NITRIFICATION OF A TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM (Elaeis guineensis Jacq.)

MOHD RIZAL BIN ARIFFIN

FP 2017 10
NITRIFICATION OF A TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM (Elaeis guineensis Jacq.)

By

MOHD RIZAL BIN ARIFFIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

January 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I’d dedicate each pages of this research to:

My wife for her constant encouragement and prayers

My lovely daugthers who motivate me to achieve my future endeavour

My brother who takes the role as a father after my parents passed away

My deceased mother and father whose dream I am fulfilling
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

NITRIFICATION OF A TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM
(Elaeis guineensis Jacq.)

By

MOHD RIZAL BIN ARIFIN

January 2017

Chairman: Ahmad Husni Mohd. Hanif, PhD
Faculty: Agriculture

As knowledge on nitrogen (N) cycle is evolving rapidly, soil nitrification has become the centre of research interest because it is the single most important process in the N-cycle that leads to N losses in broad range of environments. With further expansion of oil palm on tropical peat lands, N cycling is predicted to be modified. However, very few current literatures reported nitrification in tropical peat soils cultivated with oil palm. Therefore, there is a need to understand the nitrification process in cultivated tropical peat soils with oil palm.

Soil sampling were carried out up to 60 cm depth at weeded circle (WC), harvesting path (HP) and frond heap (FH). General chemical analyses were carried out in the laboratory. The results showed that WC contained the highest ammonium (8.48 µg g⁻¹ soil), nitrate (6.22 µg g⁻¹ soil) and inorganic N (14.70 µg g⁻¹ soil) contents compared with FH and HP in 0-10 cm soil depth. PNR indicated, most of the nitrification activity happened at 0-10 cm in WC area. In 20-30 cm WC area, 10-20 cm, 20-30 cm of FH area and 10-20 cm HP area indicated negative value of PNR. This suggests that, nitrification were restricted at these depths and the NO₃⁻ availability in these areas were predicted to originate from the topsoil through vertical down movement. Laboratory incubation study also indicated, nitrification were affected not only by the availability of substrate (NH₄⁺), but also by the type of N fertilizers. Nitrification was inhibited by addition of AS, and higher input of AS led to greater inhibition of nitrification. Net nitrification in urea reached its highest value in 2 kg N palm⁻¹ treatment, which is higher (21.33 µg g⁻¹ soil day⁻¹) than in AS (3.41 µg g⁻¹ soil day⁻¹). In the next laboratory incubation study, the dynamics of NO₃⁻ did not show significant change with increased soil moisture without addition of urea. This results indicated, nitrification in peat soil needed reactive N supply (urea) regardless of soil moisture conditions. However, increasing soil moisture resulted in lower NO₃⁻ and PNR which reflect that soil moisture controlled the magnitude of PNR when urea was added.
Aside from laboratory incubation experiments, field soil sampling were also collected in dry and wet season from research plots consisted of ground cover treatments with three N rates. Data from the study suggested that installation of legume cover crops (LCC) in combination with N fertilizers resulted in higher mineralization and nitrification in wet season compared to natural ground cover. Nitrification rate was stimulated by the availability of substrates (NH$_4^+$) regardless of the moisture condition. LCC can be the contributing factors in higher availability of NH$_4^+$ in the wet season that could be loss to the environments. Therefore, LCC may be unnecessary in peat soil where N fertilizers were applied.

Finally, selected soil samples from the study mentioned above were used to determine the microbial composition and to identify potential nitrifiers existed in tropical peat soil cultivated with oil palm using 16S metagenomics. The results indicated that conventional ammonium and/or ammonia oxidizers (Nitrosomonas and Nitrosococcus) were almost non-existent in all the soil samples. This study observed that soil samples from the surface area of WC, FH and HP area were abundant with Bacilli and Pseudomonales suggesting heterotrophic pathways of ammonia oxidation in this area. However, pronounced shift in ammonium oxidizing archaea (AOA) number was observed (Thaumarchaeota) with inclusion of conventional legume systems compared with natural ground cover. Planctomycetaceae order from the phylum Planctomycetes (anammox bacteria) were also abundant in number suggesting anaerobic ammonium oxidation is possible in tropical peat soil cultivated with oil palm.

