UNIVERSITI PUTRA MALAYSIA

PREVALENCE, MOLECULAR DETECTION AND PHYLOGENETIC ANALYSIS OF FELINE LEUKAEMIA VIRUS IN PENINSULAR MALAYSIA

FARUKU BANDE

FPV 2012 3
PREVALENCE, MOLECULAR DETECTION AND PHYLOGENETIC ANALYSIS OF FELINE LEUKAEMIA VIRUS IN PENINSULAR MALAYSIA

FARUKU BANDE

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2012
PREVALENCE, MOLECULAR DETECTION AND PHYLOGENETIC ANALYSIS OF FELINE LEUKAEMIA VIRUS IN PENINSULAR MALAYSIA

By

FARUKU BANDE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Masters of Science

January 2012
DEDICATION

This thesis work is dedicated to my parents and family for their unrelenting support.
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREVALENCE, MOLECULAR DETECTION AND PHYLOGENETIC ANALYSIS OF FELINE LEUKAEMIA VIRUS IN PENINSULAR MALAYSIA

By

FARUKU BANDE

January 2012

Chairperson: Siti Suri Arshad, PhD
Faculty: Veterinary Medicine

Feline leukaemia virus (FeLV) is a gammaretrovirus typically associated with the development of lymphoma, anaemia and immunodeficiency in cats. A cross sectional survey was carried out from January 2010 to December 2010 to determine the prevalence and risk factors associated with FeLV infection in Peninsular Malaysia. A total of 368 cats were screened for the presence of FeLV p27 antigen and information on cat’s demography as well as health status were obtained and analysed by logistic regression for their association with the risk of FeLV infection. The overall prevalence of FeLV was found to be 12.2% (45/368). Prevalence was higher among sick cats (18.9%) compared to healthy cats (5.1%) and in client-owned cats (13.1%) compared to shelter cats (10.3%). Logistic regression analysis revealed that male gender, young age, aggressive behaviour, sickness, living in multi-cat household or shelter environment significantly increased the risk of FeLV positivity. Thus, cats under these categories are likely at higher risk of developing FeLV associated conditions and possibly play a role in shedding the virus to other naïve cats. Higher prevalence of FeLV observed in this
study suggests the need for specific control measures such as screening and vaccination to ensure that FeLV infection is controlled among cats in Peninsular Malaysia. In a follow-up study, a highly sensitive nested PCR assay was optimized and used to detect the presence of FeLV viral RNA and provirus DNA from the plasma and blood samples respectively. Comparison was made between p27 antigen test and nested RT-PCR assay. In FeLV viral RNA detection, a total of 78 cats comprising up of an equal number of p27 antigen positive and p27 antigen negative cats were evaluated. Viral RNA was detected in 87.2% (35/39) p27 antigen positive and 12.8% p27 seronegative cats respectively. A substantial agreement was observed between p27 antigen detection test and nested RT-PCR assay (κ = 0.74). On the other hand, when nested PCR assay was used to determine FeLV proviral DNA status of 39 p27 antigen negative cats, about 97.4% (38/39) of p27 antigen negative cats were found positive for FeLV proviral DNA. Detection of FeLV viral RNA and Proviral DNA among antigen positive and antigen negative cats suggest that both persistent and latent FeLV infections are prevalent among cats in Peninsular Malaysia. Although substantial agreement was recorded between p27 antigen test and nested RT-PCR assay, nested RT-PCR was shown to offer additional advantage as it was able to detect viral RNA in 12.8% antigen negative cats. Cats that were tested negative for FeLV antigen but provirus DNA positive are likely to go undetected when only antigen detection assays are considered for the diagnosis of FeLV. Thus, combination of both p27 antigen detection test and PCR assays will provide better understanding of FeLV infection status of cats. To gain further insight into Malaysian FeLV genotypic variation, 29 nested PCR positive samples were selected, sequenced and subjected to multiple sequence alignment and phylogenetic analysis. Malaysian FeLV samples were shown to exhibit higher sequence homology ranging from 91-100%. When compared with the reference FeLV isolates,
Malaysian FeLV had highly conserved sequence variation that reduces up to 84%. Phylogenetic analysis further revealed that local FeLV sequences were grouped in two distinct clusters. The majority of local FeLV samples (86%) clustered together with FeLV-K01803 which is a member of FeLV-B subgroup from UK, while the remaining samples (14%) were grouped with FeLV-GM1 isolate which is also a member of subgroup B. This might suggest that FeLV-B is likely the most predominant sub-group occurring in Peninsular Malaysia. In overall, this study has provided valuable information on the epidemiology of FeLV in both client-owned and shelter cat population in Malaysia. Additionally, the study provided the first molecular-based FeLV study in Malaysia; highlighted the significance of using PCR assay as a diagnostic tool for evaluating FeLV infection status and one of the few Genebank representations of FeLV sequences from South East Asian region. Future studies should be directed towards isolation and adaptation of FeLV in cell culture, whole genome sequencing and vaccine efficacy studies so as to further understand the molecular characteristics, immune response and pathogenesis of local FeLV isolates.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PREVALEN, PENGESANAN MOLEKUL DAN ANALISIS FILOGENETIK VIRUS FELIN LEUKAEMIA VIRIS DI SEMENANJUNG MALAYSIA

