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Vibration due to dynamic loadings can cause excessive oscillations in the 
building, which may lead to structural failure. Since Safety assurance, the 
functionality of structure and economic design are the most important concerns 
of structural engineers, many studies have been conducted to improve 
aforementioned issues. The variable stiffness concept, which is one of the 
vibration energy dissipation techniques, has been implemented in the different 
structures and mechanical devices to provide system stability and mitigate the 
undesirable damages induced by vibration effects. Numerous studies have 
been conducted, specifically in structural engineering, to develop and evaluate 
the dynamic performance of energy dissipation systems based on the variable 
stiffness concept, such as active, semi-active, and passive variable stiffness 
methods. Whereas the, most of the variable stiffness systems are operated 
using high-tech signal processors, controllers, and external electrical supply. 
Additionally, the aforesaid systems are highly dependent on controller, energy 
resources and required repetitive maintenance. Therefore, developing a real-
time system without any dependency on abovementioned conditions are highly 
required.  
 
 
This study develops two types of adaptive variable stiffness devices: variable 
stiffness bracing (VSB) and nonlinear spring conical bracing (NCSB). These 
devices are applicable as lateral resistant and vibration absorbers in a framed 
building subjected to dynamic loadings. The research methodology in the 
current study can be categorized into two general sections include of numerical 
simulation and experimental test. Configurations of devices and mathematical 
models are established. The specific finite element algorithms are developed 
and implemented in the finite element program code for the nonlinear analysis 
of RC framed buildings. Various analyses, including pushover and time history, 
are conducted on different framed building models equipped with both the 
proposed devices. The developed finite element program and efficiencies of 
the offered devices in terms of structural response are evaluated. The 
possibilities of plastic hinge formations in structural components are also 
identified through nonlinear dynamic analysis. Results obtained from numerical 
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analyses confirm the effectiveness of the developed devices in maintaining the 
structural stability of the framed buildings. Experimental section is divided into 
two main sections consisted of the cyclic test and direct compression test. 
Cyclic test conducted based on displacement control approach in steel and RC 
frames. Four steel and three RC frame specimens subjected to cyclic 
displacement history on their top nodes. These models included of the frame 
without and with attached VSB and NCSB devices and conventional X-braced 
frames. The efficiency of VSB and NCSB applications in frames compared with 
bare and brace frames in terms of ductility characteristics, maximum capacity, 
stiffness and etc.  
 
 
Based on parametric time history analysis on the single degree of freedom 
models, the application of VSB and NCSB caused to decrease the maximum 
displacement up to 60% and 33% respectively compare to bare model. These 
devices reduced the maximum velocity and acceleration values. Additionally, 
results from parametric 3D pushover analysis show the noticeable increase in 
terms of failure capacity up to 43% and 15% for model furnished by VSB and 
NCSB devices. Generally, the results from the parametric study reveal that the 
geometry specification of devices plays an important role in the structural 
response and plastic hinge formation in structural elements. Moreover, results 
from 3D time history analysis on model equipped with VSB and NCSB devices 
illustrate the maximum value of shear and moment forces as well as the 
number of plastic hinge formations in structural components reduced 
dramatically. 
 