In conclusion, nitrification was prominent in tropical peat soil cultivated with oil palm disregarding low pH condition and high moisture content. The nitrification rate varies among the operational zones and depth and the process was influenced by N fertilizer addition and also regulated by moisture condition. However, the major pathways of ammonia oxidation (heterotrophic bacteria or by AOA) and the extent of anaerobic ammonium oxidation still remained elusive and require further studies.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

NITRIFIKASI TANAH GAMBUT TROPIKA YANG DITANAM KELAPA SAWIT (*Elaeis guineensis* Jacq.)

Oleh

MOHD RIZAL BIN ARIFIN

Januari 2017

Pengerusi: Ahmad Husni Mohd. Hanif, PhD
Fakulti : Pertanian

Dengan perkembangan pesat ilmu berkenaan kitaran N, nitrifikasai N dalam tanah menjadi tumpuan penyelidikan memandangkan ia merupakan proses paling utama dalam kitaran N yang menyebabkan N hilang didalam pelbagai persekitaran. Dengan pengembangan tanaman kelapa sawit di tanah gambut tropika, kitaran N dijangka akan berubah. Tetapi hanya terdapat beberapa sahaja kajian yang menunjukkan nitrifikasi di tanah gambut yang ditanam kelapa sawit. Justeru itu, terdapat keperluan untuk kajian nitrifikasi dalam tanah gambut tropika yang ditanam kelapa sawit.

Sampel tanah di ambil sehingga kedalaman 60 cm pada weeded circle (WC), harvesting path (HP) dan juga frond heap (FH). Analisis kimia umum dijalankan di dalam makmal. Keputusan menunjukkan WC mengandungi ammonium (8.48 µg g⁻¹ tanah), nitrat (6.22 µg g⁻¹ tanah) dan N bukan organik (14.70 µg g⁻¹ tanah) tertinggi berbanding FH dan HP pada kedalaman 0-10 cm. PNR menunjukkan kebanyakan nitrifikasi berlaku pada kedalaman 0-10 cm pada kawasan WC. Pada 20-30 cm WC, 10-20 cm dan 20-30 cm FH beserta 10-20 cm HP, PNR menunjukkan nilai negatif. Hal ini mengimplikasikan bahawa nitrifikasi adalah terhad di kedalaman tersebut diatas. Oleh itu, kandungan NO₃⁻ yang terdapat dikawasan ini dipercayai berasal daripada tanah permukaan dan bergerak ke bawah.

Kajian inkubasi makmal juga menunjukkan nitrifikasi bukan hanya dipengaruhi dengan kehadiran substrat (NH₄⁺), tetapi juga oleh jenis baha N. Nitrifikasi juga terhalang dengan penambahan AS (ammonium sulphate) dan input AS yang lebih tinggi akan meningkatkan lagi kadar halangan nitrifikasi. Kadar nitrifikasi bersih mencapai tahap tertinggi pada urea 2 kg N/pokok (21.33 µg g⁻¹ soil day⁻¹) lebih tinggi daripada AS 2 kg N/pokok (3.41 µg g⁻¹ soil day⁻¹). Dalam kajian inkubasi makmal seterusnya, kadar dinamik NO₃⁻ tidak menunjukkan kesan perubahan signifikan dengan peningkatan...
kelembapan tanpa penambahan urea. Hasil kajian ini menunjukkan nitrifikasi pada tanah gambut memerlukan bekalan N yang reaktif (urea) tanpa mengira keadaan kelembapan untuk nitrifikasi terjadi. Walau bagaimanapun, peningkatan kelembapan menyebabkan NO$_3^-$ dan PNR lebih rendah yang menunjukkan kelembapan tanah mengawal maginitud PNR apabila urea dibekalkan.

