UNIVERSITI PUTRA MALAYSIA

OPTIMAL POWER FLOW BASED ON FUZZY LINEAR PROGRAMMING AND MODIFIED JAYA ALGORITHMS

WARID SAYEL WARID ALZIHAYMEE

FK 2017 122
OPTIMAL POWER FLOW BASED ON FUZZY LINEAR PROGRAMMING AND MODIFIED JAYA ALGORITHMS

By

WARID SAYEL WARID ALZIHAYMEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents and my wife for their love and support. Without you, none of this would have been possible.

Warid S. Warid
March 2017
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

OPTIMAL POWER FLOW BASED ON FUZZY LINEAR PROGRAMMING AND MODIFIED JAYA ALGORITHMS

By

WARID SAYEL WARID ALZIHAYMEE

July 2017

Chairman : Associate Professor Hashim Hizam, PhD
Faculty : Engineering

Optimal power flow (OPF) solution is a crucial tool in electric power networks operation. Recently, several factors, including the deregulated electricity markets, electricity consumption growth, the growing role of decision makers, and the increasing exploitation of distributed generation (DG), affect the operation strategies of many meshed power networks. These new conditions have raised the intricacy of OPF problems and necessitate a reliable optimization algorithm that can tackle economic and security concerns.

A set of modified and novel optimization algorithms are proposed in this thesis to deal with different single and multi-objective OPF problems. A new formulation for the multi-objective optimal power flow (MOOPF) problem that considers DG is introduced. The proposed algorithms have been examined and validated using the IEEE 30-bus and IEEE 118-bus test systems.

The first proposed approach is a multi-objective fuzzy linear programming optimization (MFLP) algorithm to solve the MOOPF problem. The results indicate that a unique and optimum solution with an excellent satisfaction for the extreme targets can be achieved. Secondly, the application and modification of a Jaya algorithm to deal with different OPF problems is presented. The main advantage of this algorithm is that no algorithm-particular controlling parameters are required for this algorithm. Two versions of the Jaya algorithm namely, the basic Jaya algorithm and novel quasi-oppositional Jaya (QOJaya) algorithm are proposed to solve different single objective OPF problems. In the proposed novel QOJaya algorithm, an intelligence strategy, namely, quasi-oppositional based learning (QOBL) is incorporated into the basic Jaya algorithm to enhance its convergence speed and solution optimality. For each considered case, results demonstrate that Jaya
algorithm can produce a global optimum solution with rapid convergence. Meanwhile, the proposed QOJaya algorithm produces better results than the basic Jaya method in terms of solution optimality and convergence speed. In addition, two novel Jaya-based methods namely, the modified Jaya (MJaya) algorithm and quasi-oppositional modified Jaya (QOMJaya) algorithm are proposed to solve different MOOPF problems. In this work, a considerable contribution has been made in terms of modifying Jaya algorithm for handling MOOPF problems. Results show the applicability, potential, and efficacy of the proposed MJaya and QOMJaya algorithms in solving MOOPF problems.

Finally, two novel hybrid optimization algorithms namely, FLP-QOJaya algorithm for single objective OPF problems and MFLP-QOMJaya algorithm for MOOPF problems are proposed. For all single objective OPF cases, results demonstrate that the FLP-QOJaya algorithm outperforms the proposed Jaya and QOJaya algorithms in terms of solution quality, convergence speed and execution time. For multi-objective OPF problems, results show the supremacy of the proposed MFLP-QOMJaya over the proposed MJaya and QOMJaya algorithms in terms of producing superior Pareto optimal solutions and finer best compromise solutions.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

ALIRAN KUASA OPTIMUM BERDASARKAN ALGORITMA PENGATURCARAAN LINEAR SAMAR DAN JAYA YANG DIUBAH SUAI

Oleh

WARID SAYEL WARID ALZIHAYMEE

Julai 2017

Pengerusi : Profesor Madya Hashim Hizam, PhD
Fakulti : Kejuruteraan

Penyelesaian bagi aliran kuasa optimum (OPF) merupakan perkara penting dalam operasi rangkaian kuasa elektrik. Baru-baru ini, beberapa faktor, termasuk pemasaran tenaga elektrik yang tidak dikawal selia, peningkatan penggunaan elektrik, peningkatan peranan pembuat keputusan dan eksploitasi penjanaan teragih (DG) yang meningkat, memberikan kesan kepada strategi operasi banyak rangkaian tenaga elektrik. Keadaan baharu ini telah menambah kerumitan masalah OPF dan memerlukan algoritma pengoptimuman yang boleh dipercayai untuk menangani kebimbangan ekonomi serta keselamatan.

Satu set algoritma pengoptimuman yang diubah suai dan baharu dicadangkan dalam tesis ini untuk menangani masalah OPF sama ada dengan satu objektif mahupun dengan pelbagai objektif. Rumusan baharu untuk masalah aliran kuasa optimum pelbagai objektif (MOOPF) yang mengambilkira DG diperkenalkan. Algoritma yang dicadangkan telah diperiksa dan disahkan dengan menggunakan sistem ujian IEEE 30-bus dan IEEE 118-bus.