Oleh
FARUKU BANDE

Januari 2012

Pengerusi: Siti Suri Arshad, PhD
Fakulti: Fakulti Perubatan Veterinar

Virus leukemia felin (FeLV) adalah gammaretrovirus yang biasanya dikaitkan dengan kejadian limfoma, anemia dan keimunodefisienan dalam kucing. Satu kajian keratan rentas telah dijalankan dari Januari 2010 hingga Disember 2010 untuk menentukan faktor prevalen dan risiko yang dikaitkan dengan jangkitan FeLV di Semenanjung Malaysia. Sebanyak 368 kucing telah diuji untuk kehadiran antigen FeLV p27 dan maklumat mengenai demografi serta status kesihatan kucing telah diperolehi dan dianalisis oleh regresi logistik untuk mengesan kaitannya dengan risiko jangkitan FeLV. Keseluruhan prevalen FeLV didapati 12.2%. Prevalen adalah tinggi di kalangan kucing sakit (18.9%) berbanding kucing sihat (5.1%) dan kucing milik pelanggan (13.1%) berbanding dengan kucing tempat perlindungan (10.3%). Analisis regresi logistik mendedahkan bahawa jantina jantan, usia muda, agresif, penyakit, tinggal di persekitaran pelbagai kucing atau tempat berlindung dengan ketara meningkatkan risiko positiviti FeLV. Oleh itu, kucing di bawah kategori ini adalah pada risiko yang lebih tinggi dikaitkan dengan FeLV dan mungkin memainkan peranan dalam menyebarkan
virus kepada kucing lain. Ketinggian prevalen FeLV positif yang di diperhatikan dalam kajian ini mencadangkan keperluan bagi langkah-langkah kawalan yang spesifik seperti saringan dan vaksinasi untuk memastikan bahawa jangkitan FeLV dibendung pada kucing di Semenanjung Malaysia. Untuk menentukan kehadiran viral RNA dan provirus DNA FeLV, bersarang PCR esei yang sangat sensitif dioptimumkan dan digunakan untuk mengesan kehadiran virus RNA dan DNA provirus FeLV daripada plasma dan sampel darah, masing-masing. Perbandingan telah dibuat antara ujian p27 antigen dan bersarang RT-PCR esei. Dalam pengesanan RNA FeLV, sebanyak 78 kucing yang terdiri daripada bilangan sama p27 kucing antigen positif dan negatif p27 dinilai. RNA virus dikesan dalam 87.2% (35/39) kucing antigen positif dan 12.8% antigen negatif. Kaitan yang besar yang diperhatikan di antara ujian p27 pengesanan antigen dan esei bersarang RT-PCR assay (κ = 0.74). Sebaliknya, esei bersarang PCR telah digunakan untuk menentukan status DNA proviral FeLV pada 39 kucing p27 negatif antigen. Hasil kajian menunjukkan bahawa 97.4% (38/39) kucing p27 antigen negatif adalah positif untuk DNA proviral FeLV. Penemuan ini menunjukkan bahawa kedua-dua jangkitan FeLV berterusan dan pendam adalah prevalen di kalangan kucing di Semenanjung Malaysia. Walaupun kaitan yang besar direkodkan di antara ujian p27 antigen dan esei bersarang RT-PCR esei, esei bersarang RT-PCR menunjukkan banyak kelebihan kerana ia dapat mengesan virus RNA pada 12.8% kucing antigen negatif. Kajian ini juga menunjukkan bahawa proviral DNA FeLV adalah prevalen di kalangan kucing yang antigen negatif. Kucing ini tidak dapat dikesan apabila ujian pengesanan antigen hanya digunakan dalam diagnosis FeLV. Oleh itu, gabungan kedua-dua p27 ujian pengesanan antigen dan ujian molekul akan memberikan pemahaman yang lebih baik tentang status jangkitan kucing. Untuk mendapatkan maklumat lanjut mengenai ciri-ciri genetik strain FeLV Malaysia, 29
sampel positif sarang PCR dipilih, mengikut urutan dan tertakluk kepada penjajaran urutan pelbagai dan analisis filogenetik. FeLV tempatan menunjukkan urutan homologi 91-100% yang lebih tinggi, tetapi homologinya menurun kepada 84% apabila sampel FeLV tempatan dibandingkan dengan FeLV rujukan. Filogenetik analisis selanjutnya mendedahkan bahawa FeLV tempatan tergolong dalam dua kelompok yang berbeza. Majoriti sampel FeLV tempatan (86%) tergolong dalam kelompok sama dengan FeLV-K01803 iaitu sub-kumpulan FeLV-B dari UK. Manakala baki sampel (14%) tergolong dengan isolat FeLV-GM1 iaitu anggota sub-kumpulan B berasal dari UK. Penemuan ini mungkin mencadangkan bahawa FeLV-B mungkin yang paling utama berlaku di Semenanjung Malaysia. Secara keseluruhan, kajian ini telah memberikan maklumat yang berharga pada epidemiologi FeLV dalam populasi kucing milik pelanggan dan perlindungan. Selain itu, kajian ini adalah kajian pertama berasaskan molekul pada FeLV di Malaysia dan telah menekankan kepentingan menggunakan cerakin PCR sebagai alat diagnostik untuk menilai status jangkitan FeLV kucing. Kajian ini juga telah menyumbangkan urutan FeLV yang pertama kedalam Genebank dari rantau selatan Asia Timur. Kajian seterusnya harus diarahkan ke arah pengasingan dan penyesuaian FeLV dalam kultur sel, penjujukan genom keseluruhan dan kajian keberkesanan vaksin untuk memahami ciri-ciri molekul, tindak balas imun dan patogenesis isolat FeLV Malaysia.
ACKNOWLEDGEMENTS

