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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science 
 

INFLUENCE OF CUTOUT SHAPES ON POSTBUCKLING OF FUNCTIONALLY 

GRADED MATERIAL PLATE UNDER INPLANE-COMPRESSIVE LOAD  

 
By 

 

HAMED JAMALI 

 

September 2014 
 

Chairman: Azmin Shakrine Bin Mohd Rafie, PhD 

Faculty: Engineering 

 
Functionally graded materials (FGM) are composite materials with microstructure 

gradation optimized for the functioning of engineering components. For the case of 

fibrous composites, the fiber density is varied spatially, leading to variable material 

properties tailored to specific optimization requirements. There is an increasing 

demand for the use of such intelligent materials in space and aircraft industries. The 

current preferred methods to study engineering components made of FGM are 

mainly modeling particularly those that are finite element (FE) based on rectangular 

and circular plate/shell with constant thickness and study on the structures with 

nonlinearity on shape have not yet sufficiently matured. Hence this thesis reports the 

research study on postbuckling and stability analyzing of FGM plate/shell with four 

different cut-out shapes including circular, square, horizontal elliptical and vertical-

elliptical cutout shape under different boundary conditions. Comparison for FE 

model performed in two stages, including FGM plate and Postbuckling of FGM 

plate, to verify the model and Postbuckling of model. The verified model was used in 

current research study for analyzing the FGM plate with different cutout shapes. 

Validation of the results of this study has been done by verifying the results with 

Postbuckling results of aluminum plate. The pustbuckling analysis of FGM Plate 

subjected to edge loading (edge shortening and edge compression) was performed 

through finite element software ABAQUS. 

 

The structures considered in this study are functionally graded in a single direction 

and elastic region was assumed for materials which were used within all analysis 

stages in this research. This study has shown that tightening the boundary of plate 

increases the stability of the plate and the plate with elliptical shape cutout has the 

highest Postbuckling load which means the plate with vertical elliptical cutout shape 

has the higher stability among the others. The elliptical cutout shape is the best shape 

for having higher mechanical stability and Postbuckling resilience.  
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Abstrak tesis yan dikemukakan kepada Senat Universiti Putra Malaysia 

Sebagai memenuhi keperluan untuk ijazah Master Sains 

 
PENGARUH BENTUK POTONG PADA PLAT PASCALENGKUNGAN DI BAWAH 

BEBAN INPLAN-MAMPATAN 

 

Oleh 

 
HAMED JAMALI 

 

September 2014 

 

Pengerusi: Azmin Shakrine Bin Mohd Rafie, PhD  

Fakulti: Kejuruteraan 

 

Bahan Fungsi Bergred  (FGM) adalah merupakan bahan rencam  

dengan penggredan stuktur mikro yang dioptimumkan untuk berfungsi dengan 

komponen-komponen kejuruteraan. Bagi kes bahan rencam bergentian, ketumpatan 

gentian berubah mengikut ruang, membawa kepada perubahan sifat bahan yang 

boleh dibentuk untuk pengoptimuman penggunaan yang khusus. Terdapat 

peningkatan permintaan terhadap penggunaan bahan-bahan pintar seperti ini di 

dalam industri aeroangkasa dan pesawat terbang. Kaedah pilihan terkini untuk 

mengkaji komponen-komponen kejuruteraan yang dibuat daripada FGM adalah 

menggunakan pemodelan khusus unsur terhingga (FE) berdasarkan plat/kelompang 

segiempat dan bulat dengan ketebalan yang malar dan kajian struktur dengan 

ketaklelurusan untuk bentuk yang masih belum cukup matang. Oleh itu tesis ini 

melaporkan kajian penyelidikan pada pascalengkungan dan analisis kestabilan 

plat/kelompang FGM dengan empat bentuk bahagian dipotong yang berbeza  

termasuk bentuk bulat, empat segi, eliptik mendatar dan eliptik menegak di bawah 

keadaan sempadan yang berbeza. Perbandingan untuk model FE dilaksanakan dalam 

dua peringkat, termasuk plat FGM dan pascalengkungan plat FGM, untuk 

mengesahkan model dan model pascalengkungan. Model yang telah disahkan akan 

digunakan dalam kajian penyelidikan semasa untuk analisis empat bentuk bahagian 

dipotong plat FGM. Kesahan hasil keputusan kajian ini telah dilakukan dengan 

mengesahkan keputusan pascalengkungan plat aluminium. Analisis pascalengkungan 

plat FGM tertakluk kepada bebanan hujung (pemendekan hujung dan pemampatan 

hujung) telah dilakukan menggunakan perisian unsur terhingga ABAQUS. 