Pendekatan pertama yang dicadangkan ialah algoritma pengoptimuman pengaturcaraan linear samar pelbagai objektif (MFLP) untuk menyelesaikan masalah MOOPF. Keputusan menunjukkan bahawa penyelesaian yang unik dan optimum dengan kepuasan yang sangat baik untuk sasaran yang tinggi dapat dicapai. Kedua, aplikasi dan pengubahsuaian algoritma Jaya untuk menangani masalah OPF yang berbeza dilaksanakan. Kelebihan utama algoritma ini adalah lantaran ketidadaan parameter kawalan algoritma tertentu yang diperlukan untuk algoritma ini. Dua versi algoritma Jaya ini, iaitu algoritma Jaya asas dan algoritma Jaya kuasi-tentangan (QOJaya) baharu dicadangkan untuk menyelesaikan masalah OPF satu objektif yang berbeza. Dalam algoritma QOJaya baharu yang dicadangkan, strategi kecerdasan,
yakni kuasi-tentangan berasaskan pembelajaran (QOBL) dimasukkan ke dalam algoritma Jaya asas untuk meningkatkan kepantasan penumpuan dan kecepatan penyelesaian. Bagi setiap kes yang dipertimbangkan, keputusan menunjukkan bahawa algoritma Jaya dapat menghasilkan penyelesaian optimum global dengan penumpuan yang pantas. Sementara itu, algoritma QOJaya yang dicadangkan menghasilkan keputusan yang lebih baik daripada kaedah Jaya asas dari segi kecepatan penyelesaian dan kepantasan penumpuan. Di samping itu, dua kaedah baharu berasaskan Jaya, iaitu algoritma Jaya yang diubah suai (MJaya) dan algoritma Jaya kuasi-tentangan yang diubah suai (QOMJaya) dicadangkan untuk menyelesaikan masalah MOOPF yang berbeza. Dalam kajian ini, usaha yang besar telah dibuat dari segi mengubah suai algoritma Jaya untuk menangani masalah MOOPF. Keputusan menunjukkan wujudnya ciri keterterapan, potensi dan keberkesanan MJaya dan algoritma QOMJaya yang dicadangkan dalam penyelesaian masalah MOOPF.

Akhir sekali, dua algoritma pengoptimuman hibrid baharu iaitu algoritma FLP-QOJaya untuk masalah OPF satu objektif dan algoritma MFLP-QOMJaya untuk masalah MOOPF dicadangkan. Untuk semua kes OPF satu objektif, keputusan menunjukkan bahawa algoritma FLP-QOJaya melebihi performa Jaya dan algoritma QOJaya yang dicadangkan dari segi kualiti penyelesaian, kecepatan penumpuan dan masa pelaksanaan. Untuk masalah OPF pelbagai objektif, keputusan menunjukkan keunggulan MFLP-QOMJaya berbanding dengan MJaya dan algoritma QOMJaya yang dicadangkan dari segi penghasilan penyelesaian optimum Pareto yang terbaik dan penyelesaian kesepakatan terbaik yang lebih teliti.
ACKNOWLEDGEMENTS

All praises be to almighty Allah, the lord of whole creations, for inspiring and guiding me towards the utmost goodness.

I also would like to express my sincere gratitude and appreciation to my supervisory committee Assoc. Prof. Dr. Hashim Hizam, Prof. Dr. Norman Mariun, and Assoc. Prof. Dr. Noor Izzri Abdul Wahab for their priceless guidance, continued supervision, advice, comment, encouragement and support throughout the research journey.

Also, I would like to express my utmost appreciation and gratitude to Universiti Putra Malaysia for providing the necessary facilities.

Finally, I would like to thank the Iraqi Ministry of Higher Education & Scientific Research, Foundation of Technical Education and Southern Technical University for the financial support.

Warid Sayel Warid
March 2017
I certify that a Thesis Examination Committee has met on 28 July 2017 to conduct the final examination of Warid Sayel Warid Alzihaymee on his thesis entitled "Optimal Power Flow Based on Fuzzy Linear Programming and Modified Jaya Algorithms" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Gorakanage Arosha Chandima Gomes, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Amran bin Mohd Radzi, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Jasronita binti Jasni, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

K. Shanti Swarup, PhD
Professor
Indian Institute of Technology Madras
India
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2017
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Hashim Hizam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Norman Mariun, PhD
Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Noor Izzri Abdul Wahab, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ________________________________ Date: __________________

Name and Matric No.: Warid Sayel Warid Alzihaymee , GS38882
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Associate Professor Dr. Hashim Hizam

Signature: __
Name of Member of Supervisory Committee: Professor, Ir Dr. Norman Mariun

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Noor Izzri Abdul Wahab
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of the Study
1.2 Problem Statement
1.3 Research Aim and Objectives
1.4 Motivation
1.5 Scope and Limitation of the Study
1.6 Contributions of the Study
1.7 Thesis Layout

2 LITERATURE REVIEW

2.1 Introduction
2.2 Optimal Power Flow Problem
2.3 Classical (Deterministic) Optimization Methods Applied to OPF Problems
 2.3.1 Gradient Methods
 2.3.2 Newton's Approach
 2.3.3 Linear Programming (LP)
 2.3.4 Quadratic Programming (QP)
 2.3.5 Decomposition Algorithms
 2.3.6 Interior Point Methods (IPMs)
 2.3.7 Comparison of Classical Methods
2.4 Heuristic Optimization Methods Applied to OPF Problems
 2.4.1 Genetic Algorithm (GA)
 2.4.2 Particle Swarm Optimization (PSO)
 2.4.3 Evolutionary Programming (EP)
 2.4.4 Simulated Annealing (SA) Optimization
 2.4.5 Differential Evolution (DE)
 2.4.6 Biogeography Based Optimization (BBO)
 2.4.7 Artificial Bee Colony (ABC) Algorithm
 2.4.8 Gravitational Search Algorithm (GSA)
 2.4.9 Harmony Search (HS) Algorithm
 2.4.10 Shuffle Frog Leaping Algorithm (SFLA)
 2.4.11 Comparison of Heuristic Optimization Methods
2.5 Literature Survey of Fuzzy Logic in Power Systems
3 METHODOLOGY