This has been a journey of endurance and determination but certainly we have survived the trials. Glories are due to Almighty God for granting me the opportunity to navigate and sail through. I am indebted to my supervisory committees especially the chairperson, Assoc. Prof. Dr. Siti Suri Arshad, who guided me throughout the period of my study. She has indeed opened my eyes towards research and revealed most of the key secrets of being successful in academic pursuit. I thank her for unrelenting support and concern to my family as well. To other members of my supervisory committee, Assoc. Prof. Dr Latiffah Hassan and Assoc. Prof. Dr Zunita Zakaria, I remain thankful for all your support, criticism and valuable suggestions.

I am grateful to Sokoto State Government, Nigeria, for granting me the study leave and other forms of support to pursue my MSc programme. I would like to commend the understanding shown by the Director of Veterinary Services; Dr Aminu Ibrahim and other staff of the department during my study leave. Here in UPM, it is my pleasure to express appreciation to members of virology laboratory Faculty of Veterinary Medicine especially Mr. Kamarudin Awang Isa, Amer Alazawy, Mohd Afzal Hafiz and Nazrina Kamarulzaman for the good companionship and academic support.

Other people worthy of commendation include; Prof. Husni Mohammed of Cornell University for guidance on study design; Professor Willett BJ of Virus Research Centre, Faculty of Veterinary Medicine, and University of Glasgow Scotland for gift of feline cell lines; Assoc. Prof. Miyazawa Takayuki of Institute for Virus Research Kyoto University Japan for valuable suggestions during the study design; Prof. Goff SP of Columbia University, USA for illustrations on retrovirus replication cycle; Dr. Vivian
Benetka of University of Veterinary Medicine, Vienna Austria for the gift of reference FIP-RNA. I wish to also acknowledge Arash Javanmard for assistance in sequence analysis; Dr Hafiz Ngoo for help in locating sampling sites; Dr Salisu Buhari and Nurul Asyhiakin Sapian for assistance in sampling. Others include; Dr Ibrahim Abubakar Anka, Dr. El- Shafie Dr MS Abubakar, Dr MS Anka, Dr MS Ismail, Dr AD Usman, Dr KA Mada, Dr A Shittu, Muhammad Ibrahim Saeed, Nasuruddeen Matazu and Mr Ho for their useful comments.

I sincerely appreciate the contribution of all stakeholders such as the cat owners and clinicians with the hope that such understanding will be continued in future. I would like to particularly acknowledge Dr Noor-Alimah Rahman, Dr Siti, Dr Noor, Puan Hasina and Puan Siti whom I enjoyed working with at the UVH-UPM. During the course of my studies, many individual have helped me in seeing the completion of this work. I am particularly indebted to my wife Aisha and children (Muhammad, Ibrahim and Zainab) for their patience, courage and support during our stay in Malaysia. I appreciate their moral support and courage especially during the mysterious lab work days. I would like to express my sincere appreciation to all my relatives and friends especially Murtala Dangulla, Dr Zubairu Sanyinna, Bashar Aliyu and Umar Isah whom I regularly contacted for assistance in resolving personal issues at home. I am grateful to all individuals who have assisted me in one way or the other and whose names could not appear here for lack of space. The funding support to carryout this study was provided by the Universiti Putra Malaysia through the Research University Grant Scheme (RUGS).
I certify that a Thesis Examination Committee has met on 12TH January 2012 to conduct the final examination of FARUKU BANDE on his thesis entitled “Prevalence, Molecular Detection and Phylogenetic Analysis of Feline Leukaemia Virus in Peninsular Malaysia” in accordance with the Universities and University colleges Act 1971 and Constitution of Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Hassan Hj Mohd Daud, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Zeenathul Nazariah Allaudin, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Malaika Watanabe, PhD,
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Gerald E. Duhamel, PhD
Professor
Department of Biomedical Sciences
College of Veterinary Medicine
Cornell UniversityIthaca
United State of America
(External Examiner)

Seow Heng Fong, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Masters of Science. The members of the Supervisory Committee were as follows:

Siti Suri Arshad, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Latiffah Hassan, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Zunita Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HuAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

