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Conservation of energy becomes a challenging issue in air-conditioning applications. 

In order to overcome this issue, many researchers have recommended using 

microchannel heat exchanger and low global warming potential and ozone depletion 

potential refrigerant, such as R32, in air conditioning systems. However, most of the 

designers of heat exchanger face a major problem which is the performance 

deterioration due to tube-side refrigerant maldistribution. It is found that most of the 

researchers did not quantify the effect of performance deterioration due to refrigerant 

maldistribution. Besides that, there is no model which is able to investigate the 

influence of the statistical moments of probability density function on the R32 tube-

side flow maldistribution in microchannel heat exchanger. Moreover, there is no 

researcher developed performance deterioration correlation due to refrigerant tube-

side maldistribution. In order to have a comprehensive analysis on tube-side 

maldistribution in microchannel heat exchangers, it is recommended to quantify the 

influence of the higher statistical moments of probability density function of the flow 

maldistribution profiles on the performance degradation. In order to analyze the 

influence of the higher statistical moments of probability density function of the flow 

maldistribution profiles on the performance degradation, it is necessary to develop a 

suitable model which is able to perform the numerical simulation and analyzed 

refrigerant flow maldistribution. Moreover, a performance deterioration correlation 

based on refrigerant tube-side maldistribution should be developed in order to reduce 

the development time of heat exchanger. In order to achieve the goals in this 

research, a model without sub-cool and superheat and with sub-cool and superheat 

were developed. Next, the performance degradation of microchannel heat exchanger 

due to refrigerant tube-side maldistribution was quantified and analyzed. After that, 

the model considering superheat and sub-cool were validated by doing experiment. 

Finally, the performance deterioration correlation due to refrigerant maldistribution 

was being developed. From the numerical simulation, it was found that the 

performance deterioration factor can up to 1% when the standard deviation was more 

than 0.3 and the performance deterioration factor can reached 1% for skew below 

than -0.5. The flow maldistribution profile with high standard deviation and high 
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negative skew have a large impact on the performance deterioration of microchannel 

heat exchanger and can up to 10%. Furthermore, the performance deterioration 

factor reached to 4% when the mean was less than 0.9. It was found that the impact 

of superheat on performance deterioration factor was only 0.1%. Moreover, it was 

found that the heat transfer performance of microchannel heat exchanger drops 

significantly when the sub-cool is very high. In conclusion, a maldistribution profile 

with low standard deviation, high positive skew, high superheat and low sub-cool 

was preferred in order to minimize the deterioration effect. Finally, the simple form 

of the performance deterioration correlation equations was developed to allow a 

quick calculation of the exchanger thermal performance degradation once the flow 

maldistribution profile was known. The best possible design of microchannel heat 

exchanger was able to achieve by extract the statistical moments from simulation. 

The proposed correlation in this research offers a faster and simpler method to 

analyze the maldistribution problem.  
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Kebelakangan ini, pemuliharaan sumber tenaga telah menjadi satu isu yang 

mencabar dalam aplikasi penghawa dingin. Dalam usaha untuk mengatasi isu ini, 

ramai penyelidik telah mencadangkan menggunakan mikro penukar haba dan R32 

dalam sistem penyaman udara. Walau bagaimanapun, pereka cipta penghawa dingin 

sentiasa menghadapi masalah yang sama, iaitu kemerosotan prestasi mikro penukar 

haba yang disebabkan oleh ketidaksamaan pengaliran penyejuk. Didapati 

kebanyakan penyelidik tidak membuat kajian tentang kesan dan kuantiti 

ketidaksamaan pengaliran penyejuk terhadap kemerosotan prestasi. Selain itu, tidak 