Selain daripada eksperimen inkubasi makmal, sampel tanah juga diambil pada musim hujan dan musim kering daripada plot kajian yang mengandungi rawatan perlindungan tanah bersama tiga kadar N. Data daripada kajian ini menunjukkan penambahan LCC dengan kombinasi baja N menyebabkan kadar mineralisasi dan nitrifikasi yang lebih tinggi pada musim hujan berbanding keadaan tanah semulajadi. Kadar nitrifikasi dipengaruhi oleh kedapatan substrate (NH$_4^+$) tanpa mengira keadaan kelembapan. LCC boleh menjadi faktor penyebab kandungan tinggi NH$_4^+$ pada musim hujan yang berpotensi hilang ke persekitaran. Oleh itu, penambahan LCC pada tanah gambut yang diberi baja N mungkin tidak diperlukan.

ACKNOWLEDGEMENTS

In the name of Allah, the Al-Mighty, most Gracious and most Merciful of whom without, I will not be able to finish this research.

Foremost, I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr. Ahmad Husni Mohd Hanif for his continuous support, patience, motivation, understanding and immense knowledge that had helped me throughout my PhD research. I am also indebted to Dr. Tan Sheau Wei who guided me through in exploring new knowledge in molecular analysis. Not forgetting, Assoc. Prof. Dr. Osumanu Haruna Ahmed and Assoc. Prof. Dr. Halimi Mohd Saud for their invaluable guidance and scientific insights in completing this thesis. Very special thanks to Universiti Putra Malaysia and Ministry of Education for giving me the opportunity to carry out my doctoral research and for their financial support.

My special thanks and appreciation goes to my best friend and colleague, Mr. Kang Seong Hun who shared my journey through ups and down from the start. My strenuous journey as a PhD student will be very challenging without numerous supports and assistance from my friends Nurul Wahida Hani and Nor Asma Zaki and colleagues at Department of Land Management, Faculty of Agriculture. My special thanks also to Malaysian Palm Oil Board (MPOB) officers, Ms. Nancy, Sue and Yani from Institut Biosains (IBS) and Boo Sook Yee and Joelle Chua from Bioeasy for their assistance. It needs more than words to express my heartfelt appreciation to my brother, Mohd Abdul Rashid Ariffin who support me through from elementary school up to university and finally my PhD. Your role as a father is much indebted. My gratitude also goes to my mother in-law, Umi Kalsom Harun who encourages me to remain focused while juggling between my PhD research and family.

Last but not least, I dedicate this PhD research to the three most important persons in my life, my soul mate, Siti Normaznie Abdul Muttalib and my lovely daughters Hanna Nafisah Mohd Rizal and Aesyla Naziah Mohd Rizal for their unconditional support and love during my ups and down. My daughters are my initial motivators and they keep pushing me forward to the finishing line when I feel hopeless. My wife is my biggest supporter and opponent and my source of strength throughout this life-changing journey. My perseverance and persistence in producing an impeccable research would be arduous without her perpetual faith; encouragement and patience that ultimately made it possible for me to see this research through to the end.
I certify that a Thesis Examination Committee has met on 17 January 2017 to conduct the final examination of Mohd Rizal bin Ariffin on his thesis entitled "Nitrification of a Tropical Peat Soil Cultivated with Oil Palm (Elaeis guineensis Jacq.)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Radziah binti Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Shamshuddin bin Jusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohamed Hanafi bin Musa, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Sota Tanaka, PhD
Professor
Kochi University
Japan
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 June 2017
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment for the degree of Doctor of Philosophy. The members of the Supervisory committee are as follows:

Ahmad Husni Mohd. Hanif, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Tan Sheau Wei, PhD
Research Officer
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Osumanu Haruna Ahmed, PhD
Professor
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia (Bintulu)
Member

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________ Date: ______________________

Name and Matric No.: Mohd Rizal Bin Ariffin (GS30526)
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Associate Professor Dr. Ahmad Husni Mohd. Hanif

Signature:
Name of Member of Supervisory Committee: Dr. Tan Sheau Wei

Signature:
Name of Member of Supervisory Committee: Associate Professor Dr. Halimi Mohd Saud

