

UNIVERSITI PUTRA MALAYSIA

DESIGN OF CLOUD-ENABLED CROSS-PLATFORM MALWARE

ANALYSIS SYSTEMS

SEYED ABDOLRAHMAN MOUSAVIAN NAJAFABADI

 FK 2017 131

© C
OPYRIG

HT U
PMDESIGN OF CLOUD-ENABLED CROSS-PLATFORM MALWARE

ANALYSIS SYSTEMS

By

SEYED ABDOLRAHMAN MOUSAVIAN NAJAFABADI

Thesis Submitted to the School of Graduate Studies, Universiti
Putra Malaysia, in Fulfilment of the Requirements for the Degree

of Master of Science

December 2016

© C
OPYRIG

HT U
PM

© C
OPYRIG

HT U
PM

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained
within the thesis for non-commercial purposes from the copyright holder.
Commercial use of material may only be made with the express, prior, written
permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

DEDICATIONS

This thesis is dedicated to:

My parents, for their love, encouragement, and endless support;

And my friends who stood by me and supported me;

So this study has taken place today.

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

DESIGN OF CLOUD-ENABLED CROSS-PLATFORM MALWARE ANALYSIS
SYSTEMS

By

SEYED ABDOLRAHMAN MOUSAVIAN NAJAFABADI

December 2016

Chair: Shaiful Jahari Bin Hashim, PhD
Faculty: Engineering

The Internet of Thing (IoT) is already gaining momentum in the society by
creating links between virtual technology and physical world. As the forecasts
show, the number of devices connected to the Internet may rise to 100 billion
devices by the end of the current decade. The dark side of this era, connecting
everything to the Internet with lesser number security experts taking care of
them. More importantly, companies are designing and implementing their
platforms in the way that applications developed by third-party developers can
be installed and executed seamlessly. It is to the best interest of the malicious
attackers to violate the security and privacy by spreading malicious codes over
a wider range of platforms including sensor nodes, smart phone, personal
computer and server. This malicious activity utilizes zero-days vulnerabilities;
thus the number of zero-days malware is expected to increase exponentially in
the coming years. Arming security researchers with effective tools can lead to
the discovery of malware in a shorter time. Hence we need an automated,
cross-platform, scalable, fast, efficient and easy to use tools that can help even
a novice user against the malicious attackers.

In this study, a demonstration of automated, cross-platform malware analysis
system with the power of cloud computing in the form of Software-as-a-Service
is proposed. An efficient technique is introduced to tweak the whole structure
bottom up; from how the nodes should be arranged to create the network, to
tune the performance of the computing resources (such as CPU, RAM, and
hard disk), and to modifying all software running on top of this composition. The
analysis engine is performed by an open-source dynamic malware analyzer
called Cuckoo Sandbox which is not only modified and improved to perform

© C
OPYRIG

HT U
PM

ii

efficiently in the cloud environment but also able to support Android and
Windows operating systems simultaneously. All the virtual machines that will
be running the analysis are orchestrated by a fine-tuned OpenStack, an open-
source cloud computing platform.

Results show that as the number of submitted jobs grow, the proposed and
enhanced system works tremendously better than existing ones. By average,
for Windows platform the measured consumed time to analyze and report the
outcome is more than ten times faster than previous cloud-enabled malware
analysis system and about twelve times faster than standalone version. For
Android platform, on average the proposed system improved the performance
four times faster than individual launch. Furthermore, the number of virtual
machines that can be run in the whole system simultaneously has increased by
seven times compared to the previous research system. The proposed and
developed cross platform malware analysis system is operated autonomously
with minimum intervention from the users.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Master Sains