ada model yang mampu untuk menyiasat kemerosotan prestasi mikro penukar haba 

yang disebabkan oleh ketidaksamaan pengaliran penyejuk. Lebih-lebih lagi, tidak 

ada penyelidik mencipta kemerosotan prestasi mikro penukar haba korelasi 

disebabkan oleh ketidaksamaan pengaliran penyejuk. Dalam usaha untuk mengatasi 

ketidaksamaan pengaliran penyejuk dalam mikro penukar haba, kita perlu 

menganalisis kesan seperti sisihan piawai, ukuran kecondongan dan lain-lain lagi 

terhadap prestasi untuk mikro penukar haba. Ini disebabkan ketidaksamaan 

pengaliran penyejuk akan merosotkan prestasi untuk mikro penukar haba. Selain itu, 

hubungan kemerosotan prestasi berdasarkan ketidaksamaan pengaliran penyejuk 

hendaklah dikaji untuk mengurangkan masa untuk mereka cipta mikro penukar haba. 

Dalam usaha untuk mencapai matlamat dalam kajian ini, model untuk 

ketidaksamaan pengaliran penyejuk perlu dicipta. Seterusnya, kemerosotan prestasi 

mikro penukar haba disebabkan ketidaksamaan pengaliran penyejuk perlu dinilai dan 

dianalisis. Selepas itu, model tersebut disahkan dengan melakukan eksperimen. 

Akhir sekali, korelasi kemerosotan prestasi mikro penukar haba disebabkan oleh 

ketidaksamaan pengaliran penyejuk dicipta. Daripada kajian ini, didapati 

kemerosotan prestasi mikro penukar haba boleh mencapai 1% apabila sisihan piawai 

lebih daripada 0.3 dan kemerosotan prestasi mikro penukar haba boleh mencapai 1% 

apabila ukuran kecondongan kurang daripada -0.5. Didapati aliran profil 

ketidaksamaan pengaliran penyejuk dengan sisihan piawai yang tinggi dan ukuran 

kecondongan yang kecil akan memberikan kesan yang besar kepada kemerosotan 

prestasi mikro penukar haba dan kemerosotan tersebut boleh mencapai 10%. 
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Kemerosotan prestasi mikro penukar haba boleh mencapai 4% apabila min lebih 

daripada 0.9. Selain itu, didapati bahawa prestasi pemindahan haba mikro penukar 

haba menjadi lagi teruk apabila pendinginan lanjut adalah sangat tinggi. Selain itu, 

didapati bahawa profil ketidaksamaan pengaliran penyejuk dengan sisihan rendah 

standard, ukuran kecondongan yang tinggi, dan pendinginan lanjut yang rendah 

dapat menaikkan prestasi mikro penukar haba dari segi pemindahan haba. 

Pengunaan korelasi kemerosotan prestasi mikro penukar haba disebabkan oleh 

ketidaksamaan pengaliran penyejuk dapat mencepatkan proses untuk mencipta 

mikro penukar haba apabila kemerosotan prestasi mikro penukar haba dikira dan 

diketahui. Reka bentuk terbaik untuk mikro penukar haba dapat dicipta dengan 

menggunakan korelasi ini. Selain itu, kajian ini menawarkan satu kaedah yang lebih 

mudah dan cepat dan untuk menganalisis masalah ketidaksamaan pengaliran 

penyejuk di mikro penukar haba. 
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1 

 

CHAPTER 1 

 

 

INTRODUCTION 
 

 

1.1    Background 

 

