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The digital images are defined as digital signals come across with many kinds of 
difficult scenarios during transmission and acquisition. One of the main problems in 
the scientific digital world is the noise. For example, amendments due to additive 
white Gaussian noise (AWGN) or the multiplicative (speckle) in some cases that can 
be resulted from poor quality image acquisition.  The main aim of an image denoising 
technique is to minimize the level of noise, and protect the fine details of the image as 
much as possible. Wavelet denoising has the superior reputation to remove the 
additive noise while preserving the signal features, nevertheless of its frequency 
content. In this regard, the second-generation wavelets (SGWs) that employ the 
properties of sparsity and multiresolution from discrete wavelet transformation 
(DWT) is used in noise reduction. The aim of this thesis is to restore a high quality 
image from the noisy counterpart where the natural images mostly suffered from 
AWGN. In this issue, a newly developed algorithm based on second-generation 
wavelet transformation using semi-soft thresholding is introduced. In order to increase 
the robustness of the proposed algorithm, the level of noise in digital image can be 
estimated if the noise standard deviation σ is unknown. This estimation can be done by 
exploiting one of the features of SGWs. Moreover, to capture the dependency between 
a pixel and its neighbours on the wavelet transform, hidden Markov model (HMM) is 
used. The HMM also allows the hidden states to connect to each other to capture the 
dependencies among the coefficients in wavelet domain. Due to the lack of translation 
invariance in the wavelet basis function, some artifacts may appear after applying the 
denoising algorithm. Cycle spinning idea (for range of shift operations) is 
implemented in order to enhance the quality of the denoised estimates, and minimize 
the Gibbs phenomenon disturbing artifacts that are often existing in wavelet-based 
image reconstruction and denoising.  
 
