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SENSITIVITY ANALYSIS AND MULTI-MODEL
GENERALISED PREDICTIVE CONTROL OF UNCERTAIN

INTRAVENOUS GENERAL ANAESTHESIA SYSTEM

By

CHANG JING JING

June 2016

Chair: S. Syafiie, PhD

Faculty: Engineering

Feedback control of anaesthesia may offer a number of benefits. However,
the design of the feedback controller is complicated by the presence of uncer-
tainty due to inter-individual variability. As such, systematic analysis on the
inter-individual variability is important to create better understanding on the
system. This thesis aims to analyse the uncertainty in the dose-effect rela-
tionship and develop suitable controller(s) for intravenous general anaesthesia
under the presence of uncertainty. Throughout the research, the propofol in-
fusion rate and Bispectral Index (BIS) were considered as the control input
and controlled variable, respectively.

The dose-effect relationship in biological systems is best described by the phar-
macokinetic pharmacodynamic (PKPD) model. Inter-individual variability
may arise from PK, PD or both. To quantify the effect of parametric variabil-
ity in the propofol PKPD model on BIS uncertainty, a Sobol’ variance based
global sensitivity analysis was performed. Nine input factors were evaluated:
patient’s age, body weight, height, four PK model parameters and two PD
model parameters. Result indicates that variability of PK model has a much
smaller effect on BIS values compared to PD model. Among the input factors,
Ce50 was the most significant variable in the PKPD model.

Inter-patient variability may lead to system instability. Therefore, it is impor-
tant to know the uncertainty bounds acceptable by a controller to maintain
system stability. While the variability in the nonlinear PD is much higher than
the linear PK, most of the stability analyses have only considered modelling
error that exists linearly. By employing circle criterion approach, the sector
of nonlinearity that guarantees absolute stability of a closed-loop anaesthesia
system was identified. It was found that the robust stability bound of the
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specified control system is sufficiently large against the possible variability of
nonlinearity among patients.

The PK model is a positive system. Imposing states positiveness in a closed
loop system allows one to greatly simplify the stability analysis. Consequently,
the controller design can be treated as a positive stabilisation problem. By
making use of the positive nature of PK model, an observer-based output
feedback controller was designed using a linear programming (LP) approach
for uncertain PK models. However, simulation results show that the response
of this controller was slow; a long induction phase duration (ID) was observed.

Finally, a multi-model generalised predictive controller with switching (MM-
GPC) was proposed. The idea is that, upon linearisation, important param-
eters variability can be reduced to one single factor, the process gain. There-
fore, inter-individual variability among patient can be tackled by switching
within models with different gain. The performance of MMGPC was eval-
uated and compared with three other extensions of GPC: the GPC with T
polynomial (GPCT), the independent model GPC (GPCI), and the adaptive
GPC (AGPC). Among these four controllers, MMGPC is found to perform
the best; it has the lowest mean values for integral absolute error (IAE), the
percentage of time of BIS outside 10 units from set point (T±10) as well as
input signal’s total variation (TV).
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
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ANALISIS SENSITIVITI DAN KAWALAN RAMALAN MODEL
DENGAN MODEL BERGANDA UNTUK SISTEM

ANESTETIK UMUM DI BAWAH KETIDAKPASTIAN

Oleh

CHANG JING JING

June 2016

Pengerusi: S. Syafiie, PhD

Fakulti: Kejuruteraan

Kawalan gelung tertutup untuk sistem anestetik boleh mendatangkan banyak
manfaat. Namun, reka bentuk pengawal adalah susah disebabkan oleh ke-
hadiran ketidakpastian yang berasal daripada variabiliti antara pesakit. Oleh
itu, analisis yang sistematik adalah penting untuk memahami sistem terse-
but secara mendalam. Tesis ini bertujuan untuk menganalisis ketidakpas-
tian tersebut dan merekabentuk pengawal yang sesuai untuk anestetic umum
intravenus di bawah kehadiran sistem ketidakpastian. Tesis ini telah men-
gandaikan kadar infusi propofol sebagai kawalan input manakala Bispectral
Index (BIS) sebagai kawalan output.