FARUKU BANDE

Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
TABLE OF CONTENTS xiv
LIST OF TABLES xvii
LISTS OF FIGURES xix
LIST OF ABBREVIATIONS xxii

CHAPTER

1.0 INTRODUCTION 1

2.0 LITERATURE REVIEW 7

2.1 The Retroviridae 7
 2.1.1 Structure of retroviruses 7
 2.1.1.1 Viral genome and non-structural proteins 8
 2.1.1.2 Gag gene 9
 2.1.1.3 Pol gene 10
 2.1.1.4 Env gene 10
 2.1.1.5 Polypurine tracts (ppt) 11
 2.1.1.6 LTRs 11
 2.1.1.7 Accessory gene structures 12
 2.1.2 Properties of retroviral genome 12
 2.1.3 Replication of retroviruses 13
 2.1.3.1 Early phase of retrovirus replication 13
 2.1.3.2 Late phase of retrovirus replication 16
 2.1.4 Classification of retroviruses 18

2.2 Feline retroviruses 19
 2.2.1 Endogenous retroviruses 19
 2.2.1.1 RD-114 20
 2.2.2 Exogenous retroviruses 21

2.3 Feline leukaemia virus 21
 2.3.1 Structural and physical properties of FeLV 22
 2.3.2 FeLV subgroups 23
 2.3.2.1 FeLV A 23
 2.3.2.2 FeLV-B 24
 2.3.2.3 FeLV-C 24
 2.3.2.4 FeLV-T 24
 2.3.3 Epidemiology of FeLV 25
2.3.3.1 Susceptibility 25
2.3.3.2 Transmission of FeLV 25
2.3.3.3 Prevalence 26
2.3.3.4 Risk factors associated with FeLV 26
2.3.4 Pathogenesis 28
2.3.5 Immunology 30
2.3.6 Clinical findings associated with FeLV 31
2.3.7 Diagnosis of FeLV 34
2.3.8 Treatment and management of FeLV 40
2.3.9 Control and prevention 41

3.0 PREVALENCE AND RISK FACTORS OF FELINE LEUKAEMIA VIRUS IN PENINSULAR MALAYSIA 43

3.1 Introduction 43
3.2 Materials and Methods 44
 3.2.1 Study Area 44
 3.2.2 Study design 45
 3.2.3 Study participants/sampling 45
 3.2.4 Sample collection and processing 47
 3.2.5 Diagnostic testing 48
 3.2.6 Risk factors 48
 3.2.7 Data Analysis 49
3.3 Results 50
 3.3.1 Prevalence 50
 3.3.2 Risk factors 51
3.4 Discussion 54
 3.4.1 Prevalence 54
 3.4.2 Risk factors 56
3.5 Conclusion 60

4.0 MOLECULAR DETECTION OF FELINE LEUKAEMIA VIRUS RNA AND PROVIRUS DNA 61

4.1 Introduction 61
4.2 Materials and Methods 63
 4.2.1 Reference virus 63
 4.2.2 Virus propagation 64
 4.2.3 Optimization of nested RT-PCR assay 64
 4.2.3.1 RNA extraction from reference virus 64
 4.2.3.2 Determination of RNA concentration and purity 65
 4.2.3.3 Oligonucleotides primers 65
 4.2.3.4 Detection of FeLV viral RNA from reference virus 66
 4.2.3.5 Agarose Gel Electrophoresis 68
 4.2.3.6 Ethidium bromide staining and PCR product visualization 69
 4.2.3.7 Specificity of the nested RT-PCR assay 69
 4.2.3.8 Sensitivity of the nested RT-PCR assay 70
 4.2.4 Detection of FeLV viral RNA from clinical samples 70
 4.2.5 Detection of FeLV provirus DNA from non antigenaemic cats 72
4.2.6 Data Analysis 76
4.3 Results 76
 4.3.1 Propagation of virus-associated cells 76
 4.3.2 Nested RT-PCR assay 77
 4.3.3 Specificity of the nested RT-PCR assay 78
 4.3.4 Sensitivity of the nested RT-PCR assay 78
 4.3.5 Detection of FeLV viral RNA from clinical samples 79
 4.3.6 Comparison between nested RT-PCR assay and FeLV p27 antigen detection test 81
 4.3.7 Detection of FeLV proviral DNA 81
 4.3.7.1 Specificity of nested PCR assay in the detection of exogenous FeLV provirus DNA 81
 4.3.7.2 Detection of FeLV provirus DNA from p27 antigen negative cats 82
 4.4 Discussion 84
4.5 Conclusion 90

5.0 PHYLOGENETIC ANALYSIS OF FELINE LEUKAEMIA VIRUS IN MALAYSIA 92

5.1 Introduction 92
5.2 Materials and Methods 94
 5.2.1 FeLV samples used in phylogenetic analysis 94
 5.2.2 Purification of PCR product 95
 5.2.3 DNA Sequencing 96
 5.2.4 Multiple Sequence alignment 96
 5.2.5 Phylogenetic analysis 99
5.3 Results 99
5.4 Discussion 114
5.5 Conclusion 116