 
Aside from the numerical analysis, an experimental test is conducted to assess 
the functionality and performance of the developed adaptive systems in 
different structural types that consist of steel and RC frames subjected to cyclic 
dynamic test equipped with NCSB and VSB devices. The ductility behavior, 
overall stiffness and failure mechanism enhanced in both RC and steel frames 
compared with the bare frame. In brief, the experimental results show a 
noticeable improvement in the performance of RC and steel frames equipped 
with the abovementioned devices. 
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Getaran disebabkan oleh bebanan  dinamik  boleh menyebabkan osilasi  yang 
berlebihan di dalam bangunan, yang boleh membawa kepada kegagalan 
struktur. Oleh kerana  jaminan keselamatan, kefungsian struktur dan reka bentuk 
ekonomi adalah aspek yang paling penting ,  keprihatinan Jurutera struktur 
dalam aspek ini jadi keutamaan dan banyak kajian telah dijalankan untuk 
meningkatkan pengenaan aspek  tersebut di atas.  Konsep pembolehubah 
kekakuan, yang merupakan salah satu teknik disipasi tenaga getaran, telah 
dilaksanakan di dalam struktur yang berbeza dan pada peranti mekanikal untuk 
menyediakan kestabilan sistem dan mengurangkan kerosakan tidak diingini  
akibat oleh kesan-kesan getaran. Banyak kajian telah dijalankan, khususnya 
dalam kejuruteraan struktur, untuk membangunkan dan menilai prestasi dinamik 
sistem disipasi tenaga berdasarkan kepada konsep Kekakuan yang berubah-
ubah, seperti kaedah pembolehubah kekakuan aktif, separuh aktif dan pasif.  
Bilamana, sebahagian sistem pembolehubah kekakuan dikendalikan 
menggunakan isyarat  pemproses berteknologi tinggi, pengawal dan bekalan 
elektrik luar dan tambahan pula, sistem tersebut adalah sangat bergantung 
kepada pengawal, punca  tenaga dan penyelenggaraan berulang-ulang yang 
berterusan,  Oleh itu, membangunkan satu sistem masa-nyata tanpa sebarang 
pergantungan syarat-syarat  yang tersebut di atas yang sangat diperlukan.  
 
 
Kajian ini membangunkan dua jenis peranti kekakuan berubah-ubah yang 
mudah suai:  perembatan kekakuan berubah-ubah(VSB)  dan perembatan 
pegas konika tak selanjar (NCSB). Alat-alat ini boleh digunakan sebagai 
rintangan sisian dan penyerap getaran di kerangka bangunan dibawah kenaan 
bebanan  dinamik. Kaedah penyelidikan dalam kajian ini boleh dikategorikan 
kepada dua bahagian-bahagian umum termasuk  simulasi berangka dan ujian 
eksperimen. Tatarajah peranti dan model matematik akan ditubuhkan. Algoritma 
unsur terhingga tertentu akan dibangunkan dan dilaksanakan dalam Kod 
program unsur terhingga untuk analisa kerangka tetulang konkrit bangunan tak 
selanjar. Analisis yang pelbagai, termasuk analisis pushover dan analisis sejarah 
masa, dilaksanakan secara berbeza dirangka binaan model-model yang 
dilengkapi dengan kedua-dua peranti yang dicadangkan. 



© C
OPYRIG

HT U
PM

iv 
 

Program unsur terhingga yang dimajukan  dan kecekapan alat-alat yang 
ditawarkan akan dinilai dari segi nilai tindakbalas struktur. Kemungkinan formasi  
ensel plastik dalam komponen struktur juga dikenalpasti melalui analisis dinamik 
tak selanjar. Keputusan yang diperolehi daripada analisis berangka 
mengesahkan keberkesanan peranti dimaju dalam mengekalkan kestabilan 
struktur bangunan-bangunan bekerangka. Seksyen eksperimen dibahagikan 
kepada dua Seksyen utama terdiri daripada ujian cara kitaran dan ujian cara 
mampatan langsung. Ujian kitaran dijalankan berdasarkan pendekatan kawalan 
anjakan dalam bingkai keluli dan tetulang konkrit.  Empat spesimen rangka keluli 
dan tiga rangka tetulang konkrit di berikan sejarah anjakan berkitar pada nod 
teratas kerangka.  Model  ini termasuk bingkai rembatan  tanpa dan dengan 
peranti VSB dan NCSB dan bingkai konvensional tersiap sedia X.  
Keberkesanan aplikasi VSB dan NCSB sebegini dibandingkan  dengan bingkai 
tampa rembatan dan bingkai berembat  dari segi ciri-ciri kemuluran, kapasiti 
maksima, Kekakuan dan lain-lain.  
 