Model farmakokinetik-farmakodinamik (PKPD) merupakan model yang di-
gunakan secara meluas untuk menerangkan hubungan dos-kesan ubat dalam
sistem biologi. Ketidakpastian antara pesakit boleh berasal daripada PK, PD
atau kedua-duanya. Untuk menilai kepentingan faktor-faktor model PKPD
propofol dalam menganggar nilai BIS, Sobol’ varians analisis sensitiviti global
telah dijalankan. Sembilan faktor kemasukan telah dinilai, iaitu: umur, berat
badan, ketinggian, empat faktor daripada PK dan dua faktor daripada PD.
Keputusan menunjukkan bahawa variabiliti dalam faktor-faktor PD adalah
lebih penting berbanding dengan variabiliti faktor-faktor PK. Ce50 merupakan
faktor yang paling penting dalam model PKPD tersebut.

Variabiliti antara individu boleh menyebabkan ketidakstabilan sistem. Oleh
itu, pengetahuan mengenai batas ketidakpastian yang boleh disokong oleh
sesebuah kawalan adalah penting. Walaupun variabiliti ketaklelurusan adalah
agak besar berbanding dengan variabiliti faktor-faktor linear, kebanyakan
analisis kestabilan hanya mempertimbangkan ralat model yang linear. Dalam
tesis ini, kriteria bulatan telah diggunakan untuk mengidentifikasi sektor ke-
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taklelurusan yang menjamin kestabilan mutlak sistem. Bagi sesebuah sistem
yang ditunjukkan, analisis ini telah mendapati bahawa kawalan tersebut boleh
menjamin kestabilan mutlak untuk kesemua variabiliti ketaklelurusan antara
individu.

Model PK merupakan sistem positif. Mengenakan kepositifan keadaan (state)
dalam reka bentuk pengawal boleh mempermudahkan analisis kestabilan.
Hasilnya, reka bentuk pengawal boleh diselesaikan sebagai soal kestabilan
positif. Dengan mengambil kira sifat positif model PK, satu pengawal suap-
balik keadaan tercerap telah direkabentuk dengan menggunakan pengatur-
caraan lelurus (LP). Malangnya, keputusan simulasi menunjukkan bahawa
pengawal ini mempunyai tindak balas kawalan yang perlahan: tempoh fasa
induksi yang panjang telah didapati.

Akhirnya, satu strategi kawalan ramalan model dengan model berganda dan
pensuisan (MMGPC) telah dicadangkan. Idea ini adalah berdasarkan fakta
bahawa selepas pelelurusan model tak lelurus, kepelbagaian boleh ditafsirkan
dalam satu faktor tunggal,iaitu parameter gandaan. Oleh itu, kepelbagaian
boleh ditangani dengan memilih rujukan model yang sesuai daripada model-
model yang mempunyai parameter gandaan yang berbeza. Pengawal terse-
but telah dinilai dan dibandingkan dengan prestasi tiga pengawal ramalan
model (GPC) yang lain, iaitu: kawalan ramalan model dengan polinomial T
(GPCT), kawalan ramalan model dengan model bersendiri (IMGPC), kawalan
ramalan model adaptif (AGPC) dan kawalan ramalan model dengan model
berganda (MMGPC). Antara keempat-empat pengawal ini, keputusan simu-
lasi mendapati MMGPC mempunyai tindak balas yang terbaik; ia mempun-
yai nilai yang terendah bagi kamilan ralat mutlak (IAE), peratusan masa BIS
terkeluar 10 unit daripada rujukan keluaran (T±10) dan juga jumlah variasi
isyarat kawalan (TV).
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CHAPTER 1

INTRODUCTION

1.1 Background

Anaesthesia administration is an evolving practice. Modern general anaes-
thetic techniques were shaped by human-refined definition of anaesthesia ef-
fect. Over the past few decades, technological advancements have affected the
way on how anaesthetics were administered. In particular, the development
of depth-of-anaesthesia monitors has shed new light on automatic control of
anaesthesia. Nonetheless, automatic control of anaesthesia is complicated by
system uncertainty such as inter-individual variability, disturbance and noise.
In the next sections, a general background on the definition of anaesthesia,
current clinical practice of general anaesthesia, related technologies and sys-
tem uncertainties are introduced.