 
The main steps in the proposed denoised algorithm are: firstly, apply the second–
generation wavelet transformation on the noisy image. Then perform hierarchically, 
point-wise adaptive thresholding on the wavelet coefficients. Once the wavelet 
coefficients are modified, the estimation of the wavelet coefficients using HMM is 
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determined. Finally, the inverse process can be applied to the wavelet coefficients to 
restore it back to the original form and attain the denoised image. After applying the 
denoising algorithm on the contaminated image, the cycling spinning algorithm is 
applied to increase the visual quality of the restored image.  Furthermore, to evaluate 
the suggested algorithm, two kinds of assessment scales are conducted; subjective and 
objective scales. Firstly, quantitative comparison that represents the objective scale is 
used in the proposed algorithm to evaluate the denoised images. It contains assessment 
measurements such as: peak signal to noise ratio (PSNR), mean squared error (MSE), 
structure similarity index (SSIM), and finally the image quality index (Q-index). 
Secondly, subjective scale, good measureable results do not assurance high visual 
quality of the denoised images. So in real applications, the visual quality is still an 
important metric. According to that, the visual comparison in subjective analysis is 
used. The denoised images subjected to a poll where people were asked to pick the two 
least noisy images, and rank them as first and second choice. The images that are 
chosen to be tested in this study are: Lena, Barbara, Baboon, Boat, F16 and Peppers. 
The suggested algorithm (SGWs-HMM) outperformed the best state-of-the-art 
denoising algorithms in terms of quantitative measurements and design simplicity in 
most of the time. Mathematically, in PSNR, the improvement margin of SGWs-HMM 
was in range from 0.6dB up to 5.6dB compared with different  denoising algorithms 
under investigation, and in SSIM it showed (~0.5-0.72) higher than HMM and Block 
matching 3D (BM3D) algorithms in different tested images. As a conclusion, the 
digital image denoising technique that is proposed in this study can enhance and 
improve the noisy images both qualitatively and quantitatively. The proposed 
algorithm is designed in order to tackle many limitations of the existing algorithms 
such as complexity load, inability to be universal, vulnerability to severe image 
degradations especially in high noise levels, etc. 
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Imej digital dianggap sebagai isyarat digital yang melalui pelbagai jenis senario 
cabaran sepanjang proses penyampaian dan penerimaan. Salah satu masalah utama 
dalam dunia digital  saintifik ini adalah hingar. Sebagai contoh, herotan akibat dari  
tambahan Gaussian hingar putih (AWGN) dan pada kes tertentu  pendaraban (belu) 
yang  disebabkan oleh perolehan imej berkualiti rendah. Matlamat utama algoritma 
bagi nyah hingaran imej  adalah untuk mengurangkan tahap bunyi bising, di samping 
memelihara imej butiran halus sebanyak mana yang boleh. Nyah hingaran wavelet 
mempunyai reputasi yang lebih tinggi untuk mengeluarkan  hingaran tambahan pada 
imej di samping memelihara ciri-ciri isyarat, tanpa mengira kandungan frekuensinya. 
Dalam hal ini, wavelet generasi kedua (SGWs) yang menggunakan sifat-sifat 
kejarangan dan pelbagai resolusi dari transformasi wavelet diskret (DWT) digunakan 
dalam pengurangan hingar. Tujuan tesis ini adalah untuk memulihkan imej yang 
berkualiti tinggi daripada gangguan-gangguan hingar di mana imej semula jadi 
kebanyakannya mengalami AWGN. Dalam hal ini, algoritma baru dibangunkan 
berdasarkan wavelet transformasi generasi kedua menggunakan teknik thresholding 
separa lembut. Dalam usaha untuk meningkatkan keteguhan algoritma yang 
dicadangkan, tahap bunyi di dalam imej semula jadi boleh dianggarkan jika sisihan σ 
hingar standard tidak diketahui. Anggaran ini boleh dilakukan dengan 
mengeksploitasi salah satu daripada ciri-ciri SGWs. Selain itu, untuk mengenalpasti 
kebergantungan antara piksel dan sekelilingnya iaitu pada domain wavelet, model 
Markov tersembunyi (HMM) digunakan. HMM  juga membolehkan nod-nod yang 
tersembunyi untuk berhubung antara satu sama lain untuk menangkap kebergantungan 
antara pekali wavelet. Oleh kerana kekurangan varians terjemahan dalam fungsi asas 
wavelet, beberapa artifak boleh muncul selepas menggunakan algoritma denoising itu. 
Idea kitaran berputar (untuk pelbagai operasi peralihan) dilaksanakan untuk 
meningkatkan kualiti anggaran nyah hingar, dan meminimumkan artifak fenomena 
Gibbs yang mengganggu dan sentiasa ada dalam berdasarkan wavelet pembinaan 
semula imej dan nyah hingaran.  
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Langkah-langkah utama dalam nyah hingaran algoritma yang dicadangkan adalah: 
pertama, mengaplikasikan kedua transformasi –generasi  wavelet pada imej yang 
hingar. Kemudian melaksanakan secara hirarki, pengambangan penyesuaian titik – 
bijak  pada wavelet pekali. Setelah wavelet pekali diubah suai, anggaran wavelet 
pekali menggunakan HMM ditentukan. Akhir sekali, proses songsang boleh 
digunakan untuk wavelet pekali bagi mengembalikannya kembali kepada bentuk sedia 
ada dan mencapai imej nyah hingaran. Selepas menggunakan algoritma nyah hingaran 
pada imej yang tercemar, algoritma berputar digunakan untuk meningkatkan kualiti 
visual imej yang telah dibina semula. Tambahan pula, untuk menilai algoritma yang 
dicadangkan itu, dua jenis skala penilaian dijalankan; skala yang subjektif dan 
objektif. Pertama, perbandingan kuantitatif yang mewakili skala objektif digunakan 
dalam algoritma yang dicadangkan untuk menilai imej yang telah dinyah hingar. Ia 
mengandungi ukuran penilaian seperti: isyarat puncak kepada nisbah hingar (PSNR), 
min ralat kuasa dua (MSE), indeks struktur persamaan (SSIM), dan akhirnya indeks 
kualiti imej (Q-indeks). Kedua, skala subjektif, keputusan kuantitatif yang baik 
melakukan kualiti visual tanpa gerenti imej baik yang dibina semula. Jadi dalam 
aplikasi sebenar, kualiti visual masih merupakan matriks utama. Oleh itu, 
perbandingan visual dalam analisis subjektif digunakan. Imej-imej yang dinyah hingar 
tertakluk kepada satu tinjauan di mana orang telah diminta untuk mengambil 
kedua-dua imej yang kurang  bising, dan kedudukan mereka sebagai pilihan pertama 
dan kedua. Kumpulan imej yang telah dipilih bagi diuji dalam kajian studi ini adalah: 
Lena, Barbara, Baboon, Boat, F16 and Peppers. Cadangan algoritma (SGWs-HMM) 
mengatasi prestasi terbaik teknik terkini algoritma nyah hingaran dari segi ukuran 
kuantitatif dan kesederhanaan pengiraan dalam kebanyakan masa. Secara matematik, 
dalam PSNR, SGWs-HMM peningkatan margin adalah dalam julat daripada 0.6dB 
sehingga 5.6dB daripada  algoritma berlainan dengan nyah hingaran yang disiasat, dan 
di dalam SSIM ia menunjukkan (~0,5-0,72) lebih tinggi daripada HMM dan Blok 
hampir sama 3D (BM3D) algoritma dalam imej berbeza diuji.  Kesimpulannya, imej 
semula jadi teknik nyah hingar yang dicadangkan dalam kajian ini dapat 
meningkatkan dan memperbaiki imej hingar secara kualitatif dan kuantitatif. 
Algoritma yang dicadangkan direka bagi menangani banyak batasan algorithma sedia 
ada seperti beban kerumitan, tidak bergerak secara universal, pendedahan kepada 
kualiti penurunan imej yang teruk terutamanya di tahap hingar yang tinggi, dan 
lain-lain. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background  