3.1 Introduction 37

3.2 Problem Formulation 38

3.2.1 Problem Objective Functions 40

3.2.1.1 Generation Cost Minimization 40

3.2.1.2 Minimization of Real Power Loss 41

3.2.1.3 Voltage Stability Enhancement 41

3.2.1.4 Switchable MVAR Sources Reserve Margin Maximization 42

3.2.2 Problem Constraints 42

3.2.2.1 Equality Constraints 42

3.2.2.2 Inequality Constraints 43

3.2.2.3 Handling of Dependent Constraints 45

3.3 A Sensitivity-Based Methodology for the Optimal Placement of DG 46

3.4 Proposed MFLP Algorithm for the MOOPF Problem Considering DG 48

3.4.1 Role of Decision Makers 48

3.4.2 Multi-Objective Fuzzy Optimization 48

3.4.3 Overview of the Proposed Method 48

3.4.4 Fuzzification of the Objective Functions 49

3.4.5 MFLP Optimization Model 52

3.4.6 Solution Procedure for the Proposed MFLP Approach 54

3.5 Modified Jaya Algorithms for OPF and MOOPF Problems 57

3.5.1 Basic Jaya Algorithm for OPF Problem 59

3.5.1.1 Overview and Optimization Procedure 59

3.5.1.2 Application of Jaya Algorithm to OPF Problem 60

3.5.2 Novel Quasi-Oppositional Jaya (QOJaya) algorithm for OPF Problem 63

3.5.2.1 Quasi-Oppositional Based Learning (QOBL) Strategy 63

3.5.2.2 Application of a Novel QOJaya Algorithm to OPF Problem 66

3.5.3 Modified Jaya (MJaya) algorithm for MOOPF Problem 68

3.5.3.1 Pareto Optimal Method 68

3.5.3.2 Modified External Elitist Repository 69

3.5.3.3 Selection Criteria for Best and Worst Solutions of the MJaya algorithm 71

3.5.3.4 Comparison Approach 72

3.5.3.5 Best Compromise Solution 73

3.5.3.6 Application of the Proposed MJaya Algorithm to MOOPF Problem 74
3.5.4 Application of a Novel QOMJaya Algorithm to MOOPF Problem

3.6 Novel Hybrid Optimization Algorithms for OPF and MOOPF Problems

3.6.1 Application of a Novel Hybrid FLP-QOJaya Algorithm to OPF Problem

3.6.2 Application of a Novel Hybrid MFLP-QOMJaya Algorithm to MOOPF Problem

4 RESULTS AND DISCUSSION 82
4.1 Introduction 82
4.2 IEEE 30-Bus Test System 83
4.2.1 Optimal Placement of DG units 84
4.2.2 Single Objective Optimization 86
4.2.2.1 Case 1: Fuel Cost Minimization 87
4.2.2.2 Case 2: Active Power Losses Minimization 100
4.2.3 Multi-Objective Optimization 126
4.2.3.1 Case 4: Minimization of Fuel Cost and Active Power Loss 127
4.2.3.2 Case 5: Minimization of Fuel Cost and Voltage Stability Index 134
4.2.3.3 Case 6: Minimization of Active Power Loss and Voltage Stability Index 140
4.2.3.4 Case 7: Minimization of Fuel Cost, Active Power Loss, and Voltage Stability Index 148
4.2.3.5 Case 8: Minimization of Real Power Loss and Maximization of Shunt Capacitors MVAR Reserve 153
4.3 IEEE 118-Bus Test System 156
4.3.1 Optimal Placement of DG units 157
4.3.2 Single Objective Optimization 157
4.3.2.1 Case 9: Fuel Cost Minimization 157
4.3.2.2 Case 10: Active Power Losses Minimization 167
4.3.3 Multi-Objective Optimization 177

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 186
5.1 Conclusions 186
5.2 Recommendations for Future Research 187

REFERENCES 189
APPENDICES 206
BIODATA OF STUDENT 216
LIST OF PUBLICATIONS 217
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of the classical optimization methods applied for OPF problems</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the heuristic optimization methods applied for OPF problems</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters of the fuzzy membership functions for the problem objectives</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation between real power loss sensitivities and efficacy in loss reduction for the different types and sizes of DG units for the IEEE 30-bus test system</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Optimum setting of control variables for fuel cost minimization using the proposed FLP algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Optimum setting of control variables for fuel cost minimization using the Jaya algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Optimum setting of control variables for fuel cost minimization using the proposed QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Optimum setting of control variables for fuel cost minimization using the proposed hybrid FLP-QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>97</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of the solutions obtained for cost reduction (modified IEEE 30-bus network)</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Optimum setting of control variables for real power losses minimization using the proposed FLP algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>102</td>
</tr>
<tr>
<td>4.9</td>
<td>Optimum setting of control variables for real power losses minimization using the Jaya algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>105</td>
</tr>
<tr>
<td>4.10</td>
<td>Optimum setting of control variables for real power losses minimization using the proposed QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network)</td>
<td>107</td>
</tr>
</tbody>
</table>
4.11 Optimum setting of control variables for real power losses minimization using the proposed FLP-QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network) 109