Signature:
Name of Member of Supervisory Committee: Professor Dr. Osumanu Haruna Ahmed
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Objectives of study

2 LITERATURE REVIEW
2.1 Nitrogen Management
2.2 N Transformation
2.3 Nitrification
2.3.1 Autotrophic nitrification
2.3.2 Heterotrophic nitrification
2.3.3 Ammonium Oxidizing Archaea (AOA)
2.4 Factors affecting nitrification in soil
2.4.1 Soil moisture and aeration
2.4.2 Soil temperature
2.4.3 Soil pH
2.4.4 Ammonia sensitivity
2.4.5 Organic matter and C: N ratio
2.4.6 Population of nitrifying organisms
2.5 Definition of Nitrification Rate and its Analytical Methods
2.5.1 Measurement of nitrification rates
2.5.1.1 Net nitrification rate
2.5.1.2 Gross nitrification rate
2.5.1.3 Potential nitrification rate
2.5.2 Measurement of nitrifiers diversity and population size
2.5.2.1 Quantitative PCR
2.5.2.2 16S metagenomics
2.6 Tropical peat soil characteristics in relation to nitrification
2.7 Research Gap

3 MATERIALS AND METHODS
3.1 Sampling site description
3.2 Soil physicochemical analyses
3.3 Statistical analyses
4 POTENTIAL NITRIFICATION RATE AND INORGANIC NITROGEN AVAILABILITY IN A PEAT SOIL UNDER OIL PALM CULTIVATION: THE INFLUENCE OF OPERATIONAL ZONES AND DEPTHS

4.1 Introduction 20
4.2 Materials and Methods 20
4.2.1 Site description and soil sampling 20
4.2.2 Statistical analyses 21
4.3 Results and Discussion 21
4.3.1 Soil physicochemical properties 21
4.3.2 \(\text{NH}_4^+, \text{NO}_2^-, \text{NO}_3^- \), PNR and inter-relationship 23
4.4 Conclusion 27

5 EFFECTS OF UREA AND AMMONIUM SULFATE APPLICATION ON THE POTENTIAL MINERALIZATION AND NITRIFICATION RATES OF A TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM

5.1 Introduction 28
5.2 Materials and Methods 28
5.2.1 Soil and sampling information 28
5.2.2 Incubation experiment 29
5.2.3 Soil analysis before and after incubation 29
5.2.4 Statistical analyses 29
5.3 Results and Discussion 30
5.4 Conclusion 36

6 EFFECTS OF MOISTURE LEVELS AND FLUCTUATING MOISTURE CONDITION ON NITRATE AVAILABILITY AND POTENTIAL NITRIFICATION RATE (PNR) IN TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM

6.1 Introduction 38
6.2 Materials and Methods 38
6.2.1 Soil and sampling information 38
6.2.2 Incubation experiment 38
6.2.3 Soil analysis before and after incubation 38
6.2.4 Statistical analyses 39
6.3 Results and Discussion 39
6.3.1 Soil \(\text{NO}_3^- \) content 40
6.3.2 Net mineralization and nitrification 42
6.3.3 Potential nitrification rate 44
6.4 Conclusion 45

7 EFFECTS OF LEGUME COVER CROPS, UREA APPLICATION AND SEASONAL DIFFERENCES ON POTENTIAL NITRIFICATION RATES AND INORGANIC N AVAILABILITY IN PEAT SOIL CULTIVATED WITH OIL PALM

