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Optimal power flow (OPF) solution is a crucial tool in electric power networks 
operation. Recently, several factors, including the deregulated electricity markets, 
electricity consumption growth, the growing role of decision makers, and the 
increasing exploitation of distributed generation (DG), affect the operation strategies 
of many meshed power networks. These new conditions have raised the intricacy of 
OPF problems and necessitate a reliable optimization algorithm that can tackle 
economic and security concerns.  
 
 
A set of modified and novel optimization algorithms are proposed in this thesis to 
deal with different single and multi-objective OPF problems. A new formulation for 
the multi-objective optimal power flow (MOOPF) problem that considers DG is 
introduced. The proposed algorithms have been examined and validated using the 
IEEE 30-bus and IEEE 118-bus test systems.  
 
 
The first proposed approach is a multi-objective fuzzy linear programming 
optimization (MFLP) algorithm to solve the MOOPF problem. The results indicate 
that a unique and optimum solution with an excellent satisfaction for the extreme 
targets can be achieved. Secondly, the application and modification of a Jaya 
algorithm to deal with different OPF problems is presented. The main advantage of 
this algorithm is that no algorithm-particular controlling parameters are required for 
this algorithm. Two versions of the Jaya algorithm namely, the basic Jaya algorithm 
and novel quasi-oppositional Jaya (QOJaya) algorithm are proposed to solve 
different single objective OPF problems. In the proposed novel QOJaya algorithm, 
an intelligence strategy, namely, quasi-oppositional based learning (QOBL) is 
incorporated into the basic Jaya algorithm to enhance its convergence speed and 
solution optimality. For each considered case, results demonstrate that Jaya 
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algorithm can produce a global optimum solution with rapid convergence. 
Meanwhile, the proposed QOJaya algorithm produces better results than the basic 
Jaya method in terms of solution optimality and convergence speed. In addition, two 
novel Jaya-based methods namely, the modified Jaya (MJaya) algorithm and quasi-
oppositional modified Jaya (QOMJaya) algorithm are proposed to solve different 
MOOPF problems. In this work, a considerable contribution has been made in terms 
of modifying Jaya algorithm for handling MOOPF problems. Results show the 
applicability, potential, and efficacy of the proposed MJaya and QOMJaya 
algorithms in solving MOOPF problems.  
 
 
Finally, two novel hybrid optimization algorithms namely, FLP-QOJaya algorithm 
for single objective OPF problems and MFLP-QOMJaya algorithm for MOOPF 
problems are proposed. For all single objective OPF cases, results demonstrate that 
the FLP-QOJaya algorithm outperforms the proposed Jaya and QOJaya algorithms 
in terms of solution quality, convergence speed and execution time. For multi-
objective OPF problems, results show the supremacy of the proposed MFLP-
QOMJaya over the proposed MJaya and QOMJaya algorithms in terms of producing 
superior Pareto optimal solutions and finer best compromise solutions.  
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Penyelesaian bagi aliran kuasa optimum (OPF) merupakan perkara penting dalam 
operasi rangkaian kuasa elektrik. Baru-baru ini, beberapa faktor, termasuk 
pemasaran tenaga elektrik yang tidak dikawal selia, peningkatan penggunaan 
elektrik, peningkatan peranan pembuat keputusan dan eksploitasi penjanaan teragih 
(DG) yang meningkat, memberikan kesan kepada strategi operasi banyak rangkaian 
tenaga elektrik. Keadaan baharu ini telah menambah kerumitan masalah OPF dan 
memerlukan algoritma pengoptimuman yang boleh dipercayai untuk menangani 
kebimbangan ekonomi serta keselamatan. 
 
 
Satu set algoritma pengoptimuman yang diubah suai dan baharu dicadangkan dalam 
tesis ini untuk menangani masalah OPF sama ada dengan satu objektif mahupun 
dengan pelbagai objektif. Rumusan baharu untuk masalah aliran kuasa optimum 
pelbagai objektif (MOOPF) yang mengambilkira DG diperkenalkan. Algoritma yang 
dicadangkan telah diperiksa dan disahkan dengan menggunakan sistem ujian IEEE 
30-bus dan IEEE 118-bus. 
 