1.1.1 Definition of anaesthesia

The term anaesthesia originated from the Greek word which means insen-
sibility. It was first proposed to describe the drug-induced temporary and
reversible state of “unawareness” to render surgery painless by Oliver Wen-
dell Holmes in 1846 (Rushman et al., 1996). Later, a more practical definition
of anaesthesia was proposed, which define the anaesthetic state as a collec-
tion of “component” changes in behaviour. In 1950, Rees and Gray (Rees and
Gray, 1950) defined the anaesthetic state as a triad with three components –
narcosis, relaxation, and analgesia, produced by specific drugs with selective
actions. Woodbridge (1957) further expanded anaesthesia into four compo-
nents: sensory block, motor block, blockade of reflexes, and mental block.
He believed that the state of general anaesthesia comprises of a spectrum of
effects (components of anaesthesia) with different underlying mechanisms for
different drugs.

Nowadays, it is generally accepted that anaesthesia is defined as a drug-
induced, reversible state, comprises of at least three components: hypno-
sis, analgesia and muscle relaxation (Damian and Herlich, 2015; Whelan and
Davies, 1990). The definition of each of these components were given as fol-
lows:

� Hypnosis is the general term used to describe loss of consciousness. It is
the essential component of general anaesthesia. The loss of conscious-
ness is induced and maintained by the general anaesthetic, which acts
on the reticular activating system (RAS), thalamus, and cortex in the
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brain (Damian and Herlich, 2015).

� Analgesia has two related meanings – the suppression of pain and the
suppression of physiological reflexes due to surgical stimulation. As pain
is usually considered as a conscious experience (Bischoff et al., 2008),
in the context of general anaesthesia, the term analgesia is sometimes
replaced by antinociception, which means the suppression of responds
to potentially damaging stimuli (Merskey and Bogduk, 1994). Anal-
gesia/antinociception is administered through opioids which blunts the
nociceptive impulses at the level of spinal cord (Damian and Herlich,
2015).

� Relaxation refers to the suppression of movement in response to noxious
stimulation. Movement can sometimes be retained even during uncon-
sciousness. While muscle relaxation may be of less importance for some
surgery, it is necessary in certain types of surgery or anaesthetic proce-
dures such as intraabdominal and endotracheal intubation (Whelan and
Davies, 1990), where immobility is required.

Each of these components may have varying priority, depending on the type
of surgery and clinical condition. General anaesthesia, as opposed to local or
regional anaesthesia, requires all these three components to be achieved. In
local or regional anaesthesia, the purpose is to achieve analgesia and muscle
relaxation in a specific part of the body. Patient’s unconsciousness is not nec-
essary. However, in general anaesthesia, hypnosis is an important endpoint.

Modern general anaesthetic techniques typically involve the combined use of
a hypnotic drug, an opioid and/or a muscle relaxant (Urban and Bleckwenn,
2002) to achieve a desirable anaesthetic level. During the anaesthetic state,
the cardiovascular, respiratory, autonomic and thermoregulatory stability of
the patient must be preserved (Brown et al., 2010).

1.1.2 Current clinical practice

There are three main phases of general anaesthesia: induction, maintenance
and recovery. Surgical procedure takes place during the maintenance phase.

During the induction phase, patient will be attached to the necessary moni-
toring equipment and anaesthetic machine. Then, the anaesthetist will induce
anaesthesia by administering an appropriate dose of the hypnotic drug. The
dosage is judged by the anaesthetist after considering the patient’s age, weight
and any associated disease. Any additional ancillary procedures such as intu-
bation and insertion of additional intravascular lines will also be done at this
stage.
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The maintenance phase begins after the patient has lost consciousness. The
maintenance phase requires the anaesthetist to be constantly vigilant in order
to ensure that anaesthesia is deep enough to prevent any risk of awareness.
Drug dosage is adjusted based on the clinical signs such as dilated pupils, tears,
sweating, tachycardia and hypertension, patient movement, and respiratory
rate (Dob and Haire, 2012; Sinha and Koshy, 2007; Bruhn et al., 2006). At
the same time, he/she must avoid overdosage of drug that may lead to health
complications. In addition, the anaesthetist will try to keep the patient’s
general condition in balance, which includes fluid management, replacement of
blood loss, cardiorespiratory support and maintenance of body temperature.

As the operation comes to an end, the anaesthetist will stop the administration
of drugs. The patients will be admitted to the Post-Anaesthesia Care Unit
(PACU) for recovery. The length of stay in the PACU will depends on many
factors, which include the dosing history from maintenance and induction
phase (Soltesz et al., 2013b). A short recovery phase is preferable.