REKABENTUK SISTEM ANALISIS MAL-WARE DILENGKAPI CLOUD YANG
MERENTAS-LANDASAN

Oleh

SEYED ABDOLRAHMAN MOUSAVIAN NAJAFABADI

Disember 2016

Pengerusi: Shaiful Jahari Bin Hashim, PhD
Fakulti: Kejuruteraan

The Internet of Thing (IoT) sudah semakin mencipta nama dalam masyarakat
hari ini dengan cara mencipta hubungan di antara teknologi maya dan dunia
fizikal. Seperti yang diramal, bilangan alat yang disambung kepada Internet
mungkin meningkat kepada 100 bilion di penghujung dekad ini. Dalam era yang
gelap ini, semuanya dihubungkan kepada Internet dengan segelintir sahaja
pakar keselamatan disediakan untuk menjaga dan melindungi pengguna. Apa
yang lebih penting banyak syarikat sedang merekacipta dan melaksanakan
landasan mereka dalam cara dimana aplikasi yang dibangunkan oleh pihak
ketiga boleh dipasang dan digunakan tanpa sebarang masalah. Sudah menjadi
hasrat penyerang untuk mengancam keselamatan dan privasi di Internet dengan
menyebarkan kod-kod berbahaya merentas platform termasuk nod pengesan,
telefon pintar, komputer peribadi dan pekhidmat (server). Aktiviti merbahaya ini
menggunakan kelemahan hari-sifar; oleh itu bilangan malware hari-sifar dijangka
akan meningkat dengan pesat dalam tahun-tahun akan datang. Menyediakan
pengkaji-pengkaji keselamatan dengan alat efektif boleh membawa kepada
penemuan malware dalam masa yang singkat. Maka, kita memerlukan satu set
alat yang diotomatikan, rentas-landasan, boleh diskalakan, cepat, efisien dan
mudah digunakan yang boleh membantu walau seorang pengguna baru
sekalipun menentang penyerang-penyerang merbahaya ini.

Dalam kajian ini, satu demonstrasi sistem analisis yang diotomatikan, merentas
landasan dengan kuasa perkomputeran cloud dalam bentuk perisian sebagai
perkhidmatan telah dicadangkan. Satu teknik yang efisien yang telah
diperkenalkan untuk memperbaiki keseluruhan struktur dari bawah; dari
bagaimana nod perlu disusun-atur untuk mencipta jaringan, memperbaiki

© C
OPYRIG

HT U
PM

iv

prestasi sumber perkomputeran (seperti CPU, RAM, dan cakera keras), dan
mengubahsuai semua perisian yang berfungsi di atas komposisi ini. Jentera
analisis dijalankan melalui satu penganalisa malware dinamik sumber terbuka
dipanggil Cuckoo Sandbox yang bukan sahaja diubahsuai dan diperbaiki untuk
bekerja dengan lebih baik dalam persekitaran cloud tetapi ia juga mampu
menyokong sistem Android dan Window serentak. Semua jentera maya yang
akan menjalankan analisis tersebut dirangka oleh satu OpenStack, satu
landasan perkomputeran cloud bersumber-terbuka yang telah disesuaikan.

Keputusan menunjukkan bahawa apabila bilangan tugas bertambah, sistem
yang disarankan dan diperbaiki bekerja dengan lebih baik dari sistem sedia ada.
Secara purata, untuk landasan Windows, masa yang digunakan dan disukat
untuk menganalisa dan melaporkan hasilnya adalah sepuluh kali lebih pantas
dari sistem analisis malware terdahulu dan dua belas kali lebih pantas dari versi
yang boleh berdiri dengan sendiri. Untuk landasan Android, secara purata,
sistem yang disarankan memperbaiki lagi prestasi empat kali ganda lebih pantas
dari pelancaran individu. Tambahan lagi, bilangan mesin maya yang boleh
dijalankan dalam kesemua sistem telah meningkat tujuh kali berbanding dengan
sistem kajian terdahulu. Sistem analisis yang disarankan dan dibangunkan
dioperasikan secara autonomi dengan campur tangan yang minima dari
pengguna.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Almighty Allah (S.W.T) for giving me the
strength, patience, courage, and determination to complete this work. All grace
and thanks belong to Almighty Allah (S.W.T).

Many special thanks go to my supervisor Dr. Shaiful Jahari bin Hashim, for his
incredible guidance, continuous support, and encouragement. He always had
time for me and readily providing his technical expertise throughout the period of
my study. I owe more than I can ever repay. The completion of this work
becomes possible due to his supervision. His high stance of diplomatic power
and professionalism set a great model for me to follow.

I would also like to thank my supervisor committee for serving on my thesis
committee. Their helpful suggestions and advice on various aspects of my
research work have certainly been very constructive. Without their kind
cooperation and support, my graduate study would not have been accomplished.

I would also like to include an acknowledgment to my colleague, Hamidreza
Hasheminejad. He provided me valuable advice and positive critics during my
candidature. He guided me during the implementation of my work.

