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December 2016 

Chair: Shaiful Jahari Bin Hashim, PhD  
Faculty: Engineering 

The Internet of Thing (IoT) is already gaining momentum in the society by 
creating links between virtual technology and physical world. As the forecasts 
show, the number of devices connected to the Internet may rise to 100 billion 
devices by the end of the current decade. The dark side of this era, connecting 
everything to the Internet with lesser number security experts taking care of 
them. More importantly, companies are designing and implementing their 
platforms in the way that applications developed by third-party developers can 
be installed and executed seamlessly. It is to the best interest of the malicious 
attackers to violate the security and privacy by spreading malicious codes over 
a wider range of platforms including sensor nodes, smart phone, personal 
computer and server. This malicious activity utilizes zero-days vulnerabilities; 
thus the number of zero-days malware is expected to increase exponentially in 
the coming years. Arming security researchers with effective tools can lead to 
the discovery of malware in a shorter time. Hence we need an automated, 
cross-platform, scalable, fast, efficient and easy to use tools that can help even 
a novice user against the malicious attackers. 

In this study, a demonstration of automated, cross-platform malware analysis 
system with the power of cloud computing in the form of Software-as-a-Service 
is proposed. An efficient technique is introduced to tweak the whole structure 
bottom up; from how the nodes should be arranged to create the network, to 
tune the performance of the computing resources (such as CPU, RAM, and 
hard disk), and to modifying all software running on top of this composition. The 
analysis engine is performed by an open-source dynamic malware analyzer 
called Cuckoo Sandbox which is not only modified and improved to perform 
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efficiently in the cloud environment but also able to support Android and 
Windows operating systems simultaneously. All the virtual machines that will 
be running the analysis are orchestrated by a fine-tuned OpenStack, an open-
source cloud computing platform. 

Results show that as the number of submitted jobs grow, the proposed and 
enhanced system works tremendously better than existing ones. By average, 
for Windows platform the measured consumed time to analyze and report the 
outcome is more than ten times faster than previous cloud-enabled malware 
analysis system and about twelve times faster than standalone version. For 
Android platform, on average the proposed system improved the performance 
four times faster than individual launch. Furthermore, the number of virtual 
machines that can be run in the whole system simultaneously has increased by 
seven times compared to the previous research system. The proposed and 
developed cross platform malware analysis system is operated autonomously 
with minimum intervention from the users. 
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REKABENTUK SISTEM ANALISIS MAL-WARE DILENGKAPI CLOUD YANG 
MERENTAS-LANDASAN 

Oleh 

SEYED ABDOLRAHMAN MOUSAVIAN NAJAFABADI 

Disember 2016 

Pengerusi: Shaiful Jahari Bin Hashim, PhD 
Fakulti: Kejuruteraan 

The Internet of Thing (IoT) sudah semakin mencipta nama dalam masyarakat 
hari ini dengan cara mencipta hubungan di antara teknologi maya dan dunia 
fizikal.  Seperti yang diramal, bilangan alat yang disambung kepada Internet 
mungkin meningkat kepada 100 bilion di penghujung dekad ini.  Dalam era yang 
gelap ini, semuanya dihubungkan kepada Internet dengan segelintir sahaja 
pakar keselamatan disediakan untuk menjaga dan melindungi pengguna.  Apa 
yang lebih penting banyak syarikat sedang merekacipta dan melaksanakan 
landasan mereka dalam cara dimana aplikasi yang dibangunkan oleh pihak 
ketiga boleh dipasang dan digunakan tanpa sebarang masalah.  Sudah menjadi 
hasrat penyerang untuk mengancam keselamatan dan privasi di Internet dengan 
menyebarkan kod-kod berbahaya merentas platform termasuk nod pengesan, 
telefon pintar, komputer peribadi dan pekhidmat (server).  Aktiviti merbahaya ini 
menggunakan kelemahan hari-sifar; oleh itu bilangan malware hari-sifar dijangka 
akan meningkat dengan pesat dalam tahun-tahun akan datang.  Menyediakan 
pengkaji-pengkaji keselamatan dengan alat efektif boleh membawa kepada 
penemuan malware dalam masa yang singkat.  Maka, kita memerlukan satu set 
alat yang diotomatikan, rentas-landasan, boleh diskalakan, cepat, efisien dan 
mudah digunakan yang boleh membantu walau seorang pengguna baru 
sekalipun menentang penyerang-penyerang merbahaya ini. 