During the past several decades, considerable research has been done on the image 

restoration. Several techniques were used based on the noise models and kind of the 

image itself. Most natural images are presumed to be corrupted by random additive 

noise, which usually is modeled as Gaussian noise. The noise considered to be white if 

it has the same power at all its flat frequencies i.e. the noise has the same power 

spectrum in the whole image (Nath, 2013) .   

 

 

As depicted in Figure 1.1, the procedure of degradation process without blaring is 

shown as an additive noise, w     , which works on an input signal (image), x     , to 

yield a corrupted image  ̂     . Given this space of noise observation, along with some 

knowledge of the additive noise, the restoration system produces an estimate,  ̃     , of 

the noise-free image. The main aim is to attain a reconstructed image as close as 

possible to the original image using a desired denoising estimation. In many fields 

such as astronomy, medical imaging, and computer vision, the collected data are often 

noisy as a result of data acquisition processes or due to natural phenomena such as 

atmospheric disturbances. Even acquiring an image with the usage of a digital camera 

can cause corruption to the image of the scene with the noise generated by the 

capturing tools such as the Charge-Coupled Device (CCD) sensors. Moreover, in some 

cases the blurs in the image are presented by atmospheric turbulence, aberrations in the 

visual structure and relative motion among ground and camera. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The degradation and restoration model for the process of additive 

noise  
 

 

Thus, noise is added to the data when it is transmitted over transmission channels. The 

corrupting noise might result in degradation of the visual quality of the images and 

may also mask and prevent the appearance of the important image details. Even if the 

perceived images do not show noise degradation due to the masking effects of the 

human visual system, many image analysis tasks, such as segmentation and 

 

 
 

 

Degradation 

Σ Restoration filter  

𝑥 𝑖 𝑗  �̂� = 𝑥 𝑖 𝑗 + 𝑤 𝑖 𝑗  
𝑥  𝑖 𝑗  

𝑤 𝑖 𝑗  
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registration, might suffer in the presence of noise (Liu and Allebach, 2014). Thus, it 

becomes imperative that the level of the noise present in digital images be reduced 

prior to any further processing. 