 
Berdasarkan analisis sejarah masa berparameter ke atas,  bagi model darjah 
kebebasan tunggal, penggunaan VSB dan NCSB untuk mengurangkan anjakan 
maksimum sehingga 60% dan 33% tiap tiap satu berbanding dengan bingkai 
tampa rembatan.  Alat-alat ini  kurangkan nilai halaju dan pecutan maksima.  Di 
samping itu, hasil daripada analisis pushover 3D berparameter menunjukkan 
peningkatan ketara dari segi kapasiti kegagalan sehingga 43% dan 15% untuk 
model dibekalkan oleh peranti VSB dan NCSB.  Secara umumnya, hasil 
daripada kajian berparameter mendedahkan bahawa geometri spesifikasi peranti 
memainkan peranan penting dalam sambutan struktur dan pembentukan ensel  
plastik dalam unsur-unsur struktur. Selain itu, hasil daripada analisis masa 
sejarah 3D , model yang dilengkapi dengan alat VSB dan NCSB 
menggambarkan nilai maksimum kekuatan ricih dan momen  serta bilangan 
formasi ensel plastik dalam komponen struktur dikurangkan secara dramatik. 
 
 
Selain daripada analisis berangka, ujian experimen dijalankan untuk menilai 
kefungsian dan prestasi sistem mudah suai yang dimaju ini keatas  jenis struktur 
yang berbeza yang terdiri daripada bingkai keluli dan tetulang konkrit tertakluk 
kepada ujian kitaran dinamik yang dilengkapi peranti NCSB dan VSB. Tingkah 
laku kemuluran, kekakuan keseluruhan dan mekanisme kegagalan 
dipertingkatkan di bingkai tetulang konkrit  dan bingkai keluli berbanding dengan 
bingkai tampa rembatan. Secara ringkas, keputusan eksperimen menunjukkan 
peningkatan yang ketara dalam prestasi tetulang konkrit  dan kerangka keluli 
yang dilengkapi dengan peranti tersebut. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
1.1 Background  
 
 
Earthquake risk reduction is a complex task that involves many people in many 
disciplines, considerable information, opinions, decisions, and actions. 
Managing the required changes to reduce earthquake risk is a challenging 
task. All people in any given region are explicitly or implicitly involved. The 
largest component of earthquake risk reduction is traditionally known as the 
earthquake resistant design. A standout amongst the most vital concerns, 
especially in the seismic design of buildings, is the improvement of the seismic 
performance of a building, particularly in terms of structural safety. Therefore, 
proper building design and vibration control technologies are applied to avoid 
the destructive failure of buildings. The principal approach in seismic design 
codes is based on the structural ductility tendencies to absorb and dissipate the 
conveyed earthquake energy in the building, which is the most economically 
feasible design method.  
 
 
In the last two decades, considerable research has been conducted to enhance 
the seismic resistance of a structural system and the control technique to 
achieve an economical and safe design (Spencer and Nagarajaiah, 2003). 
Traditional seismic design philosophy contains the dissipation of input seismic 
energy with the aid of the inherent ductility capacity of structural elements 
through large strains in the aforementioned components. Conversely, this 
approach may lead to structural damages or unrealistic designs. For this 
reason, energy dissipation devices that do not belong to the main load resisting 
system have been suggested and designed specifically as external devices to 
absorb seismic energy. These devices can be simply substituted after severe 
excitation (Soong and Dargush, 1997). A variety of control schemes have been 
employed in design practices and are generally categorized into three types: 
active (Yao, 1972), passive (Ruge, 1938), and semi-active control (Karnopp et 
al., 1974). Among these methods, passive control systems were developed at 
the earliest phase and have been utilized more often in seismic design 
procedures because of the minimum maintenance and elimination of the 
external power supply to function.  
 