 

Sruktur yang dipertimbangkan di dalam kajian ini adalah gred fungsi dalam satu arah 

dan rantau elastik dengan andaian untuk bahan-bahan yang telah digunakan dalam 

semua peringkat analisis di dalam kajian ini.  Kajian ini telah menunjukkan bahawa 

dengan mengetatkan sempadan plat akan meningkatkan kestabilan plat dengan 

bentuk potong eliptik mempunyai beban pascalengkungan tertinggi yang bermaksud 

plat dengan bentuk potong eliptik menegak mempunyai kestabilan yang lebih tinggi  
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Background 

  

Composite materials have fully established themselves as workable engineering 

materials and are now relatively commonplace around the world, particularly for 

structural purposes. Early military applications of polymer matrix composites during 

World War II led to large-scale commercial exploitation, especially in the marine 

industry, during the late 1940s and early 1950s. Today, the aircraft, automobile, 

leisure, electronic and medical industries are quite dependent on fibre-reinforced 

plastics, and these composites, namely particulate or mineral filled plastics, are also 

widely used in industry because of the associated cost reduction [1].  

 

In the continuing quest for improved performance, which may be specified by various 

criteria including less weight, more strength and lower cost, traditional materials 

frequently reach the limit of their usefulness. Hence, material scientists, engineers are 

always striving to produce either improved traditional composite materials or new 

materials such as functionally graded materials (FGMs). The FGM concept was 

originated in Japan in 1984 during the space-plane project, in the form of a proposed 

thermal barrier material capable of withstanding a surface temperature of 2000 K and 

a temperature gradient of 1000 K across a cross section less than 10 mm. Since 1984, 

FGM thin films have been comprehensively researched, and are almost a commercial 

reality. The FGMs were first developed by Japanese scientists in the 1980s. Since that 

time, the FGMs have been used in several branches and are still being broadened [1]. 

FGMs are composite materials with microstructure gradation optimized for the 

functioning of the engineering component. For the case of fibrous composites, the 

fibre density is varied spatially, leading to variable material properties tailored to 

specific optimization requirements.  

 

1.1.1 FGM Applications 

 

FGMs offer great promise in applications where the operating conditions are severe. 

For instance, wear-resistant linings for handling large heavy abrasive ore particles, 

rocket heat shields, heat exchanger tubes, thermoelectric generators, heat-engine 

components, plasma facings for fusion reactors, and electrically insulating 

metal/ceramic joints. They are also ideal for minimizing thermo-mechanical mismatch 

in metal-ceramic bonding. 

 

Koch and Gunter [2] carried out a research on a new generation of cutting tools based 

on functionally graded sialons for solving the machining problems of the 21st century. 

It was proposed that new ceramic tool materials on the basis of Silicon Nitride/Oxide 

("Sialons") with a tough core would be developed, to allow a significantly higher 

performance in machining, in particular for "heavy-to-machine-parts". It was also 

proposed that the output would enable the European machining industry to increase 

and speed up the production combined with saving of resources and should benefit for 

health and environment. 
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The Swedish Defence Research Agency [3] presented an article in their annual report 

on armour for future combat vehicle. In order to meet the conflicting demands of lower 

vehicle weight and much improved protection, future generations of fighting vehicles 

will need new types of armour. A promising passive armour concept, studied at 

Swedish Defence Research Agency, is designed to cause interface defeat of the 

projectile. Interface defeat of tungsten kinetic energy long-rod projectiles has been 

demonstrated at velocities close to 2000 m/s using today’s ceramics and armour 

technologies. Spark Plasma Sintering is an interesting technology to produce FGMs. 

FGMs has the potential to be very efficient armour materials. Swedish Defence 

Research Agency [3] has been conducting initial experiments to produce an FGM with 

a hard outer surface of TiB2 and a strong, ductile inner surface of titanium. There are 

still some difficulties to overcome but the results so far are encouraging. Swedish 

Defence Research Agency [3] also conducts research into active protection systems 

against KE-projectiles and electromagnetic armour. 