7.1 Introduction 46
7.2 Materials and Methods 47
7.2.1 Soil and sampling information 47
7.2.2 Soil analyses 48
7.2.3 Statistical analyses 48
7.3 Results and Discussion 48
 7.3.1 Soil physicochemical properties 48
 7.3.2 Soil NH₄⁺ contents 51
 7.3.3 Soil Nᵢ Contents 53
 7.3.4 Potential nitrification rates correlation with soil physicochemical properties 55
7.4 Conclusion 57
8 MICROBIAL COMPOSITION, NITRIFIERS IDENTIFICATION AND THE POSSIBLE MECHANISMS OF NITRIFICATION IN TROPICAL PEAT SOIL CULTIVATED WITH OIL PALM 58
8.1 Introduction 58
8.2 Materials and Methods 59
 8.2.1 Sampling site description 59
 8.2.2 Soil samples collection 59
 8.2.3 Soil physicochemical analyses 59
 8.2.4 Soil DNA extraction 59
 8.2.5 Targeted 16S rRNA fragment library construction, sequencing and data analysis 59
8.3 Results and Discussion 60
 8.3.1 Bacterial and Archaeal community composition in WC, FH and HP 60
 8.3.2 Phyla composition in WC, FH and HP area 61
 8.3.3 Bacterial and Archaeal community composition at different depth of WC area 67
 8.3.4 Effect of different agronomic practices and seasonal differences on the microbial composition 70
 8.3.5 Possible nitrification mechanism in tropical peat soil cultivated with oil palm 75
8.4 Conclusion 78
9 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 79
9.1 Summary 79
9.2 Conclusion 81
9.3 Recommendation for future work 81
REFERENCES 83
BIODATA OF STUDENT 105
LIST OF PUBLICATIONS 106
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Overview of the role of nitrification in soil-plant system.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Bacteria and enzymes involved in the nitrification process.</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Gross nitrification rate and gross NO$_3^-$ consumption rate calculation.</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>Ammonium content in operational zones at different depths.</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Nitrate content in operational zones at different depths.</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Inorganic N content in operational zones at different depths.</td>
<td>24</td>
</tr>
<tr>
<td>4.4</td>
<td>Potential nitrification rates (PNR) in operational zones at different depths</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship between soil NH$_4^+$ content with the incubation time in urea and AS added soil.</td>
<td>32</td>
</tr>
<tr>
<td>5.2</td>
<td>Relationship between soil NO$_3^-$ content with the incubation time in urea and AS added soil.</td>
<td>33</td>
</tr>
<tr>
<td>5.3</td>
<td>Relationship between soil N$_i$ content with the incubation time in urea and AS added soil.</td>
<td>34</td>
</tr>
<tr>
<td>5.4</td>
<td>The relationship between net N mineralization and rate of nitrogenous fertilizers.</td>
<td>35</td>
</tr>
<tr>
<td>5.5</td>
<td>Correlation between net mineralization and net nitrification for urea fertilizer added soil.</td>
<td>35</td>
</tr>
<tr>
<td>6.1</td>
<td>Dynamic of soil NH$_4^+$ content during the incubation with different moisture level and fluctuating moisture condition (without urea).</td>
<td>39</td>
</tr>
<tr>
<td>6.2</td>
<td>Dynamic of soil NH$_4^+$ content during the incubation with different moisture level and fluctuating moisture condition (with urea).</td>
<td>40</td>
</tr>
<tr>
<td>6.3</td>
<td>Dynamic of soil NO$_3^-$ content during the incubation with different moisture level and fluctuating moisture condition (without urea).</td>
<td>41</td>
</tr>
<tr>
<td>6.4</td>
<td>Dynamic of soil NO$_3^-$ content during the incubation with different moisture level and fluctuating moisture condition (with urea).</td>
<td>42</td>
</tr>
<tr>
<td>6.5</td>
<td>Net mineralization rates in peat soil treated with different moisture condition.</td>
<td>43</td>
</tr>
<tr>
<td>6.6</td>
<td>Net nitrification rates in peat soil treated with different moisture condition.</td>
<td>43</td>
</tr>
<tr>
<td>6.7</td>
<td>Potential nitrification rate (PNR) of peat soil treated with different moisture condition.</td>
<td>44</td>
</tr>
<tr>
<td>7.1</td>
<td>Soil NH$_4^+$ content in peat covered with leguminous cover crops treated with different N levels in dry and wet season.</td>
<td>52</td>
</tr>
<tr>
<td>7.2</td>
<td>Soil NO$_3^-$ content in peat covered with leguminous cover crops treated with different N levels in dry and wet season.</td>
<td>53</td>
</tr>
<tr>
<td>7.3</td>
<td>Soil N$_i$ content in peat covered with leguminous cover crops treated with different N levels in dry and wet season.</td>
<td>54</td>
</tr>
<tr>
<td>7.4</td>
<td>Soil PNR in peat covered with leguminous cover crops treated with different N levels in dry and wet season.</td>
<td>55</td>
</tr>
<tr>
<td>8.1</td>
<td>Phyla composition percentage (%) in weeded circle (WC), frond heap (FH) and harvesting path (HP) of a tropical peat soil cultivated with oil palm.</td>
<td>64</td>
</tr>
<tr>
<td>8.2</td>
<td>Classes of the phyla Proteobacteria</td>
<td>64</td>
</tr>
<tr>
<td>8.3</td>
<td>Order of Class α-proteobacteria</td>
<td>64</td>
</tr>
<tr>
<td>8.4</td>
<td>Order of phyla Actinobacteria</td>
<td>65</td>
</tr>
</tbody>
</table>
8.5 Order of Class γ-proteobacteria 66
8.6 Phyla composition percentage (%) in weeded circle (WC) area at different depth of a tropical peat soil cultivated with oil palm. 69
8.7 Phyla composition of weeded circle (WC) area in different treatments. 74
8.8 Heterotrophic nitrifiers class number of reads at different management zones. 76
8.9 Thaumarchaeota number of sequences in natural ground cover and conventional legume cover. 76
8.10 Nitrite oxidizers order composition in different management zones. 77
8.11 Nitrospirales number of reads in WC area at different depth. 77
LIST OF TABLES