Conservation of energy becomes a challenging issue in the 21st century. In order to 
achieve this target, it is necessary to reduce the power consumption and improve the 
performance of electrical appliances in term of electrical efficiency. Among all the 
electrical appliances, heating, ventilation and air-conditioner (HVAC) systems 
contributes around 50% of total electricity consumption in a building (Luis et al., 
2008). The heat exchanger which is the major component of air conditioning system 
was improved in term of structure, material and etc. in order to enhance the 
performance of air conditioning system. Among all the heat exchangers, 
Microchannel heat exchanger (MCHE) offers superior advantages such as compact 
size, large heat transfer surface area, light weight and low cost. When it is used as a 
condenser in the air-conditioning unit, it is commonly called as parallel flow 
condenser (PFC). Besides that, various types of refrigerants have been tested and 
used as the heat transfer medium in air-conditioning systems to reduce power 
consumption. Among these, the hydroflourocarbon (HFC) R32 refrigerant is able to 
meet the requirements as an excellent heat transfer medium which has good thermo-
physical properties with zero ozone depletion potential (ODP), low global warming 
potential (GWP) and high energy efficiency characteristics. However, the MCHE 
faces a critical challenge of refrigerant flow maldistribution. This is due to the fact 
that MCHE has many “circuits” as compared to conventional fin-tube heat exchanger. 
Thus, the refrigerant maldistribution problem in the MCHE must be analyzed in 
greater detail to arrive at an optimum refrigeration cycle design which gives 
excellent power savings to the air-conditioner and this statement is also supported by 
Chin and Raghavan (2011a). 
 

1.2    Microchannel Heat Exchanger 
 

MCHE or PFC was a heat exchanger created at the end of 1980 and it usually 
consists of flat tubes and folded louvered fins (Copetti et al., 2009). MCHE has a 
very good promising characteristic which is able to maximize the contact area and 
increasing the heat transfer performance compared to other traditional heat exchanger 
(Park & Hrnjak, 2008). Thus, MCHE is widely used as condenser in air conditioner 
application especially in automobile field. Nowadays, MCHE has been used as 
condenser in commercial air-conditioning system due to its light weight, low cost, 
low pressure drop and high efficiency. The use of MCHE in air conditioning system 
has increasing due to its compact size and good thermal performance (Park & Hrnjak, 
2008). Figure 1.1 shows the structure of MCHE. The MCHE has one main entrance 
and exist. The main entrance let the heat transfer medium such as water or refrigerant 
to flow into the MCHE. The MCHE has many tubes and each tube tends to its own 
mass flow rate depends on the distance from its inlet to the main entrance.  
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Figure 1.1: Microchannel Heat Exchanger 

(Source: SAPA, 2016) 

In order to have a comprehensive analysis on the performance of MCHE, the 
degradation effects due to flow maldistribution on the heat exchanger must be 
analysed. In previous researches, the effect of maldistribution on fin-tube heat 
exchanger on the air side had been investigated. It was found that maldistribution 
will reduce the thermal performance of all range of heat exchanger by 5 – 15% 
compared to uniform flow distribution (Mueller, 1987). Hydraulic performance 
deterioration due to the increase of pressure drop could be critical and influence the 
energy efficiency of the heat exchanger.  Besides that, another researcher found that 
the degradation is mainly affected by the mean and standard deviation of the flow 
maldistribution profile (Chin & Raghavan, 2011b).  

There are many factors which contribute to the occurrence of flow maldistribution 
such as the design of inlet and outlet headers, number of passes, fin pitch, 
temperature effects, the design of flow circuits and others. In short, performance 
deterioration due to flow maldistribution effect is divided into gross maldistribution 
and passage-to-passage maldistribution (Jiao et al., 2003). Gross maldistribution is 
uneven distribution effect due to poor design of heat exchanger entrance 
configuration while passage-to-passage flow maldistribution is mainly caused by 
manufacturing tolerance. 

Besides that, the flow maldistribution problem becomes more severe when heat 
exchangers are applied in compact designs which involve a tortuous flow path for 
both the fluid stream (Chin & Raghavan, 2011a). Hence, the effects of 
maldistribution profile in various kinds of heat exchanger, especially MCHE, should 
be quantified and analysed in order to design a better heat exchanger. This kind of 
research is crucial in order to optimize the design of the heat exchanger in air 
refrigeration system.  
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1.3    Problem Statement 

 

There were many research works investigated the effect of flow maldistribution in 
plate-fin and fin-tube heat exchanger. However, there are not much detailed 
information on the effect of tube-side maldistribution especially in MCHE. Nielsen 
et al. (2012) found that as the variation of the individual channel thickness of heat 
exchanger increased, the actual performance of the heat exchanger decreased 
significantly. Furthermore, Marchitto et al. (2007) indicated that the effects of the 
operating conditions, the header-channel distribution area ratios and the inlet port 
orifice plates created a large impact on the pattern of two-phase flow inside the 
header which caused a large deviation of the flow distribution to the channels. From 
their research, it is found that most of them just analyze the cause of flow 
maldistribution in heat exchanger. 
 