It can be seen that, in the clinical practice, the anaesthetist’s experience and
skill play an important role at effective regulation of anaesthesia. This is
because the achievement of adequate anaesthesia requires the anaesthetist to
constantly judge the depth of anaesthesia based on a multitude of parameters,
and regularly adjust the dose of anaesthetic. In fact, skilled anaesthetist has
been recommended as the best way to reduce intraoperative awareness (Orser
et al., 2008). The quality of drug administration received by the patient is
therefore subject to inconsistency depending on the anaesthetist’s experience.

1.1.3 Anaesthetic agents

Anaesthetic agents can be administered by either intravenous infusions or
inhalation, depending on the basis of their physical state. Inhalation anaes-
thetic is brought into the body via the lungs as a vapour or gas given through
a face mask or airway device. On the other hand, intravenous anaesthetic is
introduced to the body by injection into the vein as a bolus or through an
infusion pump.

Regulation of depth of anaesthesia is easier for inhaled anaesthetics than
with intravenous anaesthetics. This is because real time measurement of
the concentration of anaesthetic in the gas that enters and leaves the lung
is possible. The end-tidal concentration (concentration in the last part of
the breath), is approximately equal to the partial pressure of anaesthetic in
arterial blood (Eger, 1998). On the other hand, for intravenous anaesthetics,
all the states are not available for real time measurement. It is only possible
to estimate the anaesthetic concentration in the plasma. As such, inhaled
anaesthetics allow a more precise control of the anaesthetic state.

In comparison to inhalation anaesthetics, the use of intravenous anaesthesia
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during maintenance of general anaesthesia has been shown to improve early
postoperative patient well-being, reduces the risk of postoperative nausea and
vomiting (PONV) (Hofer et al., 2003), and shorten the PACU and day care
unit (DCU) discharge times (Visser et al., 2001). In addition, the administra-
tion of intravenous drugs does not require specialized equipment such as the
laryngeal mask airway, anaesthetic vaporizer and anaesthetic gas scavenger
system for the delivery of anaesthetic vapours or disposal of exhaled gases.
The introduction of target controlled infusion (TCI) system has further revo-
lutionised the administration of intravenous anaesthesia. Details on the TCI
system will be discussed in Section 1.1.4.1.

Examples of intravenous general anaesthetic agents currently in use include
the propofol, etomidate, ketamine and thiopental. Among the various in-
travenous anaesthetic agents, propofol has been a favourable choice due to
its notable advantages (McNeir et al., 1988). First, propofol is a fast-acting
drug; general anaesthesia induced and maintained with propofol has a rapid
and predictable emergence. Secondly, it causes minimal postoperative com-
plications. For example, propofol does not causes adrenocortical suppression
and is not potentiated by ethanol, diazepam, amitriptyline or phenelzine.

1.1.4 Related technologies

With the advancement of technologies, the practice of anaesthesia adminis-
tration is experiencing a gradual change. One of the most remarkable changes
is the employment of TCI pump in regulating intravenous anaesthetic agent
(Cavaliere et al., 2001). Besides that, many commercialized monitors have
been introduced to quantify the depth of anaesthesia. In this section, several
technologies related to intravenous general anaesthesia are introduced.

1.1.4.1 Target controlled infusion (TCI)

In intravenous anaesthesia, anaesthetics were delivered to the patient through
an infusion pump. In the early days, the infusion pumps were designed to
deliver drugs in an adjustable, fixed infusion rate or dose rate (Milne and
Kenny, 1998). However, this proves to be difficult to maintain a desired
anaesthetic state.

As an illustration, to maintain the desired drug concentration in the effect
site (brain), when the effect-site concentration is low, a high infusion rate
(or bolus) of drug is desired. When the effect-site concentration begins to
saturate, there should be a decrease in the drug infusion rate. However,
this infusion rate should be high enough to replace the drug removed by
metabolism or distributed to other parts of body. Hence, manual adjustment
of a reasonable infusion rate according to the need of the patient is very
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challenging.