4.12 Comparison of the solutions obtained for real power losses minimization (modified IEEE 30-bus network) 112

4.13 Optimum setting of control variables for voltage stability enhancement using the proposed FLP algorithm without and with utilizing DG (modified IEEE 30-bus network) 114

4.14 Optimum setting of control variables for voltage stability enhancement using the Jaya algorithm without and with utilizing DG (modified IEEE 30-bus network) 116

4.15 Optimum setting of control variables for voltage stability enhancement using the proposed QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network) 118

4.16 Optimum setting of control variables for voltage stability enhancement using the proposed FLP-QOJaya algorithm without and with utilizing DG (modified IEEE 30-bus network) 120

4.17 Comparison of the solutions obtained for voltage stability enhancement (modified IEEE 30-bus network) 122

4.18 Optimum setting of control variables for VSEI using the proposed FLP algorithm without and with utilizing DG (modified IEEE 30-bus network) 124

4.19 Statistical results obtained over 50 independent trials of Jaya, QOJaya, and FLP-QOJaya algorithms without and with employing DG (IEEE 30-bus test network) 126

4.20 Minimum and maximum values of the considered objective functions (IEEE 30-bus test system) 127

4.21 Optimum setting of control variables for fuel cost and real power loss minimization using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network) 129

4.22 Optimum setting of control variables (best compromising solution) for fuel cost and real power loss minimization using the proposed MJaya, QOMJaya, and MFLP-QOMJaya algorithms without and with utilizing DG (modified IEEE 30-bus network) 131

4.23 Comparison of the solutions obtained for fuel cost and real power losses minimization (modified IEEE 30-bus network) 133
4.24 Optimum setting of control variables for fuel cost minimization and voltage stability enhancement using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network)

4.25 Optimum setting of control variables (best compromising solution) for fuel cost minimization and voltage stability enhancement using the proposed MJaya, QOMJaya, and MFLP-QOMJaya algorithms without and with utilizing DG (modified IEEE 30-bus network)

4.26 Comparison of the solutions obtained for fuel cost minimization and voltage stability enhancement (modified IEEE 30-bus network)

4.27 Optimum setting of control variables for active power loss minimization and voltage stability enhancement using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network)

4.28 Optimum setting of control variables (best compromising solution) for active power loss minimization and voltage stability enhancement using the proposed MJaya, QOMJaya, and MFLP-QOMJaya algorithms without and with utilizing DG (modified IEEE 30-bus network)

4.29 Optimum setting of control variables for active power loss minimization and voltage stability enhancement (VSEI) using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network)

4.30 Comparison of the solutions obtained for real power losses minimization and voltage stability enhancement (VSEI) (modified IEEE 30-bus network)

4.31 Optimum setting of control variables for simultaneous optimization of fuel cost, active power loss, and voltage stability index using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network)

4.32 Optimum setting of control variables (best compromising solution) for fuel cost, power loss and voltage stability index minimization using the proposed MJaya, QOMJaya, and MFLP-QOMJaya algorithms without and with utilizing DG (modified IEEE 30-bus network)

4.33 Comparison of the solutions obtained for fuel cost, real power losses, and voltage stability index minimization (modified IEEE 30-bus network)
4.34 Optimum setting of control variables for simultaneous optimization of active power loss and shunt compensators MVAR reserve margin maximization using the proposed MFLP algorithm without and with utilizing DG (modified IEEE 30-bus network) 155

4.35 Optimum setting of control variables for fuel cost minimization using the proposed FLP algorithm without utilizing DG (standard IEEE 118-bus network) 159

4.36 Optimum setting of control variables for fuel cost minimization using the Jaya algorithm without utilizing DG (standard IEEE 118-bus network) 161

4.37 Optimum setting of control variables for fuel cost minimization using the proposed QOJaya algorithm without utilizing DG (standard IEEE 118-bus network) 162

4.38 Optimum setting of control variables for fuel cost minimization using the proposed FLP-QOJaya algorithm without utilizing DG (standard IEEE 118-bus network) 164

4.39 Comparison of the solutions obtained for fuel cost minimization (standard IEEE 118-bus network) 166

4.40 Fuel cost minimization using the proposed algorithms with utilizing DG (standard IEEE 118-bus network) 167

4.41 Optimum setting of control variables for active power losses minimization using the proposed FLP algorithm without utilizing DG (standard IEEE 118-bus network) 169

4.42 Optimum setting of control variables for active power losses minimization using the Jaya algorithm without utilizing DG (standard IEEE 118-bus network) 173

4.43 Optimum setting of control variables for active power losses minimization using the proposed QOJaya algorithm without utilizing DG (standard IEEE 118-bus network) 174

4.44 Optimum setting of control variables for active power losses minimization using the proposed FLP-QOJaya algorithm without utilizing DG (standard IEEE 118-bus network) 175

4.45 Comparison of the solutions obtained for active power losses minimization (standard IEEE 118-bus network) 176

4.46 Statistical results obtained over 50 independent trials of the Jaya, QOJaya, FLP-QOJaya algorithms (IEEE 118-bus test network) 177
4.47 Optimum setting of control variables for fuel cost and real power loss minimization using the proposed MFLP algorithm (modified IEEE 118-bus network) 179

4.48 Optimum setting of control variables for fuel cost and real power loss minimization using the proposed MJaya algorithm (modified IEEE 118-bus network) 182