 

 

In the regard of additive noise, there are many approaches to deal with it, especially in 

natural images. Those approaches have benefited from the improved modeling of 

digital images. Methods such as spatial domain, transform domain and learning based 

show a superior performance in this issue (Shao et al., 2014). Although linear filters 

are useful in a wide variety of applications, still suffering from demerits in some 

situations which are become inadequate choice as a filter type. For example, linear 

filters do not take into account any structure in images. Therefore, linear filters tend to 

blur sharp ridges, destroy curves and other small details of the image, and it has poor 

performance when the image contains many repetitive patterns (e.g., squares). 

However, non-linear filters can be successfully applied to achieve detail preserving 

noise reduction since they adopt the local features of an image. In addition, non-linear 

filters have the capability to deal with non-uniform smoothing which can easily be 

adapted locally to the features of the image, such as eliminating impulsive, 

multiplicative and heavy tailed noise (Shao et al., 2008). 

 

 

Furthermore, non-linear spatial filters use a low pass filtering on groups of local pixels 

with the hypothesis that more noise occupies mainly the higher frequency spectrum 

region. Low pass filters will not only smooth away unwanted noise but also blur sharp 

edges and ridges in images whereas the high pass filters can make the sharp edges even 

sharper and increase the local resolution, but at same time will also enlarge the noise 

source.  

 

 

Generally, image restoration imposes conciliation between noise elimination and 

preserving the main features of the original image and its fine details. In order to attain 

a high performance in this regard, a denoising technique has to adjust with the most 

distinctive features in an image, (i.e., edges, ridges, etc.). In the past several decades, 

various algorithms have been developed that improve on spatial filters by taking out 

the noise more effectively while protecting the delicate details in the image. Spatial 

domain filters try to utilize the correlations, which exist in most digital images (Li et 

al., 2010; Bini and Bhat, 2014). In addition, some of these algorithms borrow concepts 

from partial differential equations and computational fluid dynamics such as level set 

approaches (Malladi and Sethian, 1996; Sethian, 1999), total variation methods 

(Chambolle et al., 1998; Chan and Zhou, 2000), non-linear isotropic and anisotropic 

diffusion (Black et al., 1998; Weickert et al., 1998) and essentially non-oscillatory 

(Semenov) schemes (Zhou and Zhou, 1999). Other techniques involve impulse 

removal filters with local adaptive filtering in the transform domain to remove not 

only white and mixed noise, but also their mixtures (Egiazarian et al., 1999). In the 

same regard, the transform domain based method considers transforming images into 

further domains, in which similarities of transformed coefficients are employed 

(Mallat, 2008).  A different class of methods exploits the decomposition of the image 

data into the wavelet domain (Chang et al., 2000; DeVore and Lucier, 1992; Donoho 

and Johnstone, 1994; Donoho and Johnstone, 1995; Vidakovic, 2009; Weaver et al., 

1991). Wavelet-based denoising techniques have a wide range discussion due to its 
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popularity (Dabov et al., 2009; Portilla et al., 2003; Luisier et al., 2007; Zhang et al., 

2010). Those methods achieve better performance (Luisier et al., 2010) with 

comparing to spatial domain methods, because they have superior features such as 

multiresolution and sparsity (Pizurica et al., 2006). The wavelet representation 

naturally provides a useful tool in the construction of spatially adaptive algorithms that 

can preserve high frequency components such as edges in an image. It compresses the 

essential information in a signal into a few, large coefficients which represent image 

signal details at different resolution scales and facilitates the removal of the corrupting 

noise. This sparse representation of the data in the wavelet domain also makes them 

ideal for the purpose of data compression.  

 

 

However, as the complexity of the wavelet coefficient statistical models increases, the 

denoising performance is not improved as much as it is expected. Furthermore, the 

time and computational cost of building and training these statistical models are 

increased as well. Recently, many researchers introduced artificial intelligence to 

wavelet based denoising techniques since some soft tools in computing approaches, 

such as Neural Network and Fuzzy Logic, have the abilities of learning, labeling and 

describing uncertainties. Although some new approaches have been proposed 

(Puvanathasan and Bizheva, 2007; Bai, 2008), the advantages of artificial intelligence 

have not been fully utilized. 