A TCI pump incorporates a pharmacokinetic (PK) model to calculate the re-
quired infusion rate to achieve a targeted plasma concentration or effect-site
concentration. In other words, the pump attempts to maintain a targeted
plasma concentration or effect-site concentration instead of maintaining a
fixed infusion rate. The calculation of the required infusion rate is performed
using a population PK model programmed in the infusion pump. The first
commercial TCI system for propofol, the ‘Diprifusor’, was launched in 1996
(Gray and Kenny, 1998). Currently, several TCI systems using different PK
models for different drugs are commercially available.

TCI greatly simplifies the administration of intravenous drugs and is now
a part of the routine anaesthetic techniques for the practitioner (Schraag,
2001). However, the TCI system is a model-based open-loop feedforward
control system (Dumont, 2014; Ting et al., 2004). The target concentration is
only a predicted value. It is not possible to verify that the target is actually
achieved. It may suffer from inaccuracy when there is a model mismatch
between the population PK model and the patient’s model.

1.1.4.2 Measuring depth of anaesthesia

Clinical signs alone is said to be not reliable for measuring anaesthetic ade-
quacy as it is subjective, discontinuous (Jensen et al., 2004), and vary consid-
erably depending on patient, disease, drug and surgical technique (Schneider
and Sebel, 1997). Hence, effort has been made to develop monitors that con-
tinuously “measure” the depth of anaesthesia.

Early concept considered the anaesthesia state as an all-or-none property
(Sergent and Dehaene, 2004). However, recent researches propose that loss
of consciousness is a graded event (Mashour, 2004; Noirhomme and Laureys,
2014); the level of unconsciousness is proportional to the reduction of cortical
activity. Such a change in concept made the quantification of anaesthesia
possible and led to the development of monitors measuring “depth” of anaes-
thesia.

With the advancement of sensor and signal processing, tremendous progress
has been made in quantifying depth of anaesthesia. Many monitors for depth
of anaesthesia have been commercialized, including the BIS�, Narcotrend�,
PSA 4000�, AEP-Monitor/2�, Entropy Module�, CSM�, IoC�, Physio Do-
loris� and EMG monitors.

Measuring depth of hypnosis
Up to now, electroencephalography (EEG) is the most reliable measurement
for long-term monitoring of depth of hypnosis. EEG is the electrical activity
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in the cerebral cortex produced by summation of inhibitory and excitatory
postsynaptic potentials.

General anaesthesia is associated with a decrease in the average EEG fre-
quency and an increase in the average EEG amplitude. With most anaesthet-
ics, a deep level of anaesthesia induces burst suppression and then suppression
of the whole EEG. The raw data from the EEG can be processed by several
methods such as spectral analysis, entropy and wavelet analysis to yield useful
information on the depth of hypnosis.

One of the most studied and investigated commercialized monitor to quantify
depth of hypnosis is the Bispectral Index� (BIS). It was introduced by Aspect
Medical systems in 1992 (Rampil, 1998). It is based on bispectral analysis,
which is a signal processing technique that quantifies quadratic nonlineari-
ties and deviations from normality. The BIS index is an empirically derived
parameter resulting from the weighted sum of a composite of multiple sub-
parameters including bispectral analysis, burst suppression and β-activation.
This information was combined using multivariate statistical modelling to
form a single dimensionless index ranging from 0 (isoelectric state) to 100
(fully awake). The recommended value of BIS during surgical anaesthesia is
40 to 60.

EEG slows down and becomes more regular with deeper levels of uncon-
sciousness. Hence, regularity of EEG can be used to measure the depth of
anaesthesia. One way of measuring the regularity is by entropy, which mea-
sures disorder in signal. M-Entropy� index which was introduced in 2003
employed spectral entropy analysis to estimate depth of anaesthesia (Vakkuri
et al., 2004).

Wavelet analysis was used to process the EEG signal in NeuroSENSE�. Devel-
oped since 2003, this monitor quantifies the cortical state of the patient using
WAVCNS (Wavelet-based Anesthetic Value for Central Nervous System), a
value based on wavelet analysis of the normalized EEG signal in the gamma
frequency band (Zikov et al., 2006).

Another different approach to measuring electrical brain activity is the evalu-
ation of auditory evoked potentials (AEP). Compared to the raw EEG, AEP
is less sensitive to artifacts but poor in signal-to-noise ratio. The monitor
extracts auditory evoked potential waves from the EEG signal by an autore-
gressive model with an exogenous input (ARX) adaptive model.