 

Siegmund [4] describes a program to develop low-cost, functionally graded (FG) 

carbon-carbon composites for use in a wide range of new applications including 

automotive structural and heat transfer components, orthopedic implants, friction 

materials for the specialty automotive, truck and aerospace industries. C-C composites 

have been the material of choice for high-end high temperature applications for 

commercial and military aircraft. However, their high cost has limited their application 

to other significant markets. The research team (Purdue University, University of 

Notre Dame, Indiana University, Honeywell Aircraft Landing Systems, and National 

Composite Centre) proposes to change this by introducing a new class of C-C 

composites with significantly lower cost. The program merges the related expertise of 

the team members and proposes the development of new technologies to make FG-C-

C composites with $10/lb a reality. The program uniquely integrates a robotic 

manufacturing process, a novel process chemistry approach, materials design and 

structural analysis with an industrial-scale operation [1]. 

 

Bey [5] investigated functionally graded metallic foams as an alternative thermal 

protection system for space transportation vehicles. An integrated thermal-structural 

concept in which the load bearing structure has insulating capability and has potential 

for significant weight savings over current thermal protection systems (TPS). Current 

TPS do not have a structural function so they are parasitic from a structural viewpoint. 

Current TPS include coated ceramic tiles or blankets of fibrous insulation affixed to 

the vehicle surface and metallic panels in which fibrous insulation is encapsulated in 

foil and placed between an outer metal surface and the vehicle structure. A 

multifunctional TPS concept is based on metallic panels that are continuously graded 

in composition and porosity. 

 

U.S. Department of Defense [6] researched on F135 engine and PW J52 engine and 

they applied functional graded thermal barrier coatings on turbine components, which 

will increase component life under severe environment and reduce the down-time for 

the repair of components and enhance readiness of the fleet. These were run in two 

engine tests for qualification: (i) F402 engine (AV-8B) test as test engine for insertion 

in F135 engine (JSF) and (ii) PW J52 (EA-6B) engine test. 
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1.2 Research Motivation  

 

Since prehistory, materials have played a crucial role in the development of our society 

and culture. In the twentieth century, the exploitation of base elements from the 

periodic table into various inorganic and organic compounds has made way for the 

development of advanced polymers, the engineering alloys, and advanced structural 

ceramics (figure 1.1). Furthermore, FGMs have been developed by combining 

advanced engineering materials in the form of particulates, fibers, whiskers, or 

platelets. In the continuous drive to improve structural performance, engineers and 

scientists currently seek to tailor the material architecture at microscopic scales to 

optimize certain functional properties of a structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Illustration of the modern material hierarchy [7] 

 

1.3 Problem statement 

 

Composite materials are often used in different engineering fields, especially in the 

aerospace field. The main advantage of composite materials is the high stiffness-to-

weight and strength-to-weight ratios. Some of  limitations of composite materials are: 

the weakness of interfaces between layers may lead to delamination, extreme thermal 

loads may lead to debonding between matrix and fibre due to mismatch of mechanical 

properties, and residual stresses may be present due to difference in coefficients of 

thermal expansion of the fibre and the matrix. To overcome these limitations, 

functionally graded materials (FGMs) have recently been proposed. 

Inorganic Compounds  Organic Compounds  

Base Elements  

Ceramics  Metal alloys  Glasses Polymers  Elastomers 

Enhanced Fibers, Particulates, Platelets, 

Whiskers, Foam, and Matrices 

Bulk Composites 

Composite Laminates 

Functionally graded Material 
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The FGMs are made in such a way that the volume fractions of two or more materials 

are varied continuously along a certain dimension. The FGMs can be made as required 

for application, for example, thermal barrier plate structures can be made from a 

mixture of ceramic and metal for high temperature application. The advantage of the 

FGM plate is that its material properties vary continuously from one surface to the 

other, thus it avoids the interface problem that exists in homogeneous composites [1].  

 

Regarding to advantages and application of FGMs and also exist of an increasing 

demand for the use of such intelligent materials in space and aircraft industries. The 

technical challenges associated with the development of military and civilian 

aerospace vehicles for the 21st century have identified several key areas that need 

further development. One important area is the design technology and analysis of large 

scale FGM structures. The high performance requirements of these structures have led 

to a search for ways to exploit their tailor ability to meet specific mission goals such 

as increasing the mechanical stability of structures, and buckling and Postbuckling 

resistance are the factors which is considered as a mechanical stability. To increase 

the safety of structures and have a safer operation, it is critically important to design 

and hire a material/structure which can undergoes more amount of loads (energy) after 

it buckles and within postbuckling range before it completely fails.   