 
In recent years, active variable stiffness (AVS), a system for structural control, 
has gained considerable attention and interest. Previous studies have proven 
that AVS systems result in desired effects and improve the structural 
performance during earthquake excitation (Kobori at al., 1993; Yang et al., 
1996b). Such a system has been investigated experimentally with 
implementation in full-scale buildings in Japan (Kamagata and Kobori, 1994; T 
Kobori and Kamagata, 1992). With meticulous observation, most of the 
available variable stiffness systems are operated using an external electrical 
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controller, which may cause a delay in system performance. These systems 
are highly dependent on energy resources and require repetitive maintenance. 
Developing a real-time system without any dependency on energy recourse, 
complicated processors, and maintenance procedure is necessary.  
 
 
1.2 Problem statement  
 
 
The brief literature review above highlights the following problems: 
 

i. Most of available variable stiffness systems are dependent on external 
electrical sensors and controller and work as active or semi-active 
techniques. The new mechanical system, which operates 
independently of the aforementioned electrical component, is not 
addressed properly, and future studies are required. 

  
ii. Current earthquakes have been revealed the seismic vulnerabilities of 

the structures, and proved the necessity of retrofitting techniques. So, 
seismic retrofit of existing buildings absorbed a lot of attentions among 
structural engineers and researchers. In high seismicity regions, 
moment resisting frames are regularly selected due to adequate 
energy dissipation capacity, which is granted by large plastic 
deformation of elements in the moment frames. This ability permits the 
structural engineers to design the moment resisting frames under the 
lowest lateral design force compared with other structural systems. 
Nevertheless, unanticipated severe events might bring unacceptable 
great storey displacement. Prior vigorous earthquake events have 
emphasized the need of seismic retrofitting of present moment frames. 
Previous studies tried to evaluate and observe the seismic response of 
MRF structures which is equipped with numerous energy dissipation 
methods. Further studies are still in progress to improve and enhance 
MRF retrofitting system behavior in seismic response reduction.in brief 
there is little information about retrofitting techniques of moment 
resisting frame without reducing the effect of inherent ductility. 

 
iii. Little information is observed on the application of the mechanical 

spring as an adaptive stiffness system in the framed structures.  
 

iv. Finite element modeling and mathematical and finite element models 
are not presented for adaptive systems using mechanical springs 

 
v. A comprehensive study on structural dynamic performance is to be 

conducted on structures equipped with adaptive stiffness system using 
mechanical spring as energy dissipation components.  
 

vi. The geometry specifications, element layout of springs, and the 
fabrication process of above-mentioned adaptive stiffness systems are 
yet to be developed.  
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vii. Calculations of the strength reduction (R) factor are not available for 
framed structure with furnished by adaptive stiffness devices with 
mechanical springs as lateral resistant schemes.  
 
 

This study develops, designs and fabricates two types of adaptive variable 
stiffness devices without any dependency on a controller, energy resources 
and maintenance. These devices operated mechanically whenever the 
displacement occurred. These devices are applicable as lateral resistant and 
vibration absorbers in a framed building subjected to dynamic loadings. 
Furthermore, the mathematical model of abovementioned devices derived. 
Specific finite element algorithms developed and implemented in the finite 
element program code for the nonlinear analysis of RC framed buildings.  
 
 
1.3 Objective of the study  
 
 
The general objective of the current study is to develop a new adaptive variable 
stiffness system as a supplementary structural element that provides stability 
against lateral loads and dissipates vibration energy induced by dynamic 
excitation. The specific objectives are as follows: 
 
 

1.  To formulate the mathematical and finite element models of the 
proposed adaptive stiffness devices based on flexible bar and 
telescopic conical spring concepts. 

 
2. To develop finite element algorithm to evaluate the nonlinear dynamic 

performance of 3D RC structures equipped with developed bracing 
techniques. 

 
3. To assess and verify the dynamic performance of structures equipped 

with proposed adaptive variable stiffness devices through numerical 
study and experimental test. 

 
 
1.4 Research questions 
 
 
The primary aim of this study is to propose adaptive stiffness devices using 
mechanical spring elements. In order to achieve the study objectives, the 
following research questions were responded: 
 

1. How can the mechanical springs be implemented as variable stiffness 
component as dynamic controller of structure? 

 
2. What are the mathematical and finite element models of proposed 

adaptive systems? 
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3. How to adopt and implement the finite element model and algorithm in 
the computational program to evaluate the dynamic behavior of framed 
building fitted with adaptive stiffness devices? 