Other recently developed indices or advanced EEG analysis that may con-
tribute to the measurement of depth of hypnosis includes the Pertubational
Complexity Index (PCI) (Casali et al., 2013), Granger causality (Friston et al.,
2013; Nicolaou et al., 2012), symbolic transfer entropy (Ku et al., 2011), per-
mutation entropy (Jordan et al., 2008) (Marchant et al., 2014), and the cor-
tical state (CS) and cortical input (CI) indices (Liley et al., 2010).
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Measuring depth of analgesia
Generally, there is no direct method to measure analgesia when the patient is
unconscious. The widely accepted indirect measures of analgesia are the heart
rate variability (HRV), mean arterial pressure (MAP) (Gentilini et al., 2002),
pupillometry (Larson et al., 1997), pulse plethysmographic (PPG) waveform
(Rantanen et al., 2006), skin conductance level (Storm et al., 2002), ocular
microtremors (Kevin et al., 2002) and frontal electromygraphy.

Based on these different modalities, several analgesia indices have been devel-
oped to quantify the analgesic state (nociceptive - antinociceptive balance).
For example, the surgical pleth index (SPI�) (Huiku et al., 2007) was de-
veloped based on the photoplethysmographic pulse wave amplitude (PPGA)
and normalized heart beat interval (HBI); the Analgoscore� (Hemmerling
et al., 2007) was developed based on mean arterial pressure (MAP) and heart
rate; the analgesia nociception index (ANI�) (Logier et al., 2010) monitor was
based on heart rate variability. In addition, skin conductance variability was
used by the Med-Storm� monitor (Storm et al., 2005) to quantify analgesia.
Respiratory and heart rates was in the wavelet transform cardiorespiratory
coherence (WTCRC) algorithm (Brouse et al., 2013). Another index which
does not involve physiological measurements is the Noxious Stimulation Re-
sponse Index (NSRI) (Luginbühl et al., 2010).

Measuring muscle relaxation
All techniques for assessing neuromuscular blockade use a peripheral nerve
stimulator (PNS) to stimulate a motor nerve electrically. The pattern of PNS
stimulation can be single-twitch, train-of-four (TOF), double-burst stimula-
tion or tetanic stimulation. Assessing muscle responses by visual or tactile
methods from PNS stimulation is often difficult and inaccurate. A number
of mechanical (mechanomyography (MMG) and acceleromyography (AMG))
and electrical (electromyography (EMG)) methods are available for detecting
and measuring these evoked responses more accurately (Appadu and Vaidya,
2008). Because MMG is unapplicable in routine clinical practice, most re-
searchers prefer to use EMG, which is less vulnerable to mechanical inter-
ferences. In contrast to MMG and EMG, AMG is more user-friendly and is
widely accepted and used in research (Claudius and Viby-Mogensen, 2008).

1.1.5 System uncertainty

One major challenge of the close-loop control of drug delivery system is the
presence of uncertainty. This uncertainty may arises from many sources such
as patient variability, disturbance, noise, and artifacts.

Inter-individual variability among patient is a major source of uncertainty.
This variability can occur as a result of patient physiology (e.g. age, weight
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and disease), variations in the PK processes (e.g. rate of absorption, distri-
bution, metabolism, and excretion), and/or differences in the PD model (e.g.
sensitivity of receptor, upregulation and downregulation). Further explana-
tion on PK and PD models will be given in Chapter 2.

One early approach to account for the variability is by constructing a pop-
ulation PK model. Through population studies, significant covariates are
identified and subsequently incorporated into the model. For example, for
propofol PK model, Schnider et al. (1998, 1999) have incorporated age, total
weight, and height into the model. In Marsh model, compartment volumes
and clearances are assumed to be weight proportional (Marsh et al., 1991).
Other population PK models for propofol includes the Björnsson (Björnsson
et al., 2010), Schüttler (Schüttler and Ihmsen, 2000), Kataria (paediatric)
(Kataria et al., 1994) and Eleveld (Eleveld et al., 2014) models. Nonetheless,
these models only provide an estimation of the resulting anaesthesia effect.
Their model parameters are subject to variation, and there is a high possibil-
ity that some unmodeled dynamics exist.