Table	Page
2.1 Main forms of Nitrogen in soil and their oxidation states (adapted from Robertson & Groffman, 2007). | 5
4.1 Operational zones in oil palm plantation. | 21
4.2 Comparison of soil properties in different operational zones in oil palm plantation. | 22
4.3 Pearson correlation coefficient between soil physicochemical parameters. | 27
5.1 Selected soil physicochemical properties before incubation. | 29
5.2 Soil pH (before and after incubation), NH$_4^+$, NO$_3^-$, N$_i$ and PNR properties after 60 days of incubation. | 31
6.1 Selected soil physicochemical properties before incubation | 39
7.1 Soil physicochemical properties ratio in soil covered with different leguminous cover crop under different rates of urea-N during dry season and wet season. | 50
7.2 Correlation coefficients among variables (n=36) | 57
8.1 Sequencing analysis of the weeded circle (WC), frond heap (FH) and harvesting path HP). | 61
8.2 Sequencing analysis of the weeded circle (WC) soil at different soil depths. | 67
8.3 Sequencing analysis for the effect of different land management, season and with and without fertilizers in weeded circle (WC) soil. | 71
LIST OF ABBREVIATIONS

AMO ammonia monooxygenase genes
amoA ammonia monooxygenase archaea genes
AOA ammonia oxidizing archaea
AOB ammonia-oxidizing bacteria
AS Ammonium sulphate
C Carbon
CO₂ Carbon dioxide
c-PCR competitive polymerase chain reaction
DCD diacyandiamide
FH Frond heap
HAO hydroxylamine oxidoreductase
HP harvesting path
LCC leguminous cover crops
MPN most probable number
MPOB Malaysia Palm Oil Board
N₂ dinitrogen
N₂O Nitrous oxide
NH₂OH hydroxylamine
NH₃ Ammonia
NH₄⁺ Ammonium
Nᵢ Inorganic N
NO Nitric oxide
NO₂⁻ Nitrite
NO₃⁻ Nitrate
NOB nitrite oxidizing bacteria
O₂ oxygen
O₃ ozone
OH hydroxyl
OM Organic matter
PNR potential nitrification rate
q-PCR quantitative polymerase chain reaction
TC Total carbon
TN Total nitrogen
WC Weeded circle
WHC Water holding capacity
CHAPTER 1