4.49 Optimum setting of control variables for fuel cost and real power loss minimization using the proposed QOMJaya algorithm (modified IEEE 118-bus network) 183

4.50 Optimum setting of control variables for fuel cost and real power loss minimization using the proposed MFLP-QOMJaya algorithm (modified IEEE 118-bus network) 184

4.51 Comparison of the solutions obtained for fuel cost and active power losses minimization (standard IEEE 118-bus network) 185

A.1 Line data (IEEE 30-bus test system) 207

A.2 Load data (IEEE 30-bus test system) 208

A.3 Generator data (IEEE 30-bus test system) 208

B.1 Line Data (IEEE 118-bus test system) 210

B.2 Load Data (IEEE 118-bus test system) 213

B.3 Generator Data (IEEE 118-bus test system) 215
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The framework of the proposed methodologies</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Fuzzy membership function for fuel cost minimization</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Fuzzy membership function for real power loss reduction</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Fuzzy membership function for VSEI</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Fuzzy membership function for switchable MVAR sources reserve margin maximization</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowchart of the proposed MFLP algorithm for the MOOPF problem considering DG</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Flowchart demonstrating the optimization process of the basic Jaya algorithm (Source: Venkata Rao, 2016)</td>
<td>60</td>
</tr>
<tr>
<td>3.8</td>
<td>Flowchart of the application of Jaya algorithm for the OPF problem</td>
<td>61</td>
</tr>
<tr>
<td>3.9</td>
<td>Flowchart of the proposed novel QOJaya algorithm for the OPF problem</td>
<td>67</td>
</tr>
<tr>
<td>3.10</td>
<td>Flowchart of the proposed novel MJaya algorithm for the MOOPF problem</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>Flowchart of the proposed novel QOMJaya algorithm for the MOOPF problem</td>
<td>77</td>
</tr>
<tr>
<td>3.12</td>
<td>Flowchart of the proposed novel hybrid FLP-QOJaya algorithm for the OPF problem</td>
<td>79</td>
</tr>
<tr>
<td>3.13</td>
<td>Flowchart of the proposed novel hybrid MFLP-QOMJaya algorithm for the MOOPF problem</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Convergence graph of fuel cost minimization using the proposed FLP algorithm without and with employing DG</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Convergence graph of fuel cost minimization using the Jaya algorithm without and with employing DG</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Convergence graph of fuel cost minimization using the proposed QOJaya algorithm without and with employing DG</td>
<td>95</td>
</tr>
</tbody>
</table>
4.4 Convergence graph of fuel cost minimization using the proposed FLP-QOJaya algorithm without and with employing DG 96

4.5 Convergence graphs of the proposed algorithms for fuel cost minimization 98

4.6 Convergence graph of real power loss minimization using the proposed FLP algorithm without and with considering DG 101

4.7 Convergence graph of real power loss minimization using the Jaya algorithm without and with considering DG 104

4.8 Convergence graph of real power loss minimization using the proposed QOJaya algorithm without and with considering DG 108

4.9 Convergence graph of real power loss minimization using the proposed FLP-QOJaya algorithm without and with considering DG 110

4.10 Convergence graphs of the proposed algorithms for real power loss minimization 111

4.11 Convergence graph of voltage stability improvement using the proposed FLP algorithm without and with considering DG 113

4.12 Convergence graph of voltage stability improvement using the proposed Jaya algorithm without and with considering DG 115

4.13 Convergence graph of voltage stability improvement using the proposed QOJaya algorithm without and with considering DG 117

4.14 Convergence graph of voltage stability improvement using the proposed FLP-QOJaya algorithm without and with considering DG 119

4.15 Convergence graphs of the proposed algorithms for voltage stability enhancement 121

4.16 Convergence plot of VSEI using the proposed FLP algorithm without and with considering DG 123

4.17 Satisfaction plot for fuel cost and real power losses optimization using the proposed MFLP algorithm without considering DG 130

4.18 Pareto optimum fronts obtained for fuel cost and real power losses optimization using the proposed algorithms 132
4.19 Satisfaction plot of simultaneous optimization of fuel cost minimization and voltage stability index using the proposed MFLP algorithm without considering DG

4.20 Pareto optimum fronts obtained for fuel cost and voltage stability index optimization using the proposed algorithms

4.21 Satisfaction plot of simultaneous optimization of real power losses and voltage stability index using the proposed MFLP algorithm without considering DG

4.22 Pareto optimum fronts obtained for real power losses and voltage stability index (L_{max}) optimization using the proposed algorithms without considering DG

4.23 Satisfaction plot of simultaneous optimization of real power losses and VSEI using the proposed MFLP algorithm without considering DG

4.24 Satisfaction plot for simultaneous optimization of fuel cost, active power loss, and voltage stability index using the proposed MFLP algorithm without considering DG

4.25 Pareto optimum solutions obtained for fuel cost, real power losses and voltage stability index L_{max} optimization using the proposed algorithms without considering DG

4.26 Satisfaction plot for simultaneous optimization of active power loss and shunt compensators MVAR reserve margin maximization using the proposed MFLP algorithm without considering DG