Besides inter-individual variability, the presence of disturbance, noise and
artifacts are inevitable in the operating theatre. For example, surgical stimu-
lation and blood loss are unavoidable during surgical procedure. Moreover, all
measurable outputs are based on physiological signals which are potentially
corrupted by artifacts (Gentilini et al., 2001a). These artifacts may result
from the noise in measurement signals, detection-location changing or discon-
nection of sensors from the patient.

An ideal controller should be robust against these system uncertainty. How-
ever, resolving conflict between achieving robustness against uncertainty and
maintaining a good control performance is a demanding problem (Hahn et al.,
2011). Since patient’s safety is the utmost important issue, the performance
specification is rather strict. For example, the recommended boundaries of
the depth of anaesthesia should not be violates to prevent any risk of aware-
ness during surgery or overdose of drug.

1.2 Motivation

Feedback control of anaesthesia may offer a number of benefits to manual drug
administration (Schwilden and Stoeckel, 1995; Gentilini et al., 2001a). It may
improve patient’s safety by avoiding drug overdose and intraoperative aware-
ness, and performs consistently. It also helps to relieve the anaesthetist from
the need to make recurrent and minor adjustments of drug dosage, thereby
enabling the anaesthetist to concentrate on other critical issues. Furthermore,
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an optimised drug administration may lower the healthcare cost by reducing
the usage of drugs and shorten the recovery time. Finally, if tuned properly,
closed-loop controllers can overcome the inter- and intra-individual variability,
and provides drug dosages tailored to the precise needs of patient.

Technological advancements are paving the way for feedback control of anaes-
thesia too. Over the past few decades, there has been a significant improve-
ment in the two most important prerequisites in closed-loop control system –
the infusion pump (actuator) and the increasingly reliable monitors (sensor).
With these improved prerequisites, the design of a reliable feedback controller
for anaesthesia system has become a continuing effort among the research
communities.

One of the major challenge in designing the controllers for anaesthesia system
is the presence of inter-patient variability (Bibian et al., 2004). Some patients
have a higher tolerance to drug effects and require a higher dose of drug. Some
patients, on the other hand, are very sensitive to drug effects and need a lower
dose of drug. Besides that, patient’s sensitivity towards drug is rarely known
a priori before the surgery. Hence, designing a controller for anaesthesia
system is not an easy task, especially when the safety of patient must not be
compromised.

In order to tackle the problem due to variability, systematic analyses on inter-
individual variability should be carried out. A better understanding of the
system can then be used to guide the design and analysis of the controllers.

1.3 Problem statement

Inter-individual variability can be arises from PK, PD or both. Anaesthetist
has long suspected that the variability in the PD model is higher than vari-
ability in the PK model (Mertens and Vuyk, 1998). However, very few studies
on quantification the effect of these variabilities have been performed.

Sensitivity analysis is a technique that investigate how the variations of model
inputs attribute to the uncertainty of its output. Being one of the popu-
lar intravenous general anaesthetic, propofol’s PKPD model should be as-
sessed comprehensively. Recently, a local direct sensitivity analysis of propofol
PKPD model has been conducted by Silva et al. (2014a) to identify significant
and insignificant parameters of the model. However, local sensitivity analy-
sis is not suitable for nonlinear model because it only assesses the model in
the immediate region around nominal parameter values (Saltelli et al., 2004).
Moreover, it only consider changes to one parameter at a time. In order to
better reflect the importance of each parameters, a global sensitivity analysis
on propofol PKPD model should be conducted.

Stability is a primary issue in every control system. Unfortunately, inter-
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patient variability may lead to instability of control system (Bibian et al.,
2004); in a clinical trial performed by Absalom et al. (2002), the same PID
controller has been reported to provide adequate anaesthesia to some patients
but cause oscillation in others. While it is suggested that variability in the
nonlinear PD is much higher than variability in the linear PK, most of the
robust stability analysis have only consider modelling error that exist linearly
(Caiado et al., 2013; Ralph et al., 2011; Haddad et al., 2011; Sawaguchi et al.,
2008). As a result, the stability analyses are incomplete. Hence, there is a need
to perform stability analysis of an anaesthesia control system by considering
variations in the model nonlinearity.

Apart from analysing the system stability only after the controller was de-
signed, robust stability issue can also be tackled during the controller design
process. This can be achieved by taking into account the