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Abstract of thesis presented to the Senate of Universiti Putra 
Malaysia in fulfilment of the requirement for the degree of 

 Doctor of Philosophy 

THEORETICAL FOUNDATION AND NUMERICAL ANALYSIS ON 
COANDĂ EFFECT FOR MICRO-AIR VEHICLE 

By 

RIYADH IBRAHEEM AHMED 

September 2016 

Chairman   : Associate Professor Ir. Abd. Rahim Abu Talib, PhD 
Faculty      : Engineering  

Motivated by the need to relate various design parameters of Coandă 
Micro Air Vehicle (MAV) for its design operation and development, an 
integrated approach has been undertaken statement that is to 

develop a workable theoretical analysis that can be utilised as a 
baseline to design a MAV that can operate effectively in various 

environmental conditions. The first approach is the analytical, which 
capitalizes on the basic fundamental principles. The second is the 
utilization of Computational Fluid Dynamics (CFD), which is based 

on Navier-Stokes equation for viscous fluid to simulate 
configurations considered in the analysis, to assess the analytical 
results, to serve as guideline in developing the analytical model and 

to provide visualization, and significant insight in identifying the 
pertinent, problem, to validate the results and to assess the 

plausibility of the analysis.  

In the theoretical analysis, care has been taken in identifying the 
geometrical parameters of the MAV physical properties of the 

environment and medium, and the motion of the vehicle at the 
atmosphere. For the motion of the MAV, basic flight dynamics 
treatment of the vehicle as a free body mass particle has been 

followed to derive the basic governing equations. The governing 
equations for Coandă MAV in hover and translatory motion have 
been developed and given the understanding of the relationships 

between relevant Coandă MAV parameters for design and operation 
purposes.  
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The mathematical model and derived performance measures have 
shown the capability of the theoretical model and analysis in 

describing the physical phenomena of the flow fields of the semi-
spherical Coandă MAV as well as of the cylindrical Coandă MAV. 

These models provide fundamental tools for the analysis and 
estimation of Coandă MAV lift generation. In summary, the two 
approaches have been able to offer the working relationships among 

various design parameters for the design and operation of Coandă 
MAV, which are novel and have not been formulated elsewhere as in 
this work. The results of the analysis are believed to be useful for 

conceptual or preliminary design sizing of Coandă MAV's, and can be 
used in the estimation of their lift and other performance measures. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra 
Malaysia sebaai memenuhi keperlun keperluan untuk ijazah  

Doktor Falsafah 

TEORI ASAS DAN ANALISIS BERANGKA TERHADAP KESAN 
COANDĂ KE ATAS KENDERAAN MIKRO UDARA 

Oleh 

RIYADH IBRAHEEM AHMED 

September 2016 

Pengerusi : Prof. Madya Ir. Abd. Rahim Abu Talib, PhD 
Fakulti     : Kejuruteraan  

Didorong oleh keperluan untuk menghubungkait beberapa 
parameter reka bentuk bagi Coandă kenderaan mikro udara (MAV) 
untuk operasi dan pembangunan reka bentuknya, satu pendekatan 

bersepadu telah diambil untuk membangunkan satu analisis teori 
yang boleh dilaksanakan bagi digunakan sebagai asas untuk mereka 

bentuk satu MAV yang boleh beroperasi dalam pelbagai kondisi 
persekitaran. Pendekatan pertama adalah analitikal yang 
bermodalkan prinsip dasar asas. Pendekatan kedua adalah 

penggunaan Komputasi Dinamik Bendalir (CFD) yang berasaskan 
persamaan Navier-Stokes bagi bendalir likat untuk mensimulasikan 
konfigurasi yang diambil kira dalam analisis, mentaksir keputusan 

analitikal, menjadi garis panduan dalam membangunkan model 
analitikal dan menyediakan pembayangan serta wawasan bererti 

dalam mengenalpasti masalah yang relevan di dalam pernyataan 
masalah bagi kerja ini agar dapat mengesah keputusan dan 
mentaksir kemungkinan analisis.  