4.27 Convergence graph of fuel cost minimization using the proposed FLP algorithm (standard IEEE 118-bus network)

4.28 Convergence graph of fuel cost minimization using the Jaya algorithm (standard IEEE 118-bus network)

4.29 Convergence graph of fuel cost minimization using the proposed QOJaya algorithm (standard IEEE 118-bus network)

4.30 Convergence graph of fuel cost minimization using the proposed FLP-QOJaya algorithm (standard IEEE 118-bus network)

4.31 Convergence graphs of the proposed algorithms for fuel cost minimization (standard IEEE 118-bus network)
4.32 Convergence graph of active power losses minimization using the proposed FLP algorithm (standard IEEE 118-bus network) 168
4.33 Convergence graph of active power losses minimization using the Jaya algorithm (standard IEEE 118-bus network) 170
4.34 Convergence graph of active power losses minimization using the proposed QOJaya algorithm (standard IEEE 118-bus network) 170
4.35 Convergence graph of active power losses minimization using the proposed FLP-QOJaya algorithm (standard IEEE 118-bus network) 171
4.36 Convergence graphs of the proposed algorithms for active power losses minimization (standard IEEE 118-bus network) 171
4.37 Satisfaction plot for fuel cost and real power losses optimization using the proposed MFLP algorithm 180
4.38 Pareto optimum fronts obtained for fuel cost and real power losses optimization using the proposed algorithms 181
A.1 Single line diagram of IEEE 30-bus test system 206
B.1 Single line diagram of IEEE 118-bus test system 209
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOPF</td>
<td>AC optimal power flow</td>
</tr>
<tr>
<td>CHPED</td>
<td>combined heat and power economic dispatch</td>
</tr>
<tr>
<td>DC-OPF</td>
<td>Direct Current optimal power flow</td>
</tr>
<tr>
<td>DG</td>
<td>distributed generation</td>
</tr>
<tr>
<td>DM</td>
<td>decision maker</td>
</tr>
<tr>
<td>DOPF</td>
<td>decoupled optimal power flow</td>
</tr>
<tr>
<td>ED</td>
<td>economic dispatch</td>
</tr>
<tr>
<td>EED</td>
<td>environmental/economic dispatch</td>
</tr>
<tr>
<td>EP</td>
<td>elitist population</td>
</tr>
<tr>
<td>FLP</td>
<td>fuzzy linear programming</td>
</tr>
<tr>
<td>MFLP</td>
<td>multi-objective fuzzy linear programming</td>
</tr>
<tr>
<td>MJaya</td>
<td>modified Jaya</td>
</tr>
<tr>
<td>MOOPF</td>
<td>multi-objective optimal power flow</td>
</tr>
<tr>
<td>OBL</td>
<td>opposition-based learning</td>
</tr>
<tr>
<td>OPF</td>
<td>optimal power flow</td>
</tr>
<tr>
<td>ORPD</td>
<td>optimal reactive power dispatch</td>
</tr>
<tr>
<td>QOBL</td>
<td>quasi-oppositional based learning</td>
</tr>
<tr>
<td>QOJaya</td>
<td>quasi-oppositional Jaya</td>
</tr>
<tr>
<td>QOMJaya</td>
<td>quasi-oppositional modified Jaya</td>
</tr>
<tr>
<td>QOP</td>
<td>quasi-oppositional population</td>
</tr>
<tr>
<td>SCED</td>
<td>security constrained economic dispatch</td>
</tr>
<tr>
<td>SCOPF</td>
<td>security constrained optimal power flow</td>
</tr>
<tr>
<td>VSEI</td>
<td>voltage stability enhancement index</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

During the last two decades, electric power industry has been subjected to substantial developments that raise the necessity to modify power system operation strategies to deal with both economic and security concerns. The recent changes comprise the rapid growth of electricity demand, growing role of decision makers in power systems operations, rising penetration levels of distributed generation (DG), and liberalization of energy markets. Optimal power flow (OPF) solution is a promising tool in power grids operation that can be developed to optimally deal with these significant changes.

The sustained growth in electricity consumption is one of the insistent challenges facing the modern electric power systems around the world. In several countries, energy demand has exceeded the planned infrastructure expansion (Frank et al., 2012a). Over the last decade, frequent blackouts have been recorded worldwide (Yamashita et al., 2008). In many cases, these circumstances have been attributed to overloaded transmission lines (Yamashita et al., 2008).

Another rising challenge to operation strategies of modern power systems is the growing role of decision makers. Recently, power systems decision makers have to make important decisions concerning unfamiliar sets of conflicting and disproportionately objectives as many real-world power systems operation strategies engage the simultaneous optimization of such objectives.

Actually, fuzzy set optimization models offer appropriate tools that can be employed to deal with this type of problems. Using this tools, we can get realistic models that cope with given fuzzy objectives formulated based on the subjective goals and past knowledge of power system planners (Taghavi et al., 2012).

At the same time, a widespread increase in the penetration of DG technologies has taken place in large interconnected power systems (Ghosh et al., 2010). This trend appends further intricacy to the optimal power dispatch problems. At present, DG technologies offer economical and technical benefits such as transmission cost minimization, congestion mitigation, and loss reduction (Ghosh et al., 2010; Sheng et al., 2014). These advantages can perfectly be attained by carrying out a careful examination into the optimal placement and sizing of DG units. Thus, proposing modified formulations of the OPF problem that can be utilized to optimize all operational variables as well as penetration level of DG is a necessity.
Lastly, liberalization of energy markets is another important issue to discuss. Recently, many countries around the world have imposed significant reforms on their electric power sectors to terminate the monopoly (Singh and Chauhan, 2011). Legislators have passed laws allowing energy supplier to offer consumers the opportunity to select their electrical provider. In this competitive environment, generation cost minimization is a top precedence. In fact, the deregulated electricity markets require powerful and intelligent optimization methods for OPF solution that can tackle with the diversity of market participants and requirements of real-time processing.