 
Pendekatan pertama yang dicadangkan ialah algoritma pengoptimuman 
pengaturcaraan linear samar pelbagai objektif (MFLP) untuk menyelesaikan 
masalah MOOPF. Keputusan menunjukkan bahawa penyelesaian yang unik dan 
optimum dengan kepuasan yang sangat baik untuk sasaran yang tinggi dapat dicapai. 
Kedua, aplikasi dan pengubahsuaian algoritma Jaya untuk menangani masalah OPF 
yang berbeza dilaksanakan. Kelebihan utama algoritma ini adalah lantaran ketiadaan 
parameter kawalan algoritma tertentu yang diperlukan untuk algoritma ini. Dua versi 
algoritma Jaya ini, iaitu algoritma Jaya asas dan algoritma Jaya kuasi-tentangan 
(QOJaya) baharu dicadangkan untuk menyelesaikan masalah OPF satu objektif yang 
berbeza. Dalam algoritma QOJaya baharu yang dicadangkan, strategi kecerdasan, 
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yakni kuasi-tentangan berasaskan pembelajaran (QOBL) dimasukkan ke dalam 
algoritma Jaya asas untuk meningkatkan kepantasan penumpuan dan kecepatan 
penyelesaian. Bagi setiap kes yang dipertimbangkan, keputusan menunjukkan 
bahawa algoritma Jaya dapat menghasilkan penyelesaian optimum global dengan 
penumpuan yang pantas. Sementara itu, algoritma QOJaya yang dicadangkan 
menghasilkan keputusan yang lebih baik daripada kaedah Jaya asas dari segi 
kecepatan penyelesaian dan kepantasan penumpuan. Di samping itu, dua kaedah 
baharu berasaskan Jaya, iaitu algoritma Jaya yang diubah suai (MJaya) dan algoritma 
Jaya kuasi-tentangan yang diubah suai (QOMJaya) dicadangkan untuk 
menyelesaikan masalah MOOPF yang berbeza. Dalam kajian ini, usaha yang besar 
telah dibuat dari segi mengubah suai algoritma Jaya untuk menangani masalah 
MOOPF. Keputusan menunjukkan wujudnya ciri keterterapan, potensi dan 
keberkesanan MJaya dan algoritma QOMJaya yang dicadangkan dalam 
penyelesaian masalah MOOPF. 
 
 
Akhir sekali, dua algoritma pengoptimuman hibrid baharu iaitu algoritma FLP-
QOJaya untuk masalah OPF satu objektif dan algoritma MFLP-QOMJaya untuk 
masalah MOOPF dicadangkan. Untuk semua kes OPF satu objektif, keputusan 
menunjukkan bahawa algoritma FLP-QOJaya melebihi performa Jaya dan algoritma 
QOJaya yang dicadangkan dari segi kualiti penyelesaian, kecepatan penumpuan dan 
masa pelaksanaan. Untuk masalah OPF pelbagai objektif, keputusan menunjukkan 
keunggulan MFLP-QOMJaya berbanding dengan MJaya dan algoritma QOMJaya 
yang dicadangkan dari segi penghasilan penyelesaian optimum Pareto yang terbaik 
dan penyelesaian kesepakatan terbaik yang lebih teliti. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

During the last two decades, electric power industry has been subjected to substantial 
developments that raise the necessity to modify power system operation strategies to 
deal with both economic and security concerns. The recent changes comprise the 
rapid growth of electricity demand, growing role of decision makers in power 
systems operations, rising penetration levels of distributed generation (DG), and 
liberalization of energy markets. Optimal power flow (OPF) solution is a promising 
tool in power grids operation  that can be developed to optimally deal with these 
significant changes. 

The sustained growth in electricity consumption is one of the insistent challenges 
facing the modern electric power systems around the world. In several countries, 
energy demand has exceeded the planned infrastructure expansion (Frank et al., 
2012a). Over the last decade, frequent blackouts have been recorded worldwide 
(Yamashita et al., 2008). In many cases, these circumstances have been attributed to 
overloaded transmission lines (Yamashita et al., 2008). 

Another rising challenge to operation strategies of modern power systems is the 
growing role of decision makers. Recently, power systems decision makers have to 
make important decisions concerning unfamiliar sets of conflicting and 
disproportionately objectives as many real-world power systems operation strategies 
engage the simultaneous optimization of such objectives. 

Actually, fuzzy set optimization models offer appropriate tools that can be employed 
to deal with this type of problems. Using this tools, we can get realistic models that 
cope with given fuzzy objectives formulated based on the subjective goals and past 
knowledge of power system planners (Taghavi et al., 2012). 