INTRODUCTION

The microbial mediated conversion of ammonium and ammonia (NH$_4^+$ and NH$_3$) to nitrite –N (NO$_2^-$) is the first step in the nitrification process. Afterwards, NO$_2^-$ is further oxidized to nitrate (NO$_3^-$). Although NO$_3^-$ production through nitrification is important for plant nutrient uptake, NO$_3^-$ is also susceptible to leaching into water bodies. At the same time nitrification can also produce nitrous oxide (N$_2$O) as byproduct under aerobic condition which can escape to the atmosphere and affecting the ozone layer (Cameron et al., 2013; O’Sullivan et al., 2011). Therefore, nitrification is an important mechanism affecting nitrogen (N) loss and mobility in soils, a process that lowers N-use efficiency in agriculture systems. In agriculture systems, it is desirable to control the conversion of N fertilizer (applied in stable and reduced form of NH$_4^+$ or urea) to more mobile oxidized form (NO$_3^-$) as this allows for longer access to N by the plant roots (Chen et al., 2008).

Higher nitrification rate is assumed to occur in tropical soils because of the hot climate and abundant rainfall which subsequently stimulate nitrification in soils. However, very few studies can be found emphasized on soil nitrification (Breuer et al., 2000; Chao et al., 1993; Pett-Ridge et al., 2013). In tropical peat soils, it is generally believed that nitrification can be neglected because of the extremely acidic condition (pH$_{water}$ < 4.5). However, it has become widely accepted that nitrification can occur in a wide range of acid soils (<5.5) (De Boer & Kowalchuk, 2001). Even the ultra-acidic soils (pH$_{water}$ ~ 3) have been reported to support nitrification. Moreover, natural tropical peat soils are in water saturated condition which suppressed aerobic microbial activity (Furukawa et al., 2005). However, in cultivated peat soils especially with oil palm, water table is normally lowered to about 60 cm to allow oil palm roots well aerated (Mutert et al., 1999). Through this, nitrification can become prominent as aerobic conditions are enhanced (Regina et al., 1996). This is also evident through production of high N$_2$O gas upon cultivating peat soils with oil palm (Melling et al., 2007; Sakata et al., 2015). Many studies have been focused on N$_2$O release in oil palm cultivated on peat soils (Arai et al., 2014; Jauhiainen et al., 2012; Müller et al., 2016; Melling et al., 2007), but only few studies emphasized on nitrification in tropical peat soils and oil palm cultivated peat soils (Nurulita et al., 2016; Pett-Ridge et al., 2013).

In addition, cultivated peat land (mainly oil palm in Malaysia) received of N fertilizer (140-150 kg N/ha) for yield optimization (Anuar et al., 2008; Schroth et al., 2000; Tung et al., 2009). Addition of N fertilizer generally stimulate nitrification as it served as available substrates for the nitrifiers community (He et al., 2007; Shen et al., 2014). For the past decade, it was assumed that the process of ammonia oxidation, the rate limiting step of nitrification, was restricted to a small range of autotrophic bacteria belonging to β-subclasses of Proteobacteria (Bothe et al., 2000). Collectively known as the ammonia-oxidizing bacteria (AOB), these microorganisms have been extensively studied in terms of their biochemistry, physiology, contribution and factors affecting their activity towards nitrification (Bowatte et al., 2006; Chu et al., 2007). However, the recent
discovery of ammonia oxidizing archaea (AOA) from the Crenarchaeota lineage challenges the assumption that nitrification in soil is chiefly dominated by AOB (Treusch et al., 2005; Venter et al., 2004). It has been suggested that the AOA are favored over AOB at lower soil pH (Nicol et al., 2008) and lower NH$_4^+$ availability (Martens-Habbena et al., 2009). In addition, AOA generally dominates fertilized agricultural soils especially with ammonia fertilizers (Hayatsu et al., 2008; Leininger et al., 2006) mainly due to the use of urea, including other N fertilizers in agriculture have been shown to be used through hydrolysis for autotrophic nitrification (Burton and Prosser., 2001). Therefore, added N source could be one of the contributing factors of nitrification in tropical peat soils cultivated with oil palm as it affects nitrifiers diversity. However, up to date, very few literature can be found on nitrifiers population, diversity and abundance in tropical peat soils used for oil palm cultivation.