 
4. What are the effects of implementing the proposed devices in the 

overall structural performance of framed building subjected to dynamic 
loading? 

5. What are the design and fabrication processes of adaptive stiffness 
bracing devices? 

 
6. Do these adaptive stiffness devices work efficiently once fitted in real 

structural frames? 
 
 
1.5 Scope and limitation of the work 
 
 
The following sequences are conducted to achieve the above objectives: 

 
1) The mathematical and finite element models of variable stiffness 

bracing and nonlinear conical bracing devices will be derived based on 
flexible bar and telescopic conical spring concepts respectively. 
 

2) The dynamic analysis algorithm of the RC frame equipped with the 
proposed adaptive stiffness bracing devices will be developed using 
Newmark’s method. 
 

3) Finite element models and algorithm will be employed in an existing 
dynamic finite element package (ARCS3D, UPM, 2014) 
 

4) Nonlinear static (pushover) and dynamic (time history) analyses will be 
performed to evaluate the performance of the developed bracing 
techniques in a few structural models using the computer program 
mentioned in step 3. 
 

5) The damage detection of RC structures equipped with VSB and NCSB 
will be observed through plastic hinge formation in 3D structures. 
 

6) The adaptive VSB systems designed, and physical prototypes are 
fabricated. Moreover, the fabrication processes of the proposed 
devices established based on availability of material and simplicity of 
manufacturing. 
 

7) Evaluation of the fabricated prototype with different geometry 
specifications and materials will be done by using commercial finite 
element software. 
 

8) Direct compression test will be performed to validate the accuracy of 
the adaptive VSB devices in reality with a mathematical model.  
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9) The efficiency of the VSB systems will be assessed not only through 
numerical analyses but also through dynamic experimental tests on 
different frames. 
 

10) Three RC and four steel frames with height and width of 2 m will be 
tested experimentally subjected to monotonic cyclic displacement test. 
Furthermore, the concrete grade of RC frame will be considered as 
equal to 30 Mpa.  
 

11)  A parametric study is conducted on the geometry specification of the 
proposed devices using time history and 3D pushover analyses. 
 

12) The seismic performance of the abovementioned devices evaluated 
using 3D nonlinear time history with developed finite element program.  

 
 
The following issues are omitted from the scope of the present study due to 
lack of experimental facilitations.  
 

1) The influences of soil structure interactions are not studied. 
 

2) Seismic evaluations of proposed devices subjected to earthquake 
record are not studied.  
 

3) The strength modification factor (R) is not calculated for the proposed 
systems. 

 
 
1.6 Organization of the thesis  
 
 
A brief narrative of the remaining chapters is presented as follows: 
 
 
Chapter 2 provides a general overview of the seismic controller system and 
subsequently focuses on prior related research that implements the variable 
stiffness concept in devices to mitigate the vibration effects. 
 
 
Chapter 3 presents the research methodology of the current study, including 
the mathematical model, finite element procedures, and numerical analyses of 
the proposed devices. Moreover, the process of the prototype fabrications and 
experimental test setups for direct compression and dynamic test are also 
discussed. Finally, the verification of the developed program code against 
available commercial software is demonstrated through a variety of analyses. 
 
 
Chapter 4 extensively reports the seismic performance assessment of 
structures equipped with the developed VSB and NCSB devices through 
different numerical simulations, such as 3D pushover and dynamic analyses. In 
addition, the results obtained from the direct compression test on the leaf 
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spring’s models are compared with those of the finite element simulation. The 
experimental evaluation of VSB and NCSB applications in steel and RC frame 
specimens under cyclic displacement is also presented.  
 
 
Chapter 5 summarizes the present study and provides its major and specific 
conclusions. The scope of future works and recommendations are also 
discussed.
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