© C
OPYRIG

HT U
PM

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Master of
Science. The members of the Supervisory Committee were as follows:

Shaiful Jahari b. Hashim, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Rahman b. Ramli, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Khairulmizam b. Samsudin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

© C
OPYRIG

HT U
PM

viii

Declaration by graduate student

I hereby confirm that:
 this thesis is my original work;
 quotations, illustrations and citations have been duly referenced;
 this thesis has not been submitted previously or concurrently for any other

degree at any other institutions;
 intellectual property from the thesis and copyright of thesis are fully-owned

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

 written permission must be obtained from supervisor and the office of
Deputy Vice-Chancellor (Research and Innovation) before thesis is
published (in the form of written, printed or in electronic form) including
books, journals, modules, proceedings, popular writings, seminar papers,
manuscripts, posters, reports, lecture notes, learning modules or any other
materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld as according to the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti
Putra Malaysia (Research) Rules 2012. The thesis has undergone
plagiarism detection software.

Signature: ________________________ Date: _________________

Name and Matric No.: Seyed AbdolRahman Mousavian Najafabadi, GS37207

© C
OPYRIG

HT U
PM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:
 the research conducted and the writing of this thesis was under our

supervision;
 supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________
Name of
Chairman of
Supervisory Committee: ________________________

Signature: ________________________
Name of
Member of Supervisory
Committee: ________________________

Signature: ________________________
Name of
Member of Supervisory
Committee: ________________________

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page
ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation and Problem Statement 2
1.3 Research Aim and Objectives 3
1.4 Study Scope 4
1.5 Thesis Organization 4

2 LITERATURE REVIEW 5
2.1 Malware Analysis 5

2.1.1 Definition 6
2.1.2 Static Malware Analysis 6
2.1.3 Dynamic Malware Analysis 7
2.1.4 Malware Analysis Tools 8

2.1.4.1 Anubis 9
2.1.4.2 CWSandbox 9
2.1.4.3 Cuckoo Sandbox 9
2.1.4.4 DroidBox 10
2.1.4.5 SherlockDroid 11
2.1.4.6 DroidRanger 11
2.1.4.7 DroidScope 11

2.2 Virtualization 12
2.2.1 Hypervisors 12
2.2.2 Disk Management 13

2.2.2.1 File System Technologies 13
2.2.2.2 Disk Drivers 14
2.2.2.3 Disk Provisioning Policies 15

2.2.3 Memory Management 15
2.2.3.1 Caching 15

2.2.4 Instances Lifetime Analogy 16
2.3 Cloud Computing 17

2.3.1 Terminology 17
2.3.2 Cloud Characteristics 17
2.3.3 Cloud Service Models 18
2.3.4 Cloud Deployment Model 19
2.3.5 Cloud Environment Software 20

2.3.5.1 OpenStack 20

© C
OPYRIG

HT U
PM

xi

2.3.5.2 CloudStack 22
2.4 Related Works 23
2.5 Conclusion 24

3 RESEARCH METHODOLOGY 25
3.1 Introduction 25
3.2 Implementation and System Design Methodology 25

3.2.1 Cloud Environment Implementation 26
3.2.1.1 OpenStack Architecture 26
3.2.1.2 Hardware Installation
 Requirements 27
3.2.1.3 OpenStack Installation Process 28
3.2.1.4 Dynamic Malware Analyser Setup 29
3.2.1.5 Cuckoo Sandbox Installation
 Process 30
3.2.1.6 Android Sandbox Installation
 Process 31

3.3 Enhanced Cloud-enabled Dynamic Malware
 Analyser 32

3.3.1 Cuckoo Integration with OpenStack 32
3.3.2 DroidBox Integration with OpenStack and
 Cuckoo 32
3.3.3 Prevent Duplicate Analysis 33
3.3.4 Optimizing Storage Capacity Utilization 34
3.3.5 Decrease Boot-Time Overhead 34
3.3.6 Resetting of the Analysis Environment 36
3.3.7 Network Bottleneck 36

3.4 Performance Factors and Metrics 37
3.4.1 Provisioning Time 37
3.4.2 Completion Time 37
3.4.3 Failure Rate 37
3.4.4 Scalability and Capacity Analysis 37

3.5 Summary 38

4 RESULTS AND DISCUSSION 40
4.1 System Benchmarks 40

4.1.1 File System 40
4.1.2 CPU 41
4.1.3 RAM 41
4.1.4 Results for Disk Bus Comparison 43
4.1.5 Results for Disk Cache Techniques 43

4.2 Experiment over Standalone DroidBox 44
4.3 Experiment over Cloud Enabled DroidBox
 Integrated with Cuckoo 45
4.4 Experiment over Standalone Cuckoo System 46
4.5 Experiment over Enhanced Cloud Enabled Cuckoo 47
4.6 Comparative study on proposed system 47

