22: 1012-1017.
- Kashyap, K.T. and Chandrashekar, T. (2001). Effects and mechanisms of grain refinement in aluminium alloys. *Bulletin Material Sciences* (24)4: 345-353.

- Krishna, N.N. and Sivaprasad, K. (2011). High temperature tensile properties of cryorolled Al-4wt%Cu-3wt%TiB₂ *in-situ* composites. *Transactions of the Indian Institute of Metals* 64(1): 63-66.
- Koczak, M.J. and Premkumar, M.K (1993). Emerging technologies for the *in-situ* production of MMCs. The Journal of The Minerals, Metals & Materials Society 45 (1): 144-48.
- Kumar, S., Chakraborty, M., Subramanya Sarma, V. and Murty, B.S. (2008). Tensile and wear behaviour of *in-situ* Al–7Si/TiB₂ particulate composites. *Wear* 265: 134–142.
- Kumar, S., Chakraborty, M., Subramanya Sarma, V. and Murty, B.S. (2007). Influence of *in-situ* formed TiB₂ particles on the abrasive wear behaviour of Al–4Cu alloy. *Materials Science and Engineering A* 465: 160-164.
- Lakshmi, S., Lu, L. and Gupta, M. (1998). *In-situ* preparation of TiB₂ reinforced Al based composites. *Journal of Materials Processing Technology* 73: 160–166.
- Liu, Y. and Arenas, M.A. (2008). Influence of nitric acid pre-treatment on Al-Cu alloys. *Electrochimica Acta* 53: 4454-4460.
- Lu, L., Lai, M.O., Su, Y., Teo, H.L. and Feng, C.F. (2001). *In-situ* TiB₂ reinforced Al alloy composites. *Scripta Materialia* 45: 1017-1023.
- Lu. L. and, Dahle, A.K. (2006). Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys. *Materials Science and Engineering A* 435–436: 288–296.
- Lokesh, G.N., Ramachandra, M., Mahendra, K.V. and Sreenith, T. (2013.). Effect of hardness, tensile and wear behavior of Al-4.5wt%Cu alloy/flyash/SiC metal matrix composites. *International Journal of Modern Engineering Research* 3(1): 381-385.
- Mandal, A., Maitib, R., Chakrabortya, M. and Murty, B.S. (2009). Effect of TiB₂ particles on ageing response of Al-4Cu alloy. *Materials Sciences and Engineering* 386: 2230-2236.
- Mandal, A., Murty, B.S. and Chakraborty, M. (2009). Sliding wear behaviour of T6 treated A356-TiB₂ *in-situ* composites. *Wear* 266 (7-8): 865–872.
- Mallikarjuna, C., Shashidhara, S.M., Mallik, U.S. and Parashivamurthy, K.I. (2011). Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB₂ *in-situ* composites. *Materials and Design* 32: 3554–3559.
- Mathiesen, R.M. and Arnberg, L. (2005). X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al-30wt.%Cu alloy. *Acta Materials* 53: 947-56.

- Min, Z., Gaohui, W., Longtao, J. and Zuoyong, D. (2006). Friction and wear properties of TiB₂p/Al composite. *Composites Part A: Applied Sciences Manufacturing* 37: 1916–1921.
- Nemati, N., Khosroshahi, R., Emamy, M. and Zolriasatein, A. (2011). Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling. *Materials & Design* 32(7): 3718–3729.
- Pan, Y., Liu, X. and Yang, H. (2006) Role of C and Fe ingrain refinement of an AZ63B magnesium alloy by Al-C master alloy. *Journal of Material Science Technology* 21(6): 822-826.
- Rajesekaran, N.R. And Sampath, V. (2011). Effect of *in-situ* TiB₂ particle addition on the mechanical properties of AA 2219 Al alloy composite. *Journal of Minerals and Materials Characterization and Engineering* 10(6): 527-534.
- Ramesh, C.S., Ahamed, A., Channabasappa, B.H. and Keshavamurthy, R. (2010). Development of Al 6063–TiB₂ in-situ composites. *Materials & Design-Design* of Nanomaterials and Nanostructures 31(4): 2230–2236.
- Salazar, J.M.G. and Barrena, M.I. (2001). Role of Al₂O₃ particulate reinforcements on precipitation in 7005 Al-matrix composites. Scripta Materialia 44(10): 2489-2495.
- Sarmad, H.W. (2006). Study of Some Mechanical Properties of (Al-Cu-Mg) Alloy Reinforced with Ceramic Particles, M.Sc. Thesis, Material Department, Technology University, Iraq.
- Salihu, S.A. and Isah, A. (2012). Influence of Magnesium Addition on Mechanical Properties and Microstructure of Al-Cu-Mg Alloy. *Journal of Pharmacy and Biological Sciences* 4(5): 15-20.
- Sobhani, M., Hossein, M.A. and Brydson, R.M.D. (2013). Effects of in-situ formation of TiB₂ particles on age hardening behavior of Cu-1 wt% Ti-1 wt% TiB₂. *Materials Science and Engineering A* 577: 16–22.
- Sritharan, T. and Li, H. (1997). Influence of Titanium to Boron ratio on the ability to grain refine Aluminium-Silicon Alloys. Phd Thesis, Nanyang Technological University, Singapore.
- Sun, Y. and Ahlatci, H. (2011). Mechanical and wear behaviors of Al–12Si–*x*-Mg composites reinforced with *in-situ* Mg₂Si particles. *Material and Design* 32: 2983-2987.
- Surappa, M.K. (2003). Aluminium Matrix Composites: Challenge and opportunities. *Sadhana* 28 (Part 1-2): 319-334.