 

 

Self-organizing maps and feed forward neural networks were suggested to detect 

impulse noise (Turkmen, 2014). Genetic Programming (GP) has recently gained 

attention in solving many image processing problems. GP approaches have also been 

used for the removal of impulse noise. A two-stage GP detector for the detection of salt 

& pepper and uniform impulse noise is reported in Universal Impulse Noise Filtering 

using GP (UINFGP) (Petrović and Crnojević, 2008). 

 

 

This research presents a wavelet based approaches that used semi-soft thresholding 

method. The proposed denoising algorithm exploits attractive features of the 

second-generation wavelets (SGWs) and the dependency between the coefficients that 

can be captured by HMM, provides a robustness by using the over-complete 

representation algorithm to digital images with different image structures and textures, 

and finally, guarantees an suitable trade-off between detail preservation and noise 

suppression. 

 

 

Image denoising as one of image restoration fields truly has no limited applications, 

forensic and legal investigations, as well as defense and border security, and the area 

of video surveillance and security for analysis and restoration are the main 

applications that motivated the researches to go deeply in the field of image denoising. 

In addition, the demand for image restoration and high quality appearance applications 

comes from various arenas, namely, video-commerce, multimedia industry, robotics, 

forensics, airports, smart homes, office environments, and law courts, etc. 
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1.2 Problem Statements 

Image denoising is the procedure of reconstructing the original digital image by 

eliminating the noise from a degraded image. It is implemented in order to suppress 

the noise and preserve as much image textures and fine details as possible (Hong et al., 

2009). Image restoration process can be modeled as obtaining an optimal estimate of 

the unknown noise-free image from the available noise-contaminated image. Since the 

image denoising is seminal field of study, a considerable amount of scientific 

literatures have emphasized on image denoising in the last decade and up until now 

there is still a wide range of interest in this subject. Despite various algorithms and 

tools that have been proposed, derived and improved in the field of the image 

restoration, the problem is that many denoising techniques are always prone to have 

over-smoothing and extra blurring in the crucial image features as well as introducing 

artifacts.  It is due to the use of only one threshold value for all decomposition levels, it 

is called the universal threshold (UT) as it is clear in the earliest algorithm of 

VisuShrink (Moulin and Liu, 1999; Yuan and Buckles, 2004). Moreover, methods 

such as spatial domain, transform domain and dictionary learning have suffered from 

different demerits: very vulnerable to severe image degradations (high noise levels), 

computation complexity burden, and difficulties in characterizing natural images with 

various patterns (repeated textures and symmetric patterns).  Furthermore, Image 

restoration try to recover the original image from degraded with prior knowledge of 

degradation process. However, practically, the noisy image in some cases does not 

provide the specific information about the noise details. Thus, the searching for an 

efficient image restoration method is still a challenging task. Besides, the amount of 

noise usually depends on the signal intensity. Practitioners often attribute it to the 

statistical distribution that it is loyal to, especially when the dependency between the 

contaminated coefficients is measured. For instance, Additive white Gaussian noise 

pursues Gaussian distribution, Speckle noise follows Gamma distribution and 

Brownian noise pursues Browning noise distribution, etc. (Nath, 2013).   

 

 

Generally, when the magnitude of the measured signal is sufficiently high, the noise is 

supposed to be independent of the original image that it corrupts, and modeled as an 

additive Gaussian random variable. Although there are large amounts of research in 

the area of image denoising, but they did not reach the level of applicability in the 

reconstructed image, especially when images that are rich in periodic patterns, 

repeated textures or self-similarity textures (lines, squares, etc.) are considered to be 

denoised. Figure 1.2 shows an example that addressed this issue.  

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Example of a periodic image (Buades et al., 2005) 
 

 

1.3 Objectives 

In this thesis, the image denoising problem is addressed with focus on the removal of 

additive Gaussian noise that is mainly considered as an issue in digital images. The 

main aim is to design digital image noise (AWGN) removal based on 

second-generation wavelet and catch the dependency among wavelet coefficients 

using HMM.  Shortly, the objectives of this thesis will be presented; it is consisting of 

the following: 

 

1. To design a non-linear thresholding filter by using adaptive semi-soft 

thresholding in second-generation wavelet transform and use the 

developed  statistical hidden Markov model in wavelet domain, in order to 

smooth the image and reduce the noise prior to thresholding.  