At the same time, a widespread increase in the penetration of DG technologies has 
taken place in large interconnected power systems (Ghosh et al., 2010). This trend 
appends further intricacy to the optimal power dispatch problems.  At present, DG 
technologies offer economical and technical benefits such as transmission cost 
minimization, congestion mitigation, and loss reduction (Ghosh et al., 2010; Sheng 
et al., 2014). These advantages can perfectly be attained by carrying out a careful 
examination into the optimal placement and sizing of DG units. Thus, proposing 
modified formulations of the OPF problem that can be utilized to optimize all 
operational variables as well as penetration level of DG is a necessity.  
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Lastly, liberalization of energy markets is another important issue to discuss. 
Recently, many countries around the world have imposed significant reforms on their 
electric power sectors to terminate the monopoly (Singh and Chauhan, 2011). 
Legislators have passed laws allowing energy supplier to offer consumers the 
opportunity to select their electrical provider. In this competitive environment, 
generation cost minimization is a top precedence. In fact, the deregulated electricity 
markets require powerful and intelligent optimization methods for OPF solution that 
can tackle with the diversity of market participants and requirements of real-time 
processing. 
 
 
Over the last three decades, OPF solution has become the leading tool in electric 
power networks operation and planning. Numerous OPF formulations have been 
proposed to optimize different objectives through optimum settings of the network 
control variables at the same time as enforcing operational constraints within their 
specified limits. The OPF problem is a highly non-linear and non-convex multimodal 
optimization problem, i.e. there are more than one local optima and one unique 
global optima (Abou El Ela et al., 2010). It is worth mentioning that the complexity 
of dealing with the OPF problem extensively raises with increasing system size 
(Frank et al., 2012a). Furthermore, as earlier stated, the current substantial 
developments have significantly enlarged the intricacy of power systems operation.  
 
 
Recently, the multi-objective optimal power flow (MOOPF) solution has gained 
considerable interest in power utilities because many real-world power system 
operation issues involve the simultaneous optimization of multiple, competing, and 
incommensurable objectives (Hazra and Sinha, 2011; Chen et al., 2014). This 
solution is widely considered as an essential tool for system operators to maintain an 
economical, secure, and reliable operation of modern power systems (Khorsandi et 
al., 2013). However, the complexity of solving the OPF problem has conspicuously 
been increased. 
 
 
To sum up, proposing competent optimization techniques that can effectively solve 
new models of the single and multi-objective OPF problems with considering the 
recent substantial developments in power systems sector is a necessity.  
 
 
1.2 Problem Statement 
 
Many classical solution methods have been utilized to deal with the OPF problem 
like gradient algorithms, Newton method, linear programming (LP), quadratic 
programming (QP), decomposition algorithms, and interior point methods (IPMs). 
Although these methods can achieve the globally optimal solution in some cases, 
they have certain shortcomings, such as trapping in local optima, inability to tackle 
non-differentiable goal functions, and high sensitivity to initial search points. Thus, 
proposing alternative methods to address the above-mentioned drawbacks is 
necessary. Later, to avert the drawbacks of the classical optimization methods, 
various nature-inspired optimization techniques have been suggested and utilized to 
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deal with OPF problems, like genetic algorithm (GA), particle swarm optimization 
(PSO), differential evolution (DE), harmony search (HS) algorithm, artificial bee 
colony (ABC) algorithm, and gravitational search algorithm (GSA). These 
algorithms are more efficient in discovering global solutions to different nonlinear 
OPF problems. Unfortunately, regardless of their advantages, each of these 
population-based optimization algorithms requires appropriately tuned algorithm-
specific controlling parameters, because improper tuning of such parameters will 
raise the computational burden (i.e. affects the convergence property) or leads to a 
sub-optimal solution. In addition, many of these population-based algorithms 
produce infeasible solutions for many kinds of OPF problems in terms of violation 
of operational variables constraints. In fact, the existing heuristic optimization 
methods lack an effective technique for enforcing constraints. Hence, introducing 
powerful population-based optimization algorithms that can effectively solve the 
OPF problem, do not involve controlling parameters to be tuned, and strictly enforce 
security constraints within their permissible limits is important.  
 
 
More recently, many of hybrid optimization methods have been proposed to deal 
with different OPF problems. The main aim of proposing these hybrid methods is to 
combine the benefits of each approach, leading to more efficient algorithms. To 
contribute to the field of OPF solution, new powerful hybrid algorithms that can 
perfectly address the above-mentioned drawbacks of the classical and population-
based optimization are required.  
 