- Talamantes, S.M.A., Rodriguez, A., Talamantes-Silva, J., Valtierra, S. and Colasa, R. (2008). Characterization of an Al–Cu cast alloy. *Materials Characterization* 59: 1434-1439.
- Tee, K.L., Lu, L. and Lai, M.O. (2001). *In-situ* stir cast Al–TiB₂ composite: processing and mechanical properties. *Materials Science and Technology*, 17 (2): 201-206.
- Tee, K.L., Lu, L. and Lai, M.O. (2000). Wear performance of *in-situ* Al–TiB₂ composite. *Wear* 240: 59–64.
- Thakur, S.K. and Dhindaw, B.K. (2001). The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. *Wear* 247: 191-201.
- Tjong, S.C. and Ma, Z.Y. (2000). The high temperature creep behaviour of Al matrix composites reinforced with SiC, Al₂O₃ and TiB₂ particles. *Composites Science Technology* 57 (197): 697-702.
- Tjong, S.C. and Lau, K.C. (1999). Properties and abrasive wear of TiB₂/Al-4%Cu composites produced by hot isostatic pressing. *Composites Science and Technology* 59: 2005-2013.
- Tjong, S.C., Wu, S.Q. and Zhu, H.G. Wear behavior of *in-situ* TiB₂. (1999). Al₂O₃/Al and TiB₂-Al₂O₃/Al-Cu composites. *Composites Science and Technology* 59(9): 1341–1347.
- Ting, L.P., Guo, L.Y., Feng, N.J. and Liu, X.F. (2012). Influence of forming process on three-dimension morphology of TiB₂ particles in Al-Ti-B alloys. *Transaction Nonferrous Society China* 22: 564-570.
- Tyagi, R. (2005). Synthesis and tribological characterization of *in-situ* cast Al– TiC composites. *Wear* 259: 569–576.
- Venkateswarlu, K., Pathak, L.C., Raya, A.K, Dasa, G., Verma, P.K., Kumar, M. and Ghosha, R.N. (2004). Microstructure, tensile strength and wear behaviour of Al-Sc alloy. *Materials Science and Engineering* A (15): 374-380.
- Wang, F., Liu, H., Ma, Y. and Jin, Y. (2004). Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy. *Materials and Design* 25: 163–166.
- Wang, H.C., Zhang, Z.H., Luo, J., Huang, C.C. and Lee, S.K. (2010). A novel rapid route for *in-situ* synthesizing TiB-TiB₂ composites. *Composites Science and Technology* 69 (15-16): 2682–2687.
- Wang, H., Zhang, R., Hu, X., Wang, C.A. and Huang, Y. (2009). Characterization of a powder metallurgy SiC/Cu–Al composite. *Journal of Materials Processing Technology* 197 (1–3), 43–48.

- Wilkes, D.M.J and Jones, H. (1999). Structure and properties of rapidly solidified Al rich Al-Mn-Si alloys Part I Melt spun ribbons. *Journal of Material Science* 34 (4): 735-747.
- Wood, J.V, Davis, P., Kellie, J.L.F. (1993). Properties of reactively cast aluminium-TiB₂ alloy. *Material and Science Technology* 9: 833-840.
- Wu, J.M. and Li, Z.Z. (2000). Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. *Journal of Alloys and Compounds* 299: 9–16.
- Wu, S.Q., Zhu, H.G. and Tjong, S.C. (1999). Wear behavior of *in-situ* Al-based composites containing TiB₂, Al₂O₃, and Al₃Ti particles. *Metallurgical Materials Transaction* 30A: 243-247.
- Zhao, D.G., Liu, X.F., Pan, Y.C., Bian, X.F., and Liu, X.J. (2007). Microstructure and mechanical properties of *in-situ* synthesized (TiB₂ + Al₂O₃)/Al-Cu composites. *Journal of Materials Processing Technology* 189 (1–3): 237–241.