Most of the researchers just concluded header, channel design or heat exchanger 
entrance configuration exerted a significance impact on the performance 
deterioration but did not analyze and quantify the influence of the higher statistical 
moments of probability density function of the flow maldistribution profiles on the 
performance degradation of Heat Exchangers. Wen and Li (2004) indicated that an 
improved header configuration of plate-fin heat exchanger was able to reduce 
performance degradation. Besides that, Wen et al. (2006) found that the improved 
entrance configuration with punched baffle was able to reduce performance 
deterioration. Chin and Raghavan (2011a) had indicated that any effort to analyse 
and predict the detrimental effects due to flow maldistribution must take into 
consideration of the effects of higher statistical moments. Without consideration of 
those effects, it would be difficult for refrigeration system designers to optimize the 
performance of the heat exchanger.  
 
Moreover, it is found that most of the models used by previous researchers are not 
using R32 as heat transfer medium and MCHE. Kaern and Elmegaard (2011) 
developed a model of a fin-and-tube evaporator with object-oriented modeling 
language Modelica and use R410A as heat transfer medium. Cho et al. (2010) 
developed a numerical simulation on the mass flow distribution in microchannel heat 
sink but the mathematical model is not suitable for air conditioner application. 
Ranganayakulu et al. (1997), Ranganayakulu et al. (1999) and Wen et al. (2006) 
developed mathematical model to study flow maldistribution problem in plate-fin 
heat exchanger. Wiebke et al. (2009) used R134a as heat transfer medium in their 
mathematical model while Nielsen et al. (2013) used water as heat transfer medium 
in their mathematical model. Nowadays, the current trend of air conditioning 
application is moving towards to use lower GWP and ODP refrigerant such as R32. 
Theoretically, R32 will have higher velocity compared to R410a if their mass flow 
rate is same. This is due to R32 has smaller density compared to R410a. Thus, flow 
maldistribution problem will become more significance if R32 is employed as the 
heat transfer medium in a heat exchanger. MCHE which has the greater performance 
compared to fin-tube heat exchanger should be employed in flow maldistribution 
study. Besides that, most of the researchers did not consider the superheat and sub 
cooling when analyzed flow maldistribution problem in heat exchanger as they were 
using water as their heat transfer medium. In order to have an actual scenario to 
simulate the flow maldistribution profiles on the performance degradation of heat 
exchangers, superheat and sub cooling effect must be analyzed.  
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To the best knowledge of author, there is no model which is able to describe the 
influence of the higher statistical moments of probability density function of the 
refrigerant (R32) flow maldistribution profiles on the performance degradation of 
Heat Exchangers. Although Chin and Raghavan (2011b) had developed a model 
which investigated the influence of the higher statistical moments of probability 
density function of the flow maldistribution profiles on the performance degradation 
of heat hxchangers, they did not considered the tube-side maldisbution in 
microchannel heat exchangers. They only analyzed the air side maldistribution in fin 
tube heat exchanger.   
 
In fact, a model that can precisely describe the real tube-side flow distribution in 
MCHE has yet remained as a challenging and critical issue in design of heat 
exchanger.  Thus, a suitable model which investigates the influence of the statistical 
moments of probability density on tube-side refrigerant (R32) flow maldistribution in 
microchannel heat exchanger is still remaining a challenge. 
 