Dalam kajian ini, satu demonstrasi sistem analisis yang diotomatikan, merentas 
landasan dengan kuasa perkomputeran cloud dalam bentuk perisian sebagai 
perkhidmatan telah dicadangkan. Satu teknik yang efisien yang telah 
diperkenalkan untuk memperbaiki keseluruhan struktur dari bawah; dari 
bagaimana nod perlu disusun-atur untuk mencipta jaringan, memperbaiki 
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prestasi sumber perkomputeran (seperti CPU, RAM, dan cakera keras), dan 
mengubahsuai semua perisian yang berfungsi di atas komposisi ini.  Jentera 
analisis dijalankan melalui satu penganalisa malware dinamik sumber terbuka 
dipanggil Cuckoo Sandbox yang bukan sahaja diubahsuai dan diperbaiki untuk 
bekerja dengan lebih baik dalam persekitaran cloud tetapi ia juga mampu 
menyokong sistem Android dan Window serentak.  Semua jentera maya yang 
akan menjalankan analisis tersebut dirangka oleh satu OpenStack, satu 
landasan perkomputeran cloud bersumber-terbuka yang telah disesuaikan. 

Keputusan menunjukkan bahawa apabila bilangan tugas bertambah, sistem 
yang disarankan dan diperbaiki bekerja dengan lebih baik dari sistem sedia ada.  
Secara purata, untuk landasan Windows, masa yang digunakan dan disukat 
untuk menganalisa dan melaporkan hasilnya adalah sepuluh kali lebih pantas 
dari sistem analisis malware terdahulu dan dua belas kali lebih pantas dari versi 
yang boleh berdiri dengan sendiri. Untuk landasan Android, secara purata, 
sistem yang disarankan memperbaiki lagi prestasi empat kali ganda lebih pantas 
dari pelancaran individu.  Tambahan lagi, bilangan mesin maya yang boleh 
dijalankan dalam kesemua sistem telah meningkat tujuh kali berbanding dengan 
sistem kajian terdahulu.  Sistem analisis yang disarankan dan dibangunkan 
dioperasikan secara autonomi dengan campur tangan yang minima dari 
pengguna.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

In the early 1970's the ARPANET was funded by Defense Advanced Research 
Projects Agency (DARPA) to meet military needs before it being expanded in 
public. Initially it was a private network services accessible only by few 
operational organizations, trying to connect limited number of computers 
together via Host-to-Host protocol. In that time, there was no actual threat 
because of the fact of being private and having limited number of computers. 
Paul Innella in a report is said that the first sign of a network security threat was 
seen in autumn 1988. It was a virus that infected about 60,000 computers 
connected to the Internet and cause a failure for at least two days. 

Since then, every day huge amount of users and devices from a different type 
of categories, from normal clients to professionals and from private 
organizations to governments, are threatened by various viruses, worms, 
ransomware, and Trojans. Malware and viruses play a significant role in 
existing threats for computer users such as money loss, theft of personal data, 
accessing to the hardware without permission, etc. For example, Stuxnet which 
aimed to damage uranium enrichment infrastructure in Iran, or a Trojan-style 
malware that stole Angela Merkel’s emails are two major malware that affect 
governments. Another indication of the problem is that even people without any 
special interest in computers are aware of worms like CryptoLocker or Sasser. 
To confront these incidents, experts in security field are required to create, 
develop, and use tools so that they can prevent data leak and loss, defend 
against attacks, discover vulnerabilities, and patch bugs quickly. 

The appliances that researchers use to explore the behavior of malware are 
mainly divided into two groups: static analysis tools and dynamic ones. 
Malware Sandboxing is a pragmatic software that represents dynamic analysis 
method which instead of statically analyzing the source code and the binary 
files, it executes the files and monitors their behavior in real-time. The process 
of preparing a proper environment, running the binary file in that isolated 
surroundings, observing and collecting data and cleaning up the host can be 
automated to speed up analyzing flow. This study presents an enhanced 
approach to boost this flow by utilizing cloud computing power. 

This chapter is organized as follows. Section 1.2 describes the motivation 
behind this study and the existing research problems. In Section 1.3 the aims 
and objectives of this study are stated. Section 1.4 outlines the scopes of the 
thesis followed by the thesis organization and reminder of coming chapters that 
is described in Section1.5. 
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1.2 Motivation and Problem Statement 

Internet security teams at Symantec reported [1] that in 2014 more than three 
hundred million new malware were created which means almost one million 
new threats were distributed per day. In another report [2], they have stated 
that the number of zero-day vulnerabilities discovered in 2015 has increased by 
125% compared to the previous year. This figure for Ransomware is 35 
percent, for the personal records (including medical records) that have been 
stolen is 23% and 85% (half a billion personal records) for unreported 
exposures [2]. Facing this huge number of malware while most of the electronic 
devices in our homes are connected to the Internet leads us to this conclusion 
that researchers and defenses should move as fast as attackers. Analyzing 
new files quicker and more accurate than before can be a big step regarding 
this. 