6.0 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 117

REFERENCES 120
APPENDICES 146
BIODATA OF STUDENT ERROR! BOOKMARK NOT DEFINED.
LIST OF PUBLICATIONS 165
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of retroviruses of human and veterinary relevance. Members of retroviruses are assigned into 7 genera with classical examples from each genera (ICTV, 2009)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>States from which cats were sampled</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Description of cats being sampled to determine the risk factors associated with FeLV infection amongst cats in Peninsular Malaysia</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Clinical signs/conditions observed in FeLV p27 antigen positive cats based on their frequency of occurrence</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Univariate analysis based on putative factors evaluated for risk of FeLV infection in Peninsular Malaysia</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>Multivariate logistic regression evaluating the role of some putative factors in the risk of FeLV infection in Peninsular Malaysia</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Oligonucleotides primers used in nested RT-PCR and nested PCR assays for the detection of FeLV among cats in Peninsular Malaysia</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Reaction mixture used in outer RT-PCR assay to detect exogenous FeLV</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Amplification programme used in outer RT-PCR step for the detection of exogenous FeLV</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Reaction mixture used in inner PCR step to detect exogenous FeLV</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Amplification programme used in the inner nested RT-PCR step to detect exogenous FeLV</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>Reaction mixture used in performing nested PCR assay to determine the occurrence of FeLV provirus DNA in p27 antigen negative cats</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>Amplification programme used in performing nested PCR assay to determine the occurrence of FeLV provirus DNA in p27 antigen negative cat</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Description of cats sampled for phylogenetic analysis</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>List of sequences used in performing phylogenetic analysis. The GenBank accessing number and country of origin for each sequence are indicated</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>Some bioinformatic characteristics of Malaysian FeLV samples</td>
<td>100</td>
</tr>
</tbody>
</table>
5.4 Maximum Likelihood Estimate of Transition and Transversion Bias in the nucleotide sequences of Malaysian FeLV samples

5.5 Maximum Composite Likelihood Estimate of the Pattern of Nucleotide Substitution
LISTS OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General structure of retrovirus genome. Three essential genes are present and codes for various protein components that are represented in two letter alphabets</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The linear arrangement of FeLV coding and non-coding regions</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>FeLV RNA and provirus DNA showing 3 basic coding genes gag, pol and env genes and the terminal repeats structures (LTRs)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Early phase of retrovirus life cycle. This stage is characterized by viral attachment, entry, reverse transcription and integration of provirus DNA into the host genome.</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Late phase of retrovirus replication cycle characterised by the expression of viral genes, assembly and release of the new infectious virion</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Electron micrograph showing immature FeLV viral particle budding from plasma membrane of lymphocytic cells grown in suspension culture. [Note: The arrow was inserted to improve clarity]</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Rapid detection of FeLV and FIV using commercial FeLV p27Ag/FIV Ab test kit</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Illustration of nested PCR assays steps. The method involves the use of two different sets of primers in the primary (outer) and secondary (nested) PCR steps with the inner PCR primer amplifying a shorter amplicon size compared to the primary amplicon.</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Prevalence of FeLV, FIV and FeLV/FIV coinfection among cats in Peninsular Malaysia</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of primer amplification regions in both the outer and inner PCR assay</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Growth pattern of feline lymphoblastic cell line (FL-74) persistently infected with FeLV. Cells at 24hrs post-culture (A), large aggregate of clumping cells 72hrs post- culture (B)</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Nested RT-PCR assay used to detect FeLV RNA. The outer PCR reaction was performed using primer pair U3-F (1) and G-R (1) and amplified 770bp (Lane 1) whilst inner PCR reaction was performed using primer pair U3-F(2) and GR(2) and amplified 610bp (Lane 2). Lane NC: NTC, lane 1: outer PCR product of 770bp; lane 2: inner PCR product of 601 bp; lane M: 100 bp DNA marker</td>
<td>77</td>
</tr>
</tbody>
</table>
4.4 Specificity of the nested RT-PCR assay used in the detection of FeLV RNA from reference sample. Lane M: 100 bp DNA marker; Lane NC: NTC; lane 1: FL74 reference virus; lane 2: NWI feline coronavirus reference virus; lane 3: DF-1 feline coronavirus reference virus.

4.5 Sensitivity of nested RT-PCR assay using 10 folds serial dilutions of FeLV reference RNA. Lane M: 100bp DNA marker; lane NC: NTC; lane 1: 1µg RNA; lane 2:100ng; lane 3: 10ng; lane 4:1.0ng; lane 5:0.1ng; lane 6:10pg; lane 7: 1.0 pg; lane 8: 100fg; lane 9: 10 fg; lane 10: 1.0fg; lane 11:0.1fg; lane 12: 0.01fg; lane 13: 0.001fg.

4.6 Detection of FeLV viral RNA from p27 antigen positive and p27 antigen negative cats.

4.7 Detection of plasma viral RNA from p27 antigen positive and p27 antigen negative cats. Nested RT-PCR assay was used to amplify the U3LTR-gag regions of exogenous FeLV from p27 antigen positive cats (Lane 1-39) and p27 antigen negative cats (Lane 40-44). Lanes that are positive by nested RT-PCR included 1-29, 31, 32, 37-44. Lane M: 100 bp DNA marker; lane NC: NTC; lane PC: positive control.