Dalam analisis teoritikal, perhatian telah diberikan dalam mengenal 
pasti parameter geometri MAV, sifat fizikal persekitaran dan 
medium, dan gerakan kenderaan dalam atmosfera. Bagi gerakan 

MAV, olahan asas dinamik penerbangan bagi kenderaan ini sebagai 
zarah jisim badan bebas telah diikuti untuk menerbitkan persamaan 
menakluk asas. Persamaan menakluk bagi Coandă MAV dalam 

gerakan hover dan luncur telah dibangunkan dan memberikan 
kefahaman mengenai perkaitan di antara parameter Coandă MAV 

yang relevan bagi tujuan reka bentuk dan operasi. 
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Model matematik dan pengukur prestasi yang dibina telah 
menunjukkan kemampuan model dan analisis teoritikal dalam 

menerangkan fenomena fizikal medan aliran bagi Coandă MAV 
separuh-sfera serta Coandă MAV silinder. Model ini menyediakan 

alat asas untuk analisis dan penganggaran penjanaan daya angkat 
bagi Coandă MAV. Sebagai kesimpulannya, dua pendekatan yang 
diambil telah mampu menyediakan perkaitan di antara pelbagai 

parameter reka bentuk yang boleh digunakan dalam mereka bentuk 
dan operasi Coandă MAV, yang mana ianya novel dan belum 
dirumuskan di tempat lain seperti dalam kerja ini. Keputusan 

analisis dipercayai berguna untuk pensaizan reka bentuk konsep 
dan permulaan Coandă MAV serta boleh digunakan untuk 

penganggaran daya angkatnya dan pengukuran prestasinya yang 
lain. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

“At the present time no known man made UAV stands any chance of 
matching the performance of Coandă Micro vehicles” 

(Adapted from Collins, 2002) 

Coandă Micro Air vehicles (MAVs) could be predicted to be the next, 
emerging generation of aerospace systems, with many potential 
applications in both civilian and military missions. In this regards, 

Coandă MAV, as an active controlled and vertical take-off and 
landing aircraft (VTOL), can be truly described as a new airspace 

platform, since the record in the literature and researches have not 
so far revealed a mature concept and a new operational air vehicle or 
presently under development. Consequently, one may begin exploring 

the Coandă MAV concept with the applications to Coandă MAV 
principles. As the field of Coandă MAV, which is a VTOL air-vehicle 
evolved, much attention was paid to Coandă MAV lift and propulsion 

system considerations and development of the governing 
aerodynamic theory. Other subjects included design studies of 

configurations and control issues during hover and transition, as 
depicted in Figure 1.1, which to the best of the author’s knowledge 
have not received sufficient attention thus far. 

Figure 1.1: Flight Manoeuvring Structure of Coandă MAV 
(Modified from Frank et al., 2007) 
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As radical new air vehicles that combine state of the art technologies 
in a new and synergistic manner is one which uses the Coandă effect 

to develop lift and propulsion. 

For designing a Coandă MAV, which could meet the desired mission 

and design requirements, it is mandatory to establish the basic 
working relationships between various relevant variables and 

parameters governing the aerodynamics forces.  

Insufficient knowledge, predictive capabilities, and experimental data 

exist regarding the fundamental unsteady aerodynamics of low 
Reynolds number flyers, and the associated fluid-structure-control 
interactions and flight mechanics on Coandă MAV.  

Such brief but comprehensive view on Coandă MAV development 

thus far, which will be further elaborated in the literature review, 
motivated the author to pursue the issue as formulated in the 
problem statement, and develop a working principles, as a baseline, 

for design and operation. To assist the analysis, design, and 
developments of Coandă MAV's, several tools can be resorted to. The 

first is the analytical tool, which capitalizes on the basic fundamental 
principles. The second is the utilization of Computational Fluid 
Dynamics (CFD), which has the advantage of providing visualization 

for significant insight and identification to the problem at hand, 
which then can be utilized in enhancing the analysis and identifying 
specific details.  

Other tools such as experimental, which are not covered here 

although some attempt was executed to have a demonstration model 
for its practicality, can benefit from the insight gained by analysis, 
CFD computational and visualization studies. 

By referring to Figure 1.2, representing an impression of the possible 
Coandă MAV qualitative performance in comparison to other flight 

vehicles, it would be of interest to investigate the principle of Coandă 
MAV Lift generation as well as its performance in hover and forward 

flight. 
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Figure 1.2: Coandă MAV qualitative performance in comparison 
to other flight vehicles. (Modified from Schroijen and 
van Tooren, 2009) 
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1.2 Problem Statement 

Micro Air Vehicles (MAVs) can be used in variety of missions, for 
civilian and military operations, that required to perform a steady 

positioning for surveillance and monitoring and to accomplish a good 
manoeuvrability within an unstable atmosphere. Then, the problem 
faced is to develop a workable theoretical analysis that can be 

utilised to design a Micro Air Vehicle (MAV) that can operate 
effectively in various environmental conditions. 