2. To reduce the reconstruction effects that might appear on the resulted 

image such as staircasing, Gibbs effect, wavelet outlines and ringing 

artifacts by performing an over-complete expansion (cycle spinning) 

which yields even fewer visual artifacts and better image quality and it 

gives competitive results in the subjective and objective assessments and it 

is computationally less expensive 

3. To evaluate the denoising algorithm, mathematically by computing the 

objective assessments such as PSNR, MSE, SSIM and image quality index 

(IQI), and subjectively using the visual appearance and visual quality 

questionnaire (voting approach). 

 

 

(b) Noisy image with 

σ=35 
(c) Reconstructed image using 

hard thresholding 

(d) Reconstructed image using 

soft thresholding 

 

(a) Original image      
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Figure 1.3 shows an example that addressed the issue of different wavelet outliers. 

Therefore, the general goal of this research is to design and implement an efficient 

digital image denoising method for AWGN type, which can fulfill the following 

requirements: 

 

a. Competitive performance 

The proposed algorithm should be competitive with best state-of-the-art denoising 

methods according to certain objective measurements (objectively), such as peak 

signal to noise ratio (PSNR). In addition, it should also satisfy human visual 

assessments, as a subjective estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Least human interaction 

The human interaction should be minimized during the denoising processes when 

applying the proposed algorithm, by other meaning; the entire denoising steps should 

be totally automatic. 

 

 

 

 

 

Staircasing  Gibbs effect 

Ringing artifact  

Figure 1.3: Main outliers that resulted from wavelet denoising approaches 

(Chen et al., 2014) 
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c. Low computational burden  

With regard of computing capacity and time execution, the proposed algorithm should 

consider those issues. The proposed algorithm should work under moderate 

environment and specifications of computer systems. Moreover, it should satisfy the 

hardware requirements and be qualified to accomplish the whole denoising process in 

a short time period. 

 

 

d. Sufficient reliability 

The proposed algorithm should validate consistent and repeatable experimental results 

regardless of the sources of images, amount of noise and how many times the 

denoising algorithm is implemented. 

 

 

e. Wide range of application (universal) 

The main application of the algorithm is to restore digital images contaminated by 

AWGN. In order to have more robustness, it should also be applicable to the denoising 

of images corrupted by other types of noise, such as Multiplicative and Poisson noise, 

which are normally attained in biomedical and astronomy images. 

 

 

To conclude, most of denoising techniques in wavelet domain are based on either hard 

or soft thresholding, the visual quality is affected by the manner of choosing the 

threshold function and its value. The four common wavelet families (Daubechies, 

Symmlet, Coiflet and BiorSplines) are used in this study; these wavelets are common 

use in image restoration field. Time complexity of the denoising algorithms and the 

visual quality in terms of objective and subjective assessment are yet to be obtained. In 

addition to the mathematical design of the denoising algorithm, this thesis will 

compare the proposed algorithm to state-of-the-art denoising techniques. 

 

 

1.4 Thesis Scope 

In this study, non-linear thresholding filtering based on second-generation discrete 

wavelet transform will be designed. The second-generation of wavelets, which is 

planned based on the lifting scheme approach, is considered as new version of 

wavelets, and it has various applications such as remote sensing, astronomy, etc. 

(Ebadi et al., 2013). This procedure exploits the superior properties of the wavelets 

such as sparsity, multiresolution and fast features of the wavelet transform. In 

addition, it utilizes the point that the wavelets transform maps white noise in the signal 

domain into white noise in the transform domain. On the other hand, signal energy 

becomes more focused into very fewer coefficients in the transform domain; energy of 

the noise does not. It has pivotal merit in the issue of separating the original signal 

from noise.  
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Since the main focus on the digital images, the effects, impacts and the techniques that 

have done in AWGN are studied extensively in the literature, and primarily consider 

this kind of noise in this thesis. In transform domain, the process in which small 