4.6.1 Complete Time 48
4.6.2 Failure Rate 49
4.6.3 Virtual Machines Disk Size 51

© C
OPYRIG

HT U
PM

xii

5 CONCLUSION 52
5.1 Thesis Contribution 52
5.2 Recommendation for Future Work 53

BIBLIOGRAPHY 54
BIODATA OF STUDENT 60

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Comparison Between Related Works 24
3.1 Hardware Specifications 28
4.1 Results from Experiment over Standalone DroidBox 45
4.2 Results from Experiment over Cloud-Enabled
 DroidBox 45
4.3 Results from Experiment over Standalone Cuckoo
 System 46
4.4 Results from Experiment over Enhanced Cloud
 Enabled Cuckoo 47
5.1 A Comparison between Related Works and Proposed
 System 52

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

1.1 The Growth of Malware 2
2.1 Architecture of Standalone Cuckoo Sandbox 10
2.2 OpenStack Conceptual Architecture [63] 21
2.3 OpenStack Components [65] 22
3.1 Architecture of Proposed Model 26
3.2 Dynamic Malware Analyzer Setup 29
3.3 Backing File and Overlays Structure 34
3.4 How Snapshots Preserve a VM's State 35
3.5 Forcing Instances To Use Local Storage 36
3.6 Proposed Workflow for Enhanced Cross-Platform
 Cloud-enabled Dynamic Analyzer 39
4.1 CPU Core Performance Test 41
4.2 RAM Performance Test 42
4.3 Comparison Between Different Disk Buses 43
4.4 Disk Caching Evaluation 44
4.5 Execution Time Comparison 48
4.6 DroidBox Execution Time Comparison 49
4.7 Cuckoo Failure Rate Comparison 50
4.8 DroidBox Failure Rate Comparison 51
4.9 VM Disk Size Comparison 51

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

API Application Programming Interface
APK Android Application Package
ARM Advanced RISC Machines
ATA Advanced Technology Attachment
AV Anti-Virus
AWS Amazon Web Services
BSON Binary Structured Object Notation
C&C Command and Control
CD Compact Disc
CERN Conseil Européen pour la Recherche Nucléaire
CFG Control Flow Graph
DHCP Dynamic Host Configuration Protocol
DLL Dynamic-link Library
EC2 Elastic Compute Cloud
ESX Elastic Sky X
ESXI Elastic Sky X Integrated
EXT3 Third Extended File system
EXT4 Fourth Extended File system
GNU GNU’s Not Unix!
GPL General Public License
GPS Global Positioning System
HAAS Honeynet as a Service
HDD Hard Disk Drive
HTML Hyper Text Markup Language
HTTP Hyper-Text Transfer Protocol
HVM Hardware Virtual Machine
I/O Input/Output
IAAS Infrastructure as a Service
IBM International Business Machines
IDE Integrated Drive Electronics
IDS Intrusion Detection Software
IOT Internet of Things
ISO International Organization for Standardization
IT Information Technology
JVM Java Virtual Machine
KVM Kernel Virtual Machine
LDAP Lightweight Directory Access Protocol
LVM Logical Volume Manager
LXC Linux Containers
MB Megabyte
MD5 Message Digest 5
NASA National Aeronautics and Space Administration
NAT Network Address Translation
NIC Network Interface Card
NIST The National Institute of Standards and Technology
PAAS Platform as a Service
PCAP Packet Capture
PIL Python Imaging Library

© C
OPYRIG

HT U
PM

xvi

QCOW2 Qemu Copy On Write Version 2
QEMU Quick Emulator
RAID Redundant Array of Independent Disks
RAM Random Access Memory
REST Representational State Transfer
RJE Remote Job Entry
RPC Remote Procedure Call
SAAS Platform as a Service
SATA Serial Advanced Technology Attachment
SCSI Small Computer System Interface
SDK Software Development Kit
SDN Software-Defined Networking
SHA1 Sha-1 Hash File
SMS Short Message Service
TB Terabyte
VM Virtual Machine
VMM Virtual Member Manager
VPN Virtual Private Network
XML Extensible Markup Language
ZFS Zettabyte File System

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.1 Background

In the early 1970's the ARPANET was funded by Defense Advanced Research
Projects Agency (DARPA) to meet military needs before it being expanded in
public. Initially it was a private network services accessible only by few
operational organizations, trying to connect limited number of computers
together via Host-to-Host protocol. In that time, there was no actual threat
because of the fact of being private and having limited number of computers.
Paul Innella in a report is said that the first sign of a network security threat was
seen in autumn 1988. It was a virus that infected about 60,000 computers
connected to the Internet and cause a failure for at least two days.