4.8 Sensitivity of nested PCR assay in the detection of exogenous FeLV provirus DNA. Samples from FL74 and fresh uninfected CrFK cells were used. Lane M: 100bp molecular marker; lane NC: NTC; lane 1: positive DNA control from FL74; lane 2: DNA from CrFK cells.

4.9 Frequency of occurrence of FeLV provirus DNA among 39 p27 antigen negative cats.

4.10 Detection of FeLV proviral DNA from antigen negative cats. All lanes are positive except lane 13. Lane M, 100bp molecular weight marker; NC, NTC; PC, positive control.

5.1 Multiple sequence alignment of U3LTR-gag sequence from Malaysian FeLV samples and reference strains

5.2 Neighbor-Joining phylogenetic analysis of Malaysian FeLV in comparison with reference strains.

5.3 Phylogenetic relationship of Malaysian FeLV compared with reference isolates. Evolutionary relationship was inferred using Maximum Likelihood method
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAFP</td>
<td>American Association of feline practitioners</td>
</tr>
<tr>
<td>Amp</td>
<td>Amperage</td>
</tr>
<tr>
<td>AMV</td>
<td>Avian Myeloblastosis Virus</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type-culture Collections</td>
</tr>
<tr>
<td>BaEV</td>
<td>Baboons endogeneous retrovirus</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesisin information center</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CA</td>
<td>Capsid associated</td>
</tr>
<tr>
<td>CD 4+</td>
<td>Cluster of differentiation 4</td>
</tr>
<tr>
<td>CD8+</td>
<td>Cluster of differentiation 8</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>Cm3</td>
<td>Centimeter cube</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon di-oxide</td>
</tr>
<tr>
<td>CrFK</td>
<td>Crandell Feline kidney</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DSH</td>
<td>Domestic Short Hair</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzymes linked immunosorbent Assay</td>
</tr>
<tr>
<td>EM</td>
<td>Elecron microscopy</td>
</tr>
<tr>
<td>enFeLV</td>
<td>Endogenous feline leukaemia virus</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>exFeLV</td>
<td>Exogenous feline leukaemia virus</td>
</tr>
</tbody>
</table>

xxi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIDS</td>
<td>Feline acquired immunodeficiency</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FeLV</td>
<td>Feline leukaemia virus</td>
</tr>
<tr>
<td>Fg</td>
<td>Femtogram</td>
</tr>
<tr>
<td>FIPV</td>
<td>Feline infectious peritonitis Virus</td>
</tr>
<tr>
<td>FIV</td>
<td>Feline immunodeficiency virus</td>
</tr>
<tr>
<td>FLVCR</td>
<td>Feline leukaemia virus –c receptors</td>
</tr>
<tr>
<td>FPV</td>
<td>Feline panleukopenia virus</td>
</tr>
<tr>
<td>G</td>
<td>Gravity</td>
</tr>
<tr>
<td>Y</td>
<td>Gamma</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HTLV</td>
<td>Human T-cell leukaemia virus</td>
</tr>
<tr>
<td>ICTV</td>
<td>International Committee on Taxonomy of Viruses</td>
</tr>
<tr>
<td>IN</td>
<td>Integrase</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>LTRs</td>
<td>Long Terminal repeats</td>
</tr>
<tr>
<td>MA</td>
<td>Matrix Associated</td>
</tr>
<tr>
<td>MDA</td>
<td>Maternally derived Antibodies</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitre</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NC</td>
<td>Nucleocapsid</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>Nef</td>
<td>Negative replicating factor</td>
</tr>
<tr>
<td>Ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour Joining</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>no. or n</td>
<td>Number</td>
</tr>
<tr>
<td>NTC</td>
<td>No Template Control</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>P value</td>
<td>Probability</td>
</tr>
<tr>
<td>PAWS</td>
<td>Paws Animal Welfare Society</td>
</tr>
<tr>
<td>PB</td>
<td>Primer Binding</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Pg</td>
<td>Pictogram</td>
</tr>
<tr>
<td>Pit</td>
<td>Phosphate transporter</td>
</tr>
<tr>
<td>Pol</td>
<td>Polymerase</td>
</tr>
<tr>
<td>Ppt</td>
<td>Polypurine tract</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood Cells</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription polymerase chain reaction</td>
</tr>
</tbody>
</table>

xxiii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Sedimentation rate</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>siRNA</td>
<td>Short interfering ribonucleic acid</td>
</tr>
<tr>
<td>SPCA</td>
<td>Society for Prevention of Cruelty to Animal</td>
</tr>
<tr>
<td>sqKm</td>
<td>Square kilometre</td>
</tr>
<tr>
<td>SU</td>
<td>Surface protein</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate EDTA</td>
</tr>
<tr>
<td>Tat</td>
<td>Trans- activator of transcription</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>™</td>
<td>Registered Sign</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVH</td>
<td>University Veterinary Hospital</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VI</td>
<td>Virus isolation</td>
</tr>
<tr>
<td>VIF</td>
<td>Viral infectivity factor</td>
</tr>
<tr>
<td>VNA</td>
<td>Virus neutralizing Antibodies</td>
</tr>
<tr>
<td>Vpu</td>
<td>Viral protein U</td>
</tr>
<tr>
<td>V.S.</td>
<td>Versus</td>
</tr>
<tr>
<td>W/V</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>A</td>
<td>Alpha</td>
</tr>
<tr>
<td>B</td>
<td>Beta</td>
</tr>
</tbody>
</table>
Δ
E
®
µg