 

An important structural component used in practically all aerospace vehicles is the 

rectangular plate with cutout. Cutouts commonly appear in plates as access ports for 

mechanical and electrical systems in turbo engines or are made to reduce the structural 

weight in components such as wing ribs and spars. Often during flight, these members 

experience compression loads, which causes buckling and post buckling phenomenon 

in those structure under operation time and flight. It is highly important to find a way 

to increase the stability of structures before they fail thus their buckling and 

Postbuckling behavior (as a mechanical stability) are important factors that must be 

considered in their design.  

 

In this research study, the Postbuckling of rectangular FGM plate with 4 different 

cutout shapes, which are commonly used in designing in space and aircraft industries, 

have been considered. 

 

1.4 Research Scope  

 

Research works on functionally graded materials, have been covered topics such as 

mechanical and thermal, and also thermo-mechanical Postbuckling of rectangular and 

circular FGM plate/shell without any hole. With Regards to the literature review, there 

is no research work on Postbuckling analysis of FGM plate with cutout. With 

considering to previous studies which have been carried out by other researchers on 

buckling and Postbuckling of FGMs, in this thesis influence of cutout shape and size 

of cutout on Postbuckling of rectangular FGM plate will be investigated to cover the 

objectives of this thesis. During this study elastic region will be assumed for materials, 

which are used in this research, in all steps of analysis. This study will focused on 

influence of cut-out shape and size on Postbuckling loads of FGM plate, which is 

undergoing in plane mechanical loads in elastic region. 
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1.5 Objectives  

 

The objective of this research is to study the post buckling of plate made of FGMs, 

which has central hole and undergoes in plane-load. This research aims at find out best 

cutout shape which could make the most Postbuckling resistance while the FGM plate 

undergoes inplane load, under two different boundary conditions. In this study elastic 

region is assumed for the all cases and in all stages of analysis. The basic aspects of 

the research are as follows: 

 

I) To study the post buckling of FGM plate with square /circular shape cut-out 

under mechanical load and different boundary conditions, so as to be able to 

predict accurately all required material properties from those of the 

constituents, 

 

II) To analyze the post buckling of FGM plate with horizontal/vertical elliptical 

cut-out shape under mechanical load and different boundary conditions, so as 

to be able to predict accurately all required material properties from those of 

the constituents. 

 

III)   To Validate the Postbuckling results with Postbuckling of Aluminum plate. 

 

1.6 Thesis Layout 

 

This thesis consists of five chapters: 

Chapter 1 describes the advent of FGMs, and presents the research objectives. It also 

reviews the application of FGMs which helps to justify the research objectives. 

 

Chapter 2 reviews publications on composites and FGMs. Then it reviews publications 

on the application of FEM on FGMs. Main consideration of literature review is on 

postbuckling of FGM plate under mechanical and thermal loads. Latter on some 

review would be made on type of cutout shapes and dimension of hole which is already 

done by researcher in Postbuckling and buckling of other types of material but on the 

same structure.  

 

Chapter 3 is methodology that describes all steps and materials that are used in this 

research. Explanation for all FE models and boundary conditions, which are used in 

validation and comparison and also current research, discusses in this chapter. The 

comparison and validation exercise are carried out in three stages. The first stage 

involves the comparison of the post buckling of the FGM plate under mechanical load 

which would verify the accuracy of Postbuckling method and FE tools itself. The 

second stage involves the validation of FGM plat under thermal load which proofs the 

material composition of FGM model. The third stage is performed to insure the 

precision of the Postbuckling of FGM plate.  

 

Chapter 4 is the finite element modeling process in ABAQUS. This chapter shows the 

steps and sequences for preparing appropriate model on ABAQUS to compute the 

Postbuckling forces/deflections in elastic region for rectangular FGM plate. 
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Chapter 5 consists of the results of validations and comparisons and the results and 

discussion of the current research. The results and discussion that shows the results of 

post buckling of the plate with cut-out under mechanical load and different boundary 

conditions. The effects of cut-out shapes and boundary conditions on mechanical 

stability of such these structures will discuss.  

 

Chapter 6 is the final part, which summarizes the current work and contains conclusion 

of the current research and gives some recommendation for future works. 
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