Since then, every day huge amount of users and devices from a different type
of categories, from normal clients to professionals and from private
organizations to governments, are threatened by various viruses, worms,
ransomware, and Trojans. Malware and viruses play a significant role in
existing threats for computer users such as money loss, theft of personal data,
accessing to the hardware without permission, etc. For example, Stuxnet which
aimed to damage uranium enrichment infrastructure in Iran, or a Trojan-style
malware that stole Angela Merkel’s emails are two major malware that affect
governments. Another indication of the problem is that even people without any
special interest in computers are aware of worms like CryptoLocker or Sasser.
To confront these incidents, experts in security field are required to create,
develop, and use tools so that they can prevent data leak and loss, defend
against attacks, discover vulnerabilities, and patch bugs quickly.

The appliances that researchers use to explore the behavior of malware are
mainly divided into two groups: static analysis tools and dynamic ones.
Malware Sandboxing is a pragmatic software that represents dynamic analysis
method which instead of statically analyzing the source code and the binary
files, it executes the files and monitors their behavior in real-time. The process
of preparing a proper environment, running the binary file in that isolated
surroundings, observing and collecting data and cleaning up the host can be
automated to speed up analyzing flow. This study presents an enhanced
approach to boost this flow by utilizing cloud computing power.

This chapter is organized as follows. Section 1.2 describes the motivation
behind this study and the existing research problems. In Section 1.3 the aims
and objectives of this study are stated. Section 1.4 outlines the scopes of the
thesis followed by the thesis organization and reminder of coming chapters that
is described in Section1.5.

© C
OPYRIG

HT U
PM

2

1.2 Motivation and Problem Statement

Internet security teams at Symantec reported [1] that in 2014 more than three
hundred million new malware were created which means almost one million
new threats were distributed per day. In another report [2], they have stated
that the number of zero-day vulnerabilities discovered in 2015 has increased by
125% compared to the previous year. This figure for Ransomware is 35
percent, for the personal records (including medical records) that have been
stolen is 23% and 85% (half a billion personal records) for unreported
exposures [2]. Facing this huge number of malware while most of the electronic
devices in our homes are connected to the Internet leads us to this conclusion
that researchers and defenses should move as fast as attackers. Analyzing
new files quicker and more accurate than before can be a big step regarding
this.

Figure 1.1: The Growth of Malware

Talking about the gradually growing number of smartphone users in last
decade is stating the obvious but should never be forgotten as attackers never
forgot this fact. In 2015, more than 50 percent of the Internet users were using
Mobiles other than Desktops or other devices [3]. On the other hand, users are
able to install applications on their device not only from Google Play Store but
also from third-party markets or other websites known as “side-loading.” Side-
loading is not avoidable for some users due to some restrictions of Google Play
Store such as legal restrictions, region availability, and forcing developers to
register with Google, etc. Hence, the potential of having vulnerabilities and
loophole because of lack of verification is so high. Thus focusing on the files
and malware that targeted smartphones are just not less important as other
files.

© C
OPYRIG

HT U
PM

3

Hardware is an essential part of any system in order to have enough resources
to analyzing files. Scaling up the infrastructure by adding extra resources such
as Servers, RAMs, CPU, etc. is not only pricey but also can save the time of
non-blocking processes which is as efficient as one tiny floodgate for a huge
dam. On the contrary, scaling the server’s architecture out using cloud
computing technology can give the advantage of sharing tasks and processes
between different hypervisors.

The other subject that has influenced the design of this automated and scalable
analysis approach is resetting the analysis environment to a clean state which
is undoubtedly a time-consuming process. This refreshing process also is a
necessity for executing every sample in an identical environment to
consequently having a comparable and valid results. Deducting every seconds
of this resetting process, can have a huge impact of the whole analysis process
as the number of samples grow [4].

The manpower required to maintain the system or extending the platform in the
time of need is expensive in the result of spending money on salaries.
Moreover, existing automated malware collection systems like Honeypots can
collect a tremendous number of malicious files from the Internet. The process
of analyzing these data can be fully automated and also completely integrated
with other systems by the power of cloud platform in the favor of processing in
real time.