Delta
Epsilon
Registered sign
Microgram
CHAPTER 1

INTRODUCTION

The domestic cat (*Felis catus*) is considered the most socialised carnivore due to its long companionship to humans (Case, 2003). Cat is becoming the most populous pet with increasing population over 500 million worldwide. Recently, the number of cats is estimated to supersede the number of dogs in many countries, with many people favouring cat as a pet compared to dog (Wise et al., 2002; APPMA, 2008; Shepherd, 2008). The growing number of pet cats has been attributed to several benefits including their role in improving psychological health and self esteem of pet owners especially children and old people (Beck et al., 1996; Melson, 2003; Walsh, 2009). In addition, cat is considered a good model for the understanding of hereditary and infectious diseases of humans (Dunham, 2006; Kristina et al., 2011). On the other hand, cats are important sources of veterinary and public health important diseases that could adversely affect the health of animals and humans (Angulo et al., 1994; Akhtardanesh et al., 2010). Thus, considerable researches have focused mainly towards the improvement of both welfare and health conditions of this important specie (Slater, 2004; Farnworth et al., 2010).

Of all the diseases affecting domestic cat, FeLV is the most important cause of morbidity and mortality with death rate reaching almost 50% within 2 years and 80% following 3 years following persistent infection (Hardy et al., 1976a; Hoover and Mullin 1991; Hatmann et al., 2011). Infection with FeLV is mainly characterized by anaemia, lymphosarcoma, leukaemia and immunodeficiency (Rojko and Kociba,
1991). Recent studies have shown that, almost 80% of feline lymphosarcoma are associated with FeLV (Gabor et al., 2001; Jackson et al., 1993; Suntz et al., 2010; Weiss et al., 2010). Approximately, 70-90% of persistently FeLV infected cats died within a period of 18 months to 4 years after the infection (Hardy et al., 1976a; McClelland et al., 1980). The mortality occurring in FeLV is largely associated with severe defects in both the humoral and cellular immune system which results in lymphopenia, neutrophil abnormalities and reduction in the number of CD4+ and CD8+ cells, eventually ending in severe immunodeficiency known as feline AIDS (Ogilvie et al., 1988).

The genome of FeLV is made up of single stranded positive sensed enveloped polyadenylated RNA classified under gammaretroviridae (Goff, 2007; Dunham and Graham, 2008). FeLV viral RNA is diploid in nature and possessed 3 coding gene structure; the gag, pol and env (Coffin, 1979; Leis et al., 1988). Flanking the 5' and 3'regions of FeLV provirus are long terminal repeat structures (LTRs) which functions in regulating the expression of viral proteins and aid in viral tumorigenecity (Matsumoto et al., 1992).

Based on genome characteristic and tissue tropism, four distinct subgroups of FeLV have been recognised. These subgroups are designated FeLV-A, B, C and T (Sarma and Log, 1973; Anderson et al., 2000). FeLV-A is the most common subgroup and serves as a prototype virus from which other subgroups evolved (Donahue et al., 1988). FeLV-B arises de novo following recombination of envelope sequences of FeLV-A with endogenous feline leukaemia virus present in cat. FeLV-B is the most common subgroup isolated from sick cats (Takeuchi et al., 1992; Anderson et al.,
2001). The last two subgroups, FeLV-C and T arises from mutation of FeLV-A. FeLV-C and FeLV-T subgroups are associated with aplastic anaemia and T-cell leukaemia respectively (Quigley et al., 2000; Cheng et al., 2007). Apart from the exogenous retroviruses horizontally transmitted among domestic cats, endogenous retroviruses such as RD114 and enFeLV are vertically transmitted in the cat’s germ cells. These viruses are believed to evolve from ancient cats that preyed on rats infected with murine leukaemia virus (Benvenesti et al., 1974; Weiss, 2006; Okada et al., 2011). So far, enFeLV have not been reported to cause natural infection in cat, (Pandey et al., 1991). Naturally, transmission of FeLV occur oronasally following direct contact of naïve cats with the infected saliva, feaces, milk and other body secretions of infected cat (Hardy et al., 1973a; Jarrett et al., 1973a).

Other sources of infection include bite, blood transfusion and contaminated objects (Pedersen, 1987). An in utero infection has also been described to account for foetal death in 80% of FeLV cases (Hoover and Mullin, 1991).