 

Figure 1.1: The Growth of Malware 

Talking about the gradually growing number of smartphone users in last 
decade is stating the obvious but should never be forgotten as attackers never 
forgot this fact. In 2015, more than 50 percent of the Internet users were using 
Mobiles other than Desktops or other devices [3]. On the other hand, users are 
able to install applications on their device not only from Google Play Store but 
also from third-party markets or other websites known as “side-loading.” Side-
loading is not avoidable for some users due to some restrictions of Google Play 
Store such as legal restrictions, region availability, and forcing developers to 
register with Google, etc. Hence, the potential of having vulnerabilities and 
loophole because of lack of verification is so high. Thus focusing on the files 
and malware that targeted smartphones are just not less important as other 
files. 
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Hardware is an essential part of any system in order to have enough resources 
to analyzing files. Scaling up the infrastructure by adding extra resources such 
as Servers, RAMs, CPU, etc. is not only pricey but also can save the time of 
non-blocking processes which is as efficient as one tiny floodgate for a huge 
dam. On the contrary, scaling the server’s architecture out using cloud 
computing technology can give the advantage of sharing tasks and processes 
between different hypervisors. 

The other subject that has influenced the design of this automated and scalable 
analysis approach is resetting the analysis environment to a clean state which 
is undoubtedly a time-consuming process. This refreshing process also is a 
necessity for executing every sample in an identical environment to 
consequently having a comparable and valid results. Deducting every seconds 
of this resetting process, can have a huge impact of the whole analysis process 
as the number of samples grow [4]. 

The manpower required to maintain the system or extending the platform in the 
time of need is expensive in the result of spending money on salaries. 
Moreover, existing automated malware collection systems like Honeypots can 
collect a tremendous number of malicious files from the Internet. The process 
of analyzing these data can be fully automated and also completely integrated 
with other systems by the power of cloud platform in the favor of processing in 
real time. 

While existing solutions, such as [5], [6], [7] and [8], in the subject of analyzing 
huge amount of malwares have tried to resolve this problem, yet cross-platform 
deficiency, high resource usage and time-consuming processes are still valid. 

Therefore, this research has tried to address these obstacles and resolve them 
by proposing a new framework that enhance malware analysis system using 
cloud computing power. 

1.3 Research Aim and Objectives 

The concentration in this study will be on providing a dynamic analysis as a 
service which consumes fewer resources, works more efficient and much faster 
and support a wider range of OSes. So the primary purpose is to create a 
scalable, fast and efficient cross-platform support for dynamic malware analysis 
using cloud computing technology to be able to analyze an enormous number 
of files in less time than before. 

The list below shows targets of this research mentioned above: 
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i. To design and optimize cloud architecture to be able to have more virtual 
machines on the same physical hardware by considering existing 
system. 

ii. To fine-tune the correlation between computing resources to decrease 
analyzing time. 

iii. To add cross-platform capabilities to the system in order to support 
analyzing files on different Operating systems such as Android and 
Windows.  

iv. To evaluate the designed system with existing standalone version and 
previous cloud-enabled system. 

1.4 Study Scope 

The scope of the proposed research is defined in two general parts. The first 
domain contains extending the engine of analysis to support Android OS as 
well as Windows. In this case, the system will only generate a report based on 
the file’s behaviour in the Android OS, and it will not conclude that the file is 
malware or not. Optimizing the infrastructure and enhancing software platform 
to handle requests faster and more efficient is the second domain of this 
research. 

1.5 Thesis Organization 

This thesis organized in four main chapter along with first introduction section. 
Some definition and review about Malware analysis methods, techniques, and 
existing tools is written in CHAPTER 2. Additionally, some information about 
virtualization technology, cloud computing paradigm, its characteristics and its 
components is provided in this chapter. CHAPTER 3 also will contain an 
explanation about used methodology to state this research objectives with 
elaborately used configurations. The methodology is explained in this chapter, 
is used to prove the feasibility of the proposed idea using a different model of 
experiments. These experiments followed by the results obtained from them 
will be reported in CHAPTER 4.  At the end, conclusion and future work of this 
research will be presented in CHAPTER 5.  
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