While existing solutions, such as [5], [6], [7] and [8], in the subject of analyzing
huge amount of malwares have tried to resolve this problem, yet cross-platform
deficiency, high resource usage and time-consuming processes are still valid.

Therefore, this research has tried to address these obstacles and resolve them
by proposing a new framework that enhance malware analysis system using
cloud computing power.

1.3 Research Aim and Objectives

The concentration in this study will be on providing a dynamic analysis as a
service which consumes fewer resources, works more efficient and much faster
and support a wider range of OSes. So the primary purpose is to create a
scalable, fast and efficient cross-platform support for dynamic malware analysis
using cloud computing technology to be able to analyze an enormous number
of files in less time than before.

The list below shows targets of this research mentioned above:

© C
OPYRIG

HT U
PM

4

i. To design and optimize cloud architecture to be able to have more virtual
machines on the same physical hardware by considering existing
system.

ii. To fine-tune the correlation between computing resources to decrease
analyzing time.

iii. To add cross-platform capabilities to the system in order to support
analyzing files on different Operating systems such as Android and
Windows.

iv. To evaluate the designed system with existing standalone version and
previous cloud-enabled system.

1.4 Study Scope

The scope of the proposed research is defined in two general parts. The first
domain contains extending the engine of analysis to support Android OS as
well as Windows. In this case, the system will only generate a report based on
the file’s behaviour in the Android OS, and it will not conclude that the file is
malware or not. Optimizing the infrastructure and enhancing software platform
to handle requests faster and more efficient is the second domain of this
research.

1.5 Thesis Organization

This thesis organized in four main chapter along with first introduction section.
Some definition and review about Malware analysis methods, techniques, and
existing tools is written in CHAPTER 2. Additionally, some information about
virtualization technology, cloud computing paradigm, its characteristics and its
components is provided in this chapter. CHAPTER 3 also will contain an
explanation about used methodology to state this research objectives with
elaborately used configurations. The methodology is explained in this chapter,
is used to prove the feasibility of the proposed idea using a different model of
experiments. These experiments followed by the results obtained from them
will be reported in CHAPTER 4. At the end, conclusion and future work of this
research will be presented in CHAPTER 5.

© C
OPYRIG

HT U
PM

54

BIBLIOGRAPHY

[1] K. HALEY, Internet Security Threat Report: Attackers are bigger, bolder,
and faster, 2015.

[2] . Symantec, Internet Security Threat Report 2016, Retrieved 08/01/2016.

[3] D. Chaffey, Mobile Marketing Statistics Compilation, Retrieved 15/03/2016.

[4] M. Egele, T. Scholte, E. Kirda and C. Kruegel, "A survey on automated
dynamic malware-analysis techniques and tools," vol. 2, p. 6, 2012.

[5] O. Barakat, S. Hashim, R. Abdullah, A. Ramli, F. Hashim, K. Samsudin
and M. Ab, "Malware analysis performance enhancement using cloud
computing," vol. 1, pp. 1--10, 2014.

[6] O. Barakat, S. RSA, A. Ramli, F. Hashim, K. Samsudin, I. Al-baltah and M.
Al-Habshi, "SCARECROW: Scalable Malware Reporting, Detection and
Analysis," vol. 14, p. 1, 2013.

[7] A. Desnos and P. Lantz, Droidbox: An android application sandbox for
dynamic analysis, 2011.

[8] M. Bierma, E. Gustafson, J. Erickson, D. Fritz and Y. Choe, "Andlantis:
large-scale android dynamic analysis," 2014.

[9] O. S. Ugurlu, Stealth sandbox analysis of malware, Bilkent University,
2009.

[10] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide
to dissecting malicious software, no starch press, 2012.

[11] L. Zeltser, Reverse-Engineering Malware: Malware Analysis Tools and
Techniques, SANS, 2014.

[12] T. KASAMA, "A Study on Malware Analysis Leveraging Sandbox Evasive
Behaviors," 2014.

[13] R. Saradha and S. Education, "Malware Analysis using Profile Hidden
Markov Models and Intrusion Detection in a Stream Learning Setting,"
2014.

[14] M. Graziano, D. Canali, L. Bilge, A. Lanzi and D. Balzarotti, "Needles in a
haystack: mining information from public dynamic analysis sandboxes for
malware intelligence," 2015.

[15] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein and Y.
Le, "Combining static analysis with probabilistic models to enable market-

© C
OPYRIG

HT U
PM

55

scale android inter-component analysis," vol. 1, pp. 469--484, 2016.