It should be kept in mind that various factors, which incorporate 
vehicle geometrical and physical properties, environmental conditions 

and physical properties, and the relative motion between the vehicle 
with respect to the environment, which should be identified and 
elaborated. One example is the role and influence of Circulation 

Control using Coandă effect. 
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1.3 Thesis Objectives 

Based on the problem statement, the research objectives can be 
elaborated as follows: 

i) To establish relevant governing equations from first principles
on the Coandă effect for the Coandă MAV as the basis of their

physical and mathematical modelling and their further analysis
and performance.

ii) To analyse numerically the Coandă effect on Coandă MAV by
carrying out computational fluid dynamic (CFD) techniques
and numerical simulation utilizing appropriate computational

routine.

iii) To assess the applicability of the Coandă MAV theoretical
analysis based on first principle analysis and CFD numerical
simulation in synthesizing the working principle of basic

Coandă MAV configuration appropriately.

In this regards it is noted that theoretical foundation provides 

essential vision, and CFD simulation incorporates additional 
information not considered in the theoretical analysis such as the 

effect of viscosity, details influence of the boundary conditions and 
the flow field  

file:///G:/MY%20THESIS/2.%20TEXT%20OR%20MAIN%20BODY/1.%20THESIS%20INTRODUCTION/1.5%20Objectives%20and%20Approach%20of%20Current%20Research.docx
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1.4 Hypothesis and Research Questions 

1.4.1 Hypothesis 

To carry out research work associated with the problem statement 
and objective, some assumption and research hypothesis will be 
formulated as a guideline. Basic assumptions that will be adapted in 

this work are that the Coandă MAV can be modelled as a simple 
configuration that will represent the main elements for producing 
Coandă jet effects. The analysis will assume the fluid as 

incompressible and in the motion of Coandă MAV; the latter can be 
treated as a point Mass rigid body. The CFD simulation study that 

will be resorted to is chosen to be based on viscous flow, i.e. the 
Navier Stokes equation. The following hypothesis can be formulated  

 In the physical and mathematical modelling, the dynamics of 
Coandă MAV can be formulated using conservation principles 
in fluid dynamics and rigid body motion in flight dynamics.  

 The governing equations derived using the above approach can 

be utilised for sizing and developing parametric studies in the 
conceptual design, as well as modifying the governing 
equations for other configurations. 

1.4.2 Research Questions 

The fundamental research questions elaborate the means and 
methods formulated in the hypothesis. The hypothesis is an intuitive 
answer to the problem statement and objective of the research, based 

on assumptions that have to be taken to isolate the problem in order 
to obtain workable solution. The fundamental research questions are: 
How can a mathematical model for a Coandă MAV that utilized for  

conceptual design prediction and limited optimisation be significantly 
improved upon, and, to what extent could an improved Coandă MAV 

design be produced there after? 

Then the research question related to the hypothesis can be 

formulated below, as related to the analytical, CFD simulation and 
demonstration experiment carried out in the present study.  
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Study No. Research Problems 

Analytical 
RQ1 

Find the governing equation of the Coandă 

MAV in hover 

RQ2 
Find the governing equation of the Coandă 
MAV in Translation  

CFD simulation 
study 

RQ3 
Verify the analytical prediction using CFD 
simulation 

RQ4 
Elaborate the contribution of CFD 
simulation to the mathematical modelling 
in analysis 
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1.5 Scope and Limitation 

1.5.1 Scope 

The scope of study is only on a basic Coandă fluid dynamics and 
flight dynamics without going into other details like additional 
control surfaces and complex configuration. The research plan and 

the work methodology, including the milestone of achievements were 
managed according to the research proposal and thesis objects 
following the research time schedule. Special attention to be given on 

the modelling and prototyping concept of Coandă jet, to generates lift 
of micro air vehicles. The work scope can be summarized to be 

covering the following Research Elements: 

 To review of Coandă effect, and to establish schemes for 

improvements in terms of lift enhancement on Coandă MAV. 