Besides that, most of the researchers did not develop performance deterioration 
correlation related to refrigerant maldistribution. The only performance deterioration 
due to performance deterioration is developed by Chin and Raghavan (2011b). 
However, they did not consider the tube-side maldisbution in microchannel heat 
exchangers. In the nutshell, there is none of the researcher develop performance 
deterioration correlation based on refrigerant tube-side maldistribution. 
 
In summary, the problems are shown as below: 

a) Many researchers emphasized on the cause of flow maldistribution in heat 
exchanger but they did not quantify the refrigerant flow maldistribution.  

b) A suitable mathematical model which investigates the influence of the 
statistical moments of probability density function on refrigerant (R32) tube-
side maldistribution in Microchannel Heat Exchanger is still remaining a 
challenge. 

c) There was none of the researcher develop performance deterioration 
correlation based on refrigerant tube-side maldistribution  
 

It is very important to have a comprehensive analysis on tube-side maldistribution in 
MCHE so that designer of air conditioner can optimize the performance of heat 
exchanger by improved the refrigerant flow maldistribution. Hence, the impact of 
deterioration on the heat exchange performance is reduced and the improved air 
conditioner is able to save a lot of energy and cost. Besides that, designers is able to 
save a lot of time when design a heat exchanger without using trial and error method 
to solve refrigerant flow maldistribution problem. With performance deterioration 
correlation developed by the author, the designers are able to estimate the 
performance deterioration of heat exchanger due to refrigerant flow maldistribution 
within a short period.  
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1.3    Objectives 

 

This research aims to develop performance deterioration correlation to estimate the 
performance deterioration of heat exchanger due to tube-side refrigerant flow 
maldistribution. The objectives of the research are stated as: 
 

a) To develop a model for tube-side refrigerant flow maldistribution in MCHE 
without sub-cool and superheat effect 

b) Quantify the influence of the statistical moments of probability density 
function of the tube-side refrigerant flow maldistribution profiles on the 
performance degradation of MCHE without considering sub cooling and 
superheat effect 

c) Improve and generate a model for tube-side flow maldistribution in MCHE 
which considering sub-cool and superheat effect 

d) Analyze the tube-side refrigerant flow maldistribution profiles in term of 
skew, standard deviation, mean, superheat and sub-cool on the performance 
degradation of MCHE  

e) Set up an experiment which is able to validate the model considering 
superheat and sub-cool effect 

 

1.4    Scope of the Research  

 

In this work, the fin pattern, number of passes and number of rows remain constant. 
Moreover, the refrigerant mass flow rate along each tube is assumed constant. The 
refrigerant mass flow rate is varied from 0.0097kg/s to 0.0414kg/s. The R32 
refrigerant inlet temperature is varied from 70°C to 50°C. The fin pattern used in this 
research is louver. Among of the refrigerant, R32 is employed in this research due to 
its environment friendly characteristic. The normalized standard deviation is varied 
from 0.1 to 0.5. Normalized skew is varied from -1 to 1 while normalized mean is 
varied from 0.9 to 1.2. The superheat of condenser is varied from 4°C to 24°C. 
 
In this study, the effects of tube-side maldistribution will be investigated while air-
side distribution is kept uniform. The performance deterioration due to tube-side 
maldistribution in term of standard deviation, skew and mean is analyzed.  
 
The limitations of this research are: 

a) Only applicable to Condenser 
b) Air flow distribution is uniform 

 

  1.5    Thesis Overview 

 

This thesis describes the analysis of the effect of tube-side flow maldistribution in 
MCHE. Besides that, the performance deterioration correlation due to refrigerant 
maldistribution is developed to enhance and speed up the process of designing heat 
exchanger. Chapter 2 will presents the background and literature review of the effect 
of maldistribution on heat exchangers. Chapter 3 presents the methodology used to 
analyse the maldistribution effect and method to develop performance deterioration 
correlation while Chapter 4 presents the results and discussion. Chapter 5 will 
presents the summary and recommendation of the research. 
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