[16] J. Svoboda, "Effectively Combining Static Code Analysis and Manual Code
Reviews," 2014.

[17] B. Chess and G. McGraw, "Static analysis for security," vol. 6, pp. 76--79,
2004.

[18] D. Pozza, R. Sisto, L. Durante and A. Valenzano, "Comparing lexical
analysis tools for buffer overflow detection in network software," in IEEE,
2006.

[19] N. Jovanovic, C. Kruegel and E. Kirda, "Pixy: A static analysis tool for
detecting web application vulnerabilities," in IEEE, 2006.

[20] D. Bruschi, L. Martignoni and M. Monga, "Detecting self-mutating malware
using control-flow graph matching," in Springer, 2006.

[21] O. Community, Static Code Analysis, Retrieved 21/02/2016.

[22] W. Wogerer, "A survey of static program analysis techniques," 2005.

[23] C. Willems, T. Holz and F. Freiling, "Toward automated dynamic malware
analysis using cwsandbox," vol. 2, pp. 32--39, 2007.

[24] R. Pirscoveanu, S. Hansen, T. Larsen, M. Stevanovic, J. Pedersen and A.
Czech, "Analysis of malware behavior: Type classification using machine
learning," in IEEE, 2015.

[25] A. Pektaş and T. Acarman, "A dynamic malware analyzer against virtual
machine aware malicious software," vol. 12, pp. 2245--2257, 2014.

[26] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee and K.-P. Wu, "Droidmat:
Android malware detection through manifest and api calls tracing," in
IEEE, 2012.

[27] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, "Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets.,"
2012.

[28] I. Santos, J. Devesa, F. Brezo, J. Nieves and P. Bringas, "Opem: A static-
dynamic approach for machine-learning-based malware detection," in
Springer, 2013.

[29] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V.
Veen and C. Platzer, "Andrubis: Android malware under the magnifying
glass," p. 5, 2014.

© C
OPYRIG

HT U
PM

56

[30] S. Gadhiya and K. Bhavsar, "Techniques for malware analysis," 2013.

[31] L. Gheorghe, B. Marin, G. Gibson, L. Mogosanu, R. Deaconescu, V.-G.
Voiculescu and M. Carabas, "Smart malware detection on Android," vol.
18, pp. 4254--4272, 2015.

[32] A. Apvrille and L. Apvrille, "Sherlockdroid, an inspector for android
marketplaces," 2014.

[33] L. Yan and H. Yin, "Droidscope: seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis," 2012.

[34] J. Walters, V. Chaudhary, M. Cha, S. Guercio and S. Gallo, "A comparison
of virtualization technologies for HPC," in IEEE, 2008.

[35] A. Khan, A. Zugenmaier, D. Jurca and W. Kellerer, "Network virtualization:
a hypervisor for the Internet?," vol. 1, pp. 136--143, 2012.

[36] M. Jones, "Virtio: An I/O virtualization framework for Linux," 2010.

[37] A.-C. Bujor and R. Dobre, "KVM IO profiling," in IEEE, 2013.

[38] D. Sarna, Implementing and developing cloud computing applications,
CRC Press, 2010.

[39] . KVM, KVM FAQ, Retrieved 18/02/2016.

[40] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah and B.
Rao, "Quantitative comparison of Xen and KVM," pp. 1--2, 2008.

[41] M. Kebede, Performance comparison of btrfs and ext4 filesystems, 2012.

[42] M. Jones, "Anatomy of ext4-Get to know the fourth extended file system,"
2010.

[43] K. Qian, L. Yi and J. Shu, "ThinStore: Out-of-Band Virtualization with Thin
Provisioning," in IEEE, 2011.

[44] . VMware, Virtual Disk Provisioning Policies, Retrieved 19/10/2016.

[45] M. Dutch, "Understanding data deduplication ratios," 2008.

[46] . Wikipedia, Thin Provisioning, Retrieved 19/10/2016.

[47] C. Evans, Write-through, write-around, write-back: Cache explained,

Retrieved 07/2016.

[48] A. Bridgwater, Treat cloud servers like cattle, not puppies, Retrieved

© C
OPYRIG

HT U
PM

57

23/09/2015.

[49] R. Hirschfeld, Mayflies and Dinosaurs (extending Puppies and Cattle),

Retrieved 23/09/2016.