 
Overall, proposing competent optimization techniques that can avert the drawbacks 
of existing optimization methods and effectively solve different OPF/MOOPF 
problems considering the recent substantial developments in power systems sector 
is a necessity. 
 
 
1.3 Research Aim and Objectives 
 
The aim of this thesis is to develop a set of modified and novel optimization 
algorithms for solving different single and multi-objective OPF problems. The main 
objectives of this thesis are: 
 

1. To design an efficacious multi-objective fuzzy linear programming (MFLP) 
approach for OPF considering DG. 
 

2. To solve different single-objective OPF problems using the basic Jaya 
algorithm and two novel Jaya-based algorithms namely, quasi-oppositional 
Jaya (QOJaya) algorithm and FLP-QOJaya algorithm. 
 

3. To develop novel Jaya-based optimization methods namely, modified Jaya 
(MJaya) algorithm, quasi-oppositional modified Jaya (QOMJaya) algorithm, 
and MFLP-QOMJaya algorithm for solving different multi-objective OPF 
problems. 
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1.4 Motivation 
 
This research was motivated by several reasons:- 
 

1. The optimization process of the existing population-based optimization 
methods that have been used to solve the OPF problem require proper tuning 
of different algorithmic parameters. The incorrect tuning of such parameters 
results in rising the computational burden or produces local optima solution. 
Thus, one of the main motivations for conducting this work is using a new 
meta-heuristic optimization method algorithm that does not involve any 
algorithm-particular parameters to be tuned. This research work has not been 
yet studied.  
 

2. Producing real and well-distributed optimum Pareto front when solving the 
MOOPF problem is a very intricate task. Unfortunately, none of the existing 
population-based optimization algorithms that have proposed to solve the 
MOOPF problem can guarantee producing a true and well-distributed Pareto 
optima set that is very close to the global Pareto-front. Furthermore, as 
mention above, the existing methods require appropriate tuning of different 
algorithmic parameters. The controlling process of such parameters is not 
trouble-free. Thus, suggesting new optimization algorithms that can 
effectively solve the MOOPF problem, is a necessity.  
 

3. Many heuristics algorithms may lead to infeasible solutions for several OPF 
problems in terms of violation of dependent variables constraints, as reported 
in (Rezaei Adaryani and Karami, 2013; Christy and Raj, 2014; Radosavljević 
et al., 2015). Generally, the stochastic-based optimization algorithms lack 
powerful approaches that strictly enforce the operational constraints. 
Consequently, modifying an approach that strictly handles all the constraints 
is important.  
 

4. The increasing role of decision makers in power systems operations has 
motivated the research efforts in terms of developing efficient optimization 
algorithms to solve the OPF/MOOPF problems considering DM's experience 
and preferences. 
 

5. With the increasing penetration levels of DG in electric power systems, 
updating the current formulations of OPF problems to deal with the DG effect 
is crucial. Notably, the DG effect has not been incorporated into the existing 
OPF formulations while considering all other classical control variables. In 
other words, the previous optimization algorithms have not been examined 
DG effect when solving the ordinary OPF problem. Thus, proposing a 
modified formulation of the OPF problem that considers DG effect is 
significant.  
 

6. Both of the classical and population-based optimization algorithms that were 
proposed to deal with many OPF problems have certain shortcomings. Thus, 
one of the key motivations for carrying out this research is the necessity to 
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develop hybrid algorithms that can combine the benefits and avert the 
drawbacks of the existing optimization methods. 

 
 
1.5 Scope and Limitation of the Study 
 
The scope of the research is limited to proposing new effective optimization 
algorithms to deal with different single and multi-objective AC optimal power flow 
(ACOPF) problems without and with considering DG effect. Particularly, three 
single objective optimization cases are chosen for the single OPF solution: 
generation cost minimization, real power loss reduction, and voltage stability 
improvement. Meanwhile, different cases of multi-objective OPF using four 
combinations of the above set of objectives are considered for simultaneous 
optimization. To validate the proposed algorithms, the scope of this thesis also covers 
a comprehensive comparison with other approaches presented in the literature.  
Notably, as the OPF is the most significant and extensively investigated problem 
among power systems operation problems, other power flow problems like optimal 
reactive power dispatch (ORPD), economic dispatch (ED), and security constrained 
economic dispatch (SCED) were not studied in this thesis.  
 