Over the last three decades, OPF solution has become the leading tool in electric power networks operation and planning. Numerous OPF formulations have been proposed to optimize different objectives through optimum settings of the network control variables at the same time as enforcing operational constraints within their specified limits. The OPF problem is a highly non-linear and non-convex multimodal optimization problem, i.e. there are more than one local optima and one unique global optima (Abou El Ela et al., 2010). It is worth mentioning that the complexity of dealing with the OPF problem extensively raises with increasing system size (Frank et al., 2012a). Furthermore, as earlier stated, the current substantial developments have significantly enlarged the intricacy of power systems operation.

Recently, the multi-objective optimal power flow (MOOPF) solution has gained considerable interest in power utilities because many real-world power system operation issues involve the simultaneous optimization of multiple, competing, and incommensurable objectives (Hazra and Sinha, 2011; Chen et al., 2014). This solution is widely considered as an essential tool for system operators to maintain an economical, secure, and reliable operation of modern power systems (Khorsandi et al., 2013). However, the complexity of solving the OPF problem has conspicuously been increased.

To sum up, proposing competent optimization techniques that can effectively solve new models of the single and multi-objective OPF problems with considering the recent substantial developments in power systems sector is a necessity.

1.2 Problem Statement

Many classical solution methods have been utilized to deal with the OPF problem like gradient algorithms, Newton method, linear programming (LP), quadratic programming (QP), decomposition algorithms, and interior point methods (IPMs). Although these methods can achieve the globally optimal solution in some cases, they have certain shortcomings, such as trapping in local optima, inability to tackle non-differentiable goal functions, and high sensitivity to initial search points. Thus, proposing alternative methods to address the above-mentioned drawbacks is necessary. Later, to avert the drawbacks of the classical optimization methods, various nature-inspired optimization techniques have been suggested and utilized to
deal with OPF problems, like genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE), harmony search (HS) algorithm, artificial bee colony (ABC) algorithm, and gravitational search algorithm (GSA). These algorithms are more efficient in discovering global solutions to different nonlinear OPF problems. Unfortunately, regardless of their advantages, each of these population-based optimization algorithms requires appropriately tuned algorithm-specific controlling parameters, because improper tuning of such parameters will raise the computational burden (i.e. affects the convergence property) or leads to a sub-optimal solution. In addition, many of these population-based algorithms produce infeasible solutions for many kinds of OPF problems in terms of violation of operational variables constraints. In fact, the existing heuristic optimization methods lack an effective technique for enforcing constraints. Hence, introducing powerful population-based optimization algorithms that can effectively solve the OPF problem, do not involve controlling parameters to be tuned, and strictly enforce security constraints within their permissible limits is important.

More recently, many of hybrid optimization methods have been proposed to deal with different OPF problems. The main aim of proposing these hybrid methods is to combine the benefits of each approach, leading to more efficient algorithms. To contribute to the field of OPF solution, new powerful hybrid algorithms that can perfectly address the above-mentioned drawbacks of the classical and population-based optimization are required.

Overall, proposing competent optimization techniques that can avert the drawbacks of existing optimization methods and effectively solve different OPF/MOOPF problems considering the recent substantial developments in power systems sector is a necessity.

1.3 Research Aim and Objectives

The aim of this thesis is to develop a set of modified and novel optimization algorithms for solving different single and multi-objective OPF problems. The main objectives of this thesis are:

1. To design an efficacious multi-objective fuzzy linear programming (MFLP) approach for OPF considering DG.

2. To solve different single-objective OPF problems using the basic Jaya algorithm and two novel Jaya-based algorithms namely, quasi-oppositional Jaya (QOJaya) algorithm and FLP-QOJaya algorithm.

3. To develop novel Jaya-based optimization methods namely, modified Jaya (MJaya) algorithm, quasi-oppositional modified Jaya (QOMJaya) algorithm, and MFLP-QOMJaya algorithm for solving different multi-objective OPF problems.
1.4 Motivation

This research was motivated by several reasons:

1. The optimization process of the existing population-based optimization methods that have been used to solve the OPF problem require proper tuning of different algorithmic parameters. The incorrect tuning of such parameters results in rising the computational burden or produces local optima solution. Thus, one of the main motivations for conducting this work is using a new meta-heuristic optimization method algorithm that does not involve any algorithm-particular parameters to be tuned. This research work has not been yet studied.

2. Producing real and well-distributed optimum Pareto front when solving the MOOPF problem is a very intricate task. Unfortunately, none of the existing population-based optimization algorithms that have proposed to solve the MOOPF problem can guarantee producing a true and well-distributed Pareto optima set that is very close to the global Pareto-front. Furthermore, as mention above, the existing methods require appropriate tuning of different algorithmic parameters. The controlling process of such parameters is not trouble-free. Thus, suggesting new optimization algorithms that can effectively solve the MOOPF problem, is a necessity.

3. Many heuristics algorithms may lead to infeasible solutions for several OPF problems in terms of violation of dependent variables constraints, as reported in (Rezaei Adaryani and Karami, 2013; Christy and Raj, 2014; Radosavljević et al., 2015). Generally, the stochastic-based optimization algorithms lack powerful approaches that strictly enforce the operational constraints. Consequently, modifying an approach that strictly handles all the constraints is important.

4. The increasing role of decision makers in power systems operations has motivated the research efforts in terms of developing efficient optimization algorithms to solve the OPF/MOOPF problems considering DM's experience and preferences.