Various physical, environmental and chemical factors affect soil nitrification. Specifically, nitrification process is affected by NH$_4^+$ availability, oxygen (O$_2$) supply and temperature. These factors affect the nitrifying population (type, density and diversity) and also regulate NH$_4^+$ concentration and availability (Krave et al., 2002). Typical microbes are sensitive to disturbance in pH. Acidic condition will decrease their growth and activity because they are unable to regulate their intracellular pH value when there is environmental changes in pH (Rousk et al., 2010). However, nitrifiers possess survival mechanisms that permit them to remain alive and well distributed in different terrestrial ecosystems. This is through their autotrophic nature which enables them to create biomass through biosynthetic pathways (Allison & Prosser, 1991). At the same time, nitrifiers cell also can be maintained under starvation condition through low level of cytoplasmic respiration and lower anabolic processes to undetectable levels (Hagopian & Riley, 1998). Nonetheless, information on nitrification rate in oil palm under tropical peat soils and the major factors influencing it such as soil moisture, substrate availability and land use remained limited and not well characterized. It is hypothesized that nitrification is prominent in in oil palm cultivated peat soils and the process rate is influenced by substrate availability, soil moisture and availability of acid-tolerant microorganisms to perform nitrification.

1.1 Objectives of the study

Generally, there is a need to elucidate the nitrification status in oil palm under tropical peat soils. Furthermore, there is lack of information on the microbial part of nitrification as well. This study aimed a) to determine the nitrification rate in tropical peat soil in relation to the major factors influencing it. The study also b) identified and characterized the microorganism involved in nitrification including their abundance. Further understanding in this process is expected to contribute to knowledge of the N cycling and losses which affect nutrient use efficiency. A better understanding of nitrification rates and their regulation helps research effort towards increasing N-use efficiency and maintaining environmental quality especially in situations where the loss of applied N following nitrification is high. It will also provide strong basis for decision making that relates to fertilizer management in peat soils.
The present study was carried out with the following specific objectives:

I. to determine the influence of operational zones, harvesting path (HP), weeded circle (WC) and frond heap (FH) and their depths on potential nitrification rate and inorganic N (N\textsubscript{i}) availability related to soil physicochemical parameters,

II. to determine the dynamic of NH\textsubscript{4}⁺, NO\textsubscript{3}⁻, N\textsubscript{i} and potential nitrification rate (PNR) in relation to different N source (Urea and Ammonium sulphate) and rate,

III. to determine NH\textsubscript{4}⁺, NO\textsubscript{3}⁻, N\textsubscript{i} and PNR under different moisture levels and fluctuating moisture condition with and without the addition of urea,

IV. to compare NH\textsubscript{4}⁺, NO\textsubscript{3}⁻, N\textsubscript{i} and PNR in oil palm under peat soils with different rates of urea applied and in combination with different leguminous cover crops (LCC) (agronomic practices),

V. to determine the interactions between agronomic practices and seasonal difference in NH\textsubscript{4}⁺, NO\textsubscript{3}⁻, N\textsubscript{i} and PNR,

VI. to identify and quantify the type of nitrifiers available in peat soil cultivated with oil palm and understand their distribution at different operational zones, depth, agronomic practices and season.
REFERENCES

Linquist, B. a., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C., van Groenigen, K.

Mendum, T. a., Sockets, R. E., and Hirsch, P. R. (1999). Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the β subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Applied
and Environmental Microbiology, 65(9), 4155–4162.

96

Stopnišek, N., Gubry-Rangin, C., Höfferle, Š., Nicol, G. W., Mandič-Mulec, I., Prosser, J. I. (2010). Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced
by ammonium amendment. Applied and Environmental Microbiology, 76(22), 7626–7634.

101