Diagnosis of FeLV is carried out by different methods such as: - virus isolation (VI) which involved the propagation and isolation of the virus in cell culture (Jarrett et al., 1964a; Kawakami et al., 1967); immunoflourescent antibody test (IFA), which detects the presence of FeLV gag protein (Hardy and Zuckerman, 1991); Enzyme-linked immunosorbert assay (ELISA) and immunochromatographic methods which detects the presence of FeLV p27 antigen (Tonelli, 1991; Eto et al., 2003). The long duration needed in VI as well as the non-cytopathic effect of FeLV makes virus isolation a procedure that is rarely carried out in routine practice (Hardy, 1991). On the other hand, serological assays such as ELISA and immunochromatography are
less sensitive in detecting FeLV p27 antigen during early phase of viraemia and when the virus becomes latently integrated in the bone marrow or other tissues (Hardy and Zukerman, 1991). In addition, single ELISA based assays have been reported less sensitive in regions of low prevalence rate as well as in cat with low infection risk (Beatty et al., 2011). Thus, a highly sensitive test is necessary for understanding cat’s FeLV infection status as well as FeLV epidemiology. Recently polymerase chain reaction (PCR) assays have been developed and used in the detection of FeLV viral RNA and proviral DNA. PCR assay was found to be highly sensitive than the traditional diagnostic methods and capable of detecting both viral RNA and FeLV proviral DNA (Jackson et al., 1996; Miyazawa and Jarrett, 1997; Hofmann-Lehman et al., 2001; Tandon et al., 2005). Epidemiological studies have shown that, FeLV infection is widely distributed among cats (Gleich et al., 2009; Little et al., 2011). However, prevalence varies considerably with geographical location, cat’s lifestyle as well as population density (Hoover and Mullin., 1991; O’Connor et al., 1991; Gleich et al., 2009).

Although several studies have been carried out on important viral diseases of cats in Malaysia (Rahman et al., 1984; Arshad et al., 2004; Sharif et al., 2009), little information is available on FeLV as the available studies were documented more than 2 decades ago. These studies considered only client-owned cats tested at the University Veterinary Hospital, Universiti Putra Malaysia (UPM-UVH). Thus, occurrence of FeLV in the population of stray or un-owned cats remained un-investigated (Noor and Cheng 1983; Cheng 1990). Moreover, previous studies used only p27 antigen detection test as method which has been reported less sensitive especially in the detection of early and latent FeLV infections, thus, prevalence of
FeLV might be underestimated since cats are not routinely tested for retrovirus infections in Malaysia.

With the advent of highly sensitive molecular techniques such as PCR, it is desirable to explore the potentials of these methods to determine the FeLV infection status of cats in Malaysia as well as to explore the genetic characteristic and phylogeny of local FeLV isolates since no similar study have been reported. The result of this study will provide useful information to cat owners, veterinarians and policy makers in designing an effective control and prevention programme against FeLV.

Objectives

The objectives of this study are:-

i. To determine the prevalence and risk factors associated with FeLV infection in Peninsular Malaysia.

ii. To determine the occurrence of FeLV viral RNA and proviral DNA among cats in Peninsular Malaysia

iii. To compare and contrast between FeLVp27 antigen detection test and nested RT-PCR assay.

iv. To compare the Malaysian FeLV with reference FeLV isolates using phylogenetic analysis.
Hypotheses

HA1: FeLV is prevalent among cats in Peninsular Malaysia

HA2: Specific risk factors significantly influence the occurrence of FeLV among cats in Peninsular Malaysia.

HA3: FeLV RNA and proviral DNA could be detected from p27 antigen positive and p27 antigen negative cats respectively

HA4: There is significant difference between p27 antigen detection test and nested RT-PCR assay.

HA4: There is genetic variation between Malaysian FeLV and other reference FeLV isolates.
REFERENCES

Arjona A, Escolar E, Soto I, Barquero N, Martin D, Gomez-Lucia E. 2000. Seroepidemiological survey of infection by feline leukemia virus and

Boretti FS, Ossent P., Bauer-Pham K., Weibel B., Meili T., Cattori V., Wolfensberger C., Reinaecher M., Lutz H. and Hofmann-Lehmann R. 2004. Recurrence of feline leukemia virus (FeLV) and development of fatal lymphoma concurrent with feline immunodeficiency virus (FIV) induced immune suppression. 7th international feline retrovirus research symposium, Pisa, Italy.

Cheng BY. 1990. Feline leukaemia virus and feline immunodeficiency virus in small animals. 2nd congress of Veterinary Medical Association Malaysia; 6-8th October; Kuala Lumpur, Malaysia. 66-68 p.

Jackson ML, Haines DM, Taylor SM, Misra V. 1996. Feline leukemia virus detection by ELISA and PCR in peripheral blood from 68 cats with high,

Natasa T, Svete NA, Zemljič M, Zakošek M, Darja BM. High prevalence of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) in Slovenia. Acta Vet 58.

136

Rhee SS and Hunter E. 1990. A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell 63 (1):77-86.

Young RA., RNA polymerase II, Annu. Rev. Biochem. 60: 689