coefficients are detached while others are left undamaged is known as hard 

thresholding. Unfortunately, this procedure causes spurious blips, it is known as 

artifacts, in the images as a result of eliminating the smaller coefficients that have the 

higher frequency parts in the noisy image which are related to image main details and 

noise coefficients. On the other hand, in the soft thresholding method, small 

coefficients are removed while others are modified based on some criteria. This 

approach has also its demerits where the shortcoming of the optimal soft thresholding 

is that it smooths the high frequency components such as edges and ridges of the image 

that will affect the visual appearance of the reconstructed image. In order to conquer 

the drawbacks of hard and soft thresholding, an algorithm using proposed semi-soft 

thresholding will be used. In addition, to capture the dependency between the child 

and parent coefficients in the decomposition levels, hidden Markov model is 

investigated. One of the important advantages of using HMM in the proposed 

algorithm is its ability to model non-stationary signals or events where the additive 

noises in natural images are considered as non-stationary signal. Moreover, in order to 

suppress the visual artifacts that may appear after applying the denoising algorithm, 

over-complete algorithm is presented to remove the ringing artifact and the 

oversmoothed patches, and to improve the visual quality of the reconstructed image. 

The images that are used in the experimental purposes are all standard gray-scale and 

natural testing images. These gray-scale images contain 8 bit data which means the 

brightness levels are from 0-255. The images that are chosen to be tested in this study 

are: Lena, Barbara, Baboon, Boat, F16 and Peppers. These images selected from a 

popular image database, the USC-SIPI Image Database (University of Southern 

California)
1
. 

 

 

1.5 Thesis Organization 

Remainder of this thesis is prepared as follows: 

 

Chapter 2 of this thesis provides information about the thresholding and shrinkage 

methods, general overview about wavelet analysis, hidden Markov model (HMM), 

image and noise models, classification of denoising methods, image quality 

evaluation. Firstly, thresholding methods and its merits and demerits are discussed.  

Secondly, a brief exploration on shrinkage techniques and different methods in image 

restoration, problems and solutions are explained. Furthermore, this chapter discusses 

the various parts in wavelet transformation, analysis, types and its features among 

different transform domain approaches are stated. Statistical analysis technique 

presented by HMM is explained in details in this chapter as well. Lastly, a basic theory 

in noise models, classification of denoising methods, related and previous works in the 

field of image denoising techniques are explained. 

 

 

 

 
1
 http://sipi.usc.edu/database/ 
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Chapter 3 presents a second-generation wavelets hidden Markov model 

(SGWs-HMM) approach based on second-generation wavelet transform in order to 

reduce and overcome the AWGN that appear in natural images with more details in 

four subsections. The first subsection discusses the denoising based wavelet principle. 

The second subsection describes the noise variance estimation and how it can be 

calculated in the noisy images properly. The third subsection presents the second- 

generation wavelet transform and shows the main framework of the proposed 

denoising algorithm. Furthermore, several advantages of the proposed SGWs-HMM 

technique are explained. This subsection also directed the full block diagram of 

SGWs-HMM with detailed explanation of each part in the proposed design. Finally 

the usage of the GUI and the full programming package steps are presented in the end 

of this chapter in order to facilitate the dealing with the software part of the proposed 

algorithm. The advantages, disadvantages, and evaluation of the developed denoising 

algorithm also described.  

 

 

Chapter 4 provides the results and discussion of the proposed algorithm. In this 

chapter, firstly, the proposed image restoration algorithm performance on different 

benchmark digital images is discussed. Secondly, the results and discussion on the 

developed algorithm and the image quality assessment are presented. Thirdly, the 

results of the six several benchmark images with detailed explanation are stated in six 

different subsections. Fourthly, the proposed image denoising algorithm is compared 

in terms of subjective (mathematically) and objective (visually) assessments with best 

state-of-the-art denoising techniques. Finally, an overall discussion on the results is 

included in this chapter. 

 

 

Lastly, Chapter 5 summarizes the contributions of this thesis, provides conclusion for 

this thesis, and suggests future works.  The Appendices provide additional 

experimental results, definitions and proofs of some theories.  
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