[50] R. Hirschfeld, Research showing that Short Lived Servers ("mayflies")
create efficiency at scale, Retrieved 23/09/2016.

[51] R. Hirschfeld, Short lived VM (Mayflies) research yields surprising
scheduling benefit, Retrieved 23/09/2016.

[52] M. Koster, Cloning VMs with KVM, Retrieved 23/09/2016.

[53] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer and W. Karl,
"Scientific Cloud Computing: Early Definition and Experience.," 2008.

[54] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica and . others, "A view of cloud
computing," vol. 4, pp. 50--58, 2010.

[55] . Wikipedia, Cloud Computing, Retrieved 28/05/2016.

[56] L. Schubert, K. Jeffery and B. Neidecker-Lutz, "The Future of Cloud
Computing--Report from the first Cloud Computing Expert Working Group
Meeting," 2010.

[57] P. Mell and T. Grance, "The NIST definition of cloud computing," 2011.

[58] . Rackspace, Rackspace: Managed Dedicated & Cloud Computing
Services, Retrieved 2016.

[59] . Amazon, Amazon Web Services (AWS) - Cloud Computing Services,
Retrieved 2016.

[60] . Google, App Engine - Platform as a Service | Google Cloud Platform,

Retrieved 2016.

[61] . Microsoft, Microsoft Azure: Cloud Computing Platform & Services,

Retrieved 2016.

[62] T. Dillon, C. Wu and E. Chang, "Cloud computing: issues and challenges,"
in Ieee, 2010.

[63] S. Goyal, "Public vs private vs hybrid vs community-cloud computing: A
critical review," vol. 3, p. 20, 2014.

[64] A. Li, X. Yang, S. Kandula and M. Zhang, "CloudCmp: comparing public

© C
OPYRIG

HT U
PM

58

cloud providers," in ACM, 2010.

[65] O. Sefraoui, M. Aissaoui and M. Eleuldj, "OpenStack: toward an open-
source solution for cloud computing," vol. 3, 2012.

[66] . OpenStack, OpenStack Architecture, Retrieved 2015.

[67] R. Kumar, N. Gupta, S. Charu, K. Jain and S. Jangir, "Open source
solution for cloud computing platform using OpenStack," vol. 5, pp. 89--98,
2014.

[68] . OpenStack, Getting Started, Retrieved 2015.

[69] C. community, CloudStack's History, Retrieved 17/03/2016.

[70] R. Kumar, K. Jain, H. Maharwal, N. Jain and A. Dadhich, "Apache
cloudstack: Open source infrastructure as a service cloud computing
platform," pp. 111--116, 2014.

[71] D. Freet, R. Agrawal, J. Walker and Y. Badr, "Open source cloud
management platforms and hypervisor technologies: A review and
comparison," in IEEE, 2016.

[72] J. Hynninen, "Open source cloud platforms," pp. 53--58, 2013.

[73] L. Martignoni, R. Paleari and D. Bruschi, "A framework for behavior-based
malware analysis in the cloud," in Springer, 2009.

[74] C. Martinez, G. Echeverri and A. Sanz, "Malware detection based on cloud
computing integrating intrusion ontology representation," in IEEE, 2010.

[75] . OpenStack, OpenStackAndItsCLA, Retrieved 2015.

[76] R. Landmann, D. Cantrell, H. De and J. Masters, "Red Hat Enterprise
Linux 6 Installation Guide," pp. 97--101, 2010.

[77] S. Enterprise, Internet Security Threat Report 2014, 2015.

[78] C.-W. Huang, M. Chen and D. Zavin, Android x86-Porting Android to x86,

Available on Dec 2011.

[79] . VirusShare, Retrieved 10/01/2014.

[80] K. Chamarthy, QCOW2 backing files and overlays, Retrieved 22/09/2016.

[81] C. Guarnieri, A. Tanasi, J. Bremer and M. Schloesser, The cuckoo

sandbox, 2012.

© C
OPYRIG

HT U
PM

59

[82] C. Wojner, Mass Malware Analysis: A Do-It-Yourself Kit, 2009.

[83] . OpenStack, Storage Decisions, Retrieved 2015.

[84] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Postel, L.
Roberts and S. Wolff, "A brief history of the Internet," vol. 5, pp. 22--31,
2009.

[85] P. Innella, "A brief history of network security and the need for adherence
to the software process model," pp. 1--15, 2008.

[86] C. Foundation, Additional Software, Requirements, Cuckoo Sandbox,

Retrieved 2015.