 To carry out theoretical analysis and Computational fluid 

dynamic CFD simulations of sets of Coandă MAV models. 
These integrated Coandă MAV models (Semi-spherical and 

Cylindrical Shapes) based on the analytical study and 
numerical analyses were developed.  

 To devise a propulsion system with Coandă effect controlled 
configuration to investigate the effect of certain strategies to 
alleviate Coandă jet impact. The work focuses on the 

aerodynamic aspects of Coandă circulation control concepts, 
for two dimensional 2D and three dimensional 3D models, for 

steady flow at zero degree angle of attack and with the variation 
of geometrical parameters of the MAV configurations, such as;  

 MAV body sizes ( diameter) 

 Jet thickness (slot opening) 

 Jet Momentum (jet speed) 

 Jet Location 

 To Carrying out an investigation of the principle of Coandă 
MAV, lift generation as well as its performance in hover and 

forward flight. Using modelling and proof concept of 
prototyping by the means of: 

 Formulations and Utilization of First Principles as the 
analytical tool, which capitalizes on the basic fundamental 

principles. 

 CFD simulation: the utilization of Computational Fluid 

Dynamics (CFD), using commercial software ANSYS Fluent 
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(Swanson Analysis System, Inc.), to provide visualization and 
significant insight in identifying the relevant problem. 

Theoretical analysis and CFD visualization studies will be 
useful in the preliminary study stage, as well as in designing 

specific experiments in the conceptual and prototype design 
stages.  

All materials, equipment, models, tools and hardware’s to support 
this research study, with a licensed software, ANSYS Fluent available 
for CFD simulation of the generic Coandă Effect, were made available 

by the Aerospace Engineering Department, Engineering Faculty, 
Universiti Putra Malaysia (UPM). The analytical and computational 

simulation has been carried out for many cases and the results were 
analysed accordingly. 

1.5.2 Limitation 

The work is only limited to answer the objective and research 

questions that can be used as a baseline for Coandă MAV mechanics 
and design. The parametric study is focussed on two-dimensional 
steady flow and the theoretical analysis will not consider the effects 

of viscosity and velocity profile, which is instrumental in gaining 
insight into the problem. Viscous effects are dealt with in the CFD 
analysis and simulations. 

 The idealization on the flow condition and the focus on two-

dimensional flow process are aimed to produce flow situation, which 
will be assisted by CFD analysis. 
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1.6 Outline of Thesis 

The research thesis was divided into nine main chapters that cover 
systematically the whole work, and are outlined briefly as follows: 

 Chapter One; concludes an overview of the system, motivating 
the problem statements, along with the principal objectives of 

the present study. More details related to the thesis hypothesis 
and research questions as well as the thesis scope and 
limitation have been briefly explained. 

 Chapter Two; provides a scientific literature review and 
previous work focused on the publications dealing with the 

issue of designing of Coandă MAV. In this chapter, an effort to 
classify of mini size UAVs and provide an insight into this 

rapidly growing field is prepared. Special aspects of 
aerodynamics performance for typically mini size UAVs are 
discussed in relation to their motion applications. The 

foundation of Coandă MAV is described in full details. 

 Chapter Three; outlines of  the methodology of the research in 
this thesis which is incorporated of various studies, analytical 
study, and numerical analysis that  are intended to be 

developed. The numerical analysis is elaborated to show details 
of the governing equations, the formulation of the Navier-
Stockes equations, and the computational set up.  

 Chapter Four; this chapter was divided into two main sections. 

The first, describes the development of the mathematical 
models for the two baseline Coandă MAVs (semi-spherical and 
cylindrical models) with elaborated derivations. The second 

section provides details of the derivations of the fluid dynamic 
and flight mechanics of the Coandă MAV, in hover, cursing and 
forward flight.  

 Chapter Five; explains the computational fluid dynamic 

analysis conducted in the present work. The body geometry the 
grid generation and the mesh independency test are discussed 
in details. More details are given related to the turbulent 

models used in the present study.   

 Chapter Six; present in details the analysis results, verification 

validation, discussions, and an overview of the whole study.  

 Chapter Seven; presents the conclusions section, looking back 

at the various topics touched upon this thesis, attempting to 
objectively evaluate the results obtained. The recommendations 

for future work in terms of both possible improvements and 
new research directions are described. 
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Other details may be added to include some essential information’s 
as will be presented in the Appendices. Outline of the thesis is 

depicted in Figure 1.3. 

Figure 1.3: Thesis outlines 
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