 
Furthermore, to deal with the proposed formulation of OPF problem that considers 
DG, the scope of this research includes developing a sensitivity-based methodology 
to identify the candidate location(s) for DG units placement. Meanwhile, the task of 
finding the optimal DG size will be performed by the proposed OPF approaches by 
considering active power generation of DG units as control variable. Owing to the 
space limitations of the thesis, only two standard power systems namely, the 
modified IEEE 30-bus and IEEE 118-bus networks are considered for examination 
the effectiveness of  the proposed algorithms. It is worth mentioning that the IEEE 
118-bus test system is widely considered as a large-scale power system. 
 
 
1.6 Contributions of the Study 
 
In this thesis, significant contributions to the field of the solution of OPF and 
MOOPF problems have been made. The main academic contributions of this thesis 
to the scientific community and its novelty can be stated as follows:- 
 

1. An efficient multi-objective fuzzy linear programming (MFLP) approach to 
solve a realistic scheme for the multi-objective OPF problem without and 
with considering DG is proposed. A considerable contribution has been made 
in this field in terms of enhancing exploration capability of the proposed 
MFLP algorithm, modeling new combinations of optimal OPF objectives, 
combining DG effect, as well fuzzification of the objectives.  
 

2. The application of a new effective meta-heuristic optimization method 
namely, Jaya algorithm to deal with different single objective OPF problems 
is proposed and presented for the first time in this thesis. Unlike other 
population-based optimization methods, no algorithm-particular controlling 
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parameters are required for this algorithm. Furthermore, a novel quasi-
oppositional Jaya (QOJaya) algorithm for solving single objective OPF 
problems is proposed. 
 

3. A novel modified Jaya (MJaya) algorithm for solving multi-objective OPF 
problems is proposed. This thesis makes a considerable contribution in terms 
of upgrading the basic Jaya algorithm to deal with multi-objective 
optimization problems (in particular, the MOOPF problem). 
 

4. Another novel version of the Jaya algorithm, namely quasi-oppositional 
modified Jaya (QOMJaya) algorithm is proposed for solving the multi-
objective OPF problems. The main contribution is to produce more superior 
Pareto optimal fronts for the considered MOOPF problems.  
 

5. A novel hybrid optimization algorithm namely, FLP-QOJaya algorithm for 
single objective OPF problem is proposed.  
 

6. Another novel hybrid optimization algorithm namely, MFLP-QOMJaya 
algorithm for multi-objective OPF problem is proposed. The main 
contribution is the algorithm combines the benefits for each of the proposed 
MFLP and QOMJaya approaches, leading to a more competent algorithm in 
terms of producing more finer optimal Pareto fronts.  

 
 
1.7 Thesis Layout  
 
The remainder of this thesis is organized as follows. Chapter 2 is literature review, 
beginning with an overview of the optimal power flow problem. Then, the classical, 
heuristic, and hybrid optimization methods that have previously been proposed for 
solving different OPF problems are critically reviewed, compared, and summarized.  
 
 
Chapter 3 presents the proposed methodologies, starting with introducing the 
proposed problem formulation. Then, a sensitivity-based methodology for the 
optimal Placement of DG is presented. Next, an efficient MFLP Algorithm for the 
MOOPF Problem considering DG is introduced. This section has been broken down 
into four subsections: the role of decision makers, fuzzification of objective 
functions, the proposed optimization model, and the solution procedure. Afterward, 
the application of the basic Jaya algorithm and the proposed novel QOJaya algorithm 
to the OPF Problem are demonstrated. Subsequently, the proposed optimization 
processes of the modified Jaya (MJaya) algorithm and the novel QOMJaya algorithm 
are introduced with their application to the MOOPF problem. Finally, the chapter 
ends with the proposed novel hybrid FLP-QOJaya and MFLP-QOMJaya algorithms 
for OPF and MOOPF problems, respectively. 
 
 
The simulation results, discussions, and comparisons of the proposed algorithms 
with approaches reported in the literature are presented and described in Chapter 4. 
Two standard systems namely, the modified IEEE 30-bus test system and the IEEE 
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118-bus test system are considered for testing, validation, and demonstration the 
efficacy of the proposed algorithms. Finally, the conclusions regarding the 
implementation of the proposed algorithms are drawn and recommendations for 
future research are given in Chapter 5, respectively.  
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