5. With the increasing penetration levels of DG in electric power systems, updating the current formulations of OPF problems to deal with the DG effect is crucial. Notably, the DG effect has not been incorporated into the existing OPF formulations while considering all other classical control variables. In other words, the previous optimization algorithms have not been examined DG effect when solving the ordinary OPF problem. Thus, proposing a modified formulation of the OPF problem that considers DG effect is significant.

6. Both of the classical and population-based optimization algorithms that were proposed to deal with many OPF problems have certain shortcomings. Thus, one of the key motivations for carrying out this research is the necessity to
develop hybrid algorithms that can combine the benefits and avert the drawbacks of the existing optimization methods.

1.5 Scope and Limitation of the Study

The scope of the research is limited to proposing new effective optimization algorithms to deal with different single and multi-objective AC optimal power flow (ACOPF) problems without and with considering DG effect. Particularly, three single objective optimization cases are chosen for the single OPF solution: generation cost minimization, real power loss reduction, and voltage stability improvement. Meanwhile, different cases of multi-objective OPF using four combinations of the above set of objectives are considered for simultaneous optimization. To validate the proposed algorithms, the scope of this thesis also covers a comprehensive comparison with other approaches presented in the literature. Notably, as the OPF is the most significant and extensively investigated problem among power systems operation problems, other power flow problems like optimal reactive power dispatch (ORPD), economic dispatch (ED), and security constrained economic dispatch (SCED) were not studied in this thesis.

Furthermore, to deal with the proposed formulation of OPF problem that considers DG, the scope of this research includes developing a sensitivity-based methodology to identify the candidate location(s) for DG units placement. Meanwhile, the task of finding the optimal DG size will be performed by the proposed OPF approaches by considering active power generation of DG units as control variable. Owing to the space limitations of the thesis, only two standard power systems namely, the modified IEEE 30-bus and IEEE 118-bus networks are considered for examination the effectiveness of the proposed algorithms. It is worth mentioning that the IEEE 118-bus test system is widely considered as a large-scale power system.

1.6 Contributions of the Study

In this thesis, significant contributions to the field of the solution of OPF and MOOPF problems have been made. The main academic contributions of this thesis to the scientific community and its novelty can be stated as follows:-

1. An efficient multi-objective fuzzy linear programming (MFLP) approach to solve a realistic scheme for the multi-objective OPF problem without and with considering DG is proposed. A considerable contribution has been made in this field in terms of enhancing exploration capability of the proposed MFLP algorithm, modeling new combinations of optimal OPF objectives, combining DG effect, as well fuzzification of the objectives.

2. The application of a new effective meta-heuristic optimization method namely, Jaya algorithm to deal with different single objective OPF problems is proposed and presented for the first time in this thesis. Unlike other population-based optimization methods, no algorithm-particular controlling
parameters are required for this algorithm. Furthermore, a novel quasi-oppositional Jaya (QOJaya) algorithm for solving single objective OPF problems is proposed.

3. A novel modified Jaya (MJaya) algorithm for solving multi-objective OPF problems is proposed. This thesis makes a considerable contribution in terms of upgrading the basic Jaya algorithm to deal with multi-objective optimization problems (in particular, the MOOPF problem).

4. Another novel version of the Jaya algorithm, namely quasi-oppositional modified Jaya (QOMJaya) algorithm is proposed for solving the multi-objective OPF problems. The main contribution is to produce more superior Pareto optimal fronts for the considered MOOPF problems.

5. A novel hybrid optimization algorithm namely, FLP-QOJaya algorithm for single objective OPF problem is proposed.

6. Another novel hybrid optimization algorithm namely, MFLP-QOMJaya algorithm for multi-objective OPF problem is proposed. The main contribution is the algorithm combines the benefits for each of the proposed MFLP and QOMJaya approaches, leading to a more competent algorithm in terms of producing more finer optimal Pareto fronts.

1.7 Thesis Layout

The remainder of this thesis is organized as follows. Chapter 2 is literature review, beginning with an overview of the optimal power flow problem. Then, the classical, heuristic, and hybrid optimization methods that have previously been proposed for solving different OPF problems are critically reviewed, compared, and summarized.

Chapter 3 presents the proposed methodologies, starting with introducing the proposed problem formulation. Then, a sensitivity-based methodology for the optimal Placement of DG is presented. Next, an efficient MFLP Algorithm for the MOOPF Problem considering DG is introduced. This section has been broken down into four subsections: the role of decision makers, fuzzification of objective functions, the proposed optimization model, and the solution procedure. Afterward, the application of the basic Jaya algorithm and the proposed novel QOJaya algorithm to the OPF Problem are demonstrated. Subsequently, the proposed optimization processes of the modified Jaya (MJaya) algorithm and the novel QOMJaya algorithm are introduced with their application to the MOOPF problem. Finally, the chapter ends with the proposed novel hybrid FLP-QOJaya and MFLP-QOMJaya algorithms for OPF and MOOPF problems, respectively.

The simulation results, discussions, and comparisons of the proposed algorithms with approaches reported in the literature are presented and described in Chapter 4. Two standard systems namely, the modified IEEE 30-bus test system and the IEEE
118-bus test system are considered for testing, validation, and demonstration the efficacy of the proposed algorithms. Finally, the conclusions regarding the implementation of the proposed algorithms are drawn and recommendations for future research are given in Chapter 5, respectively.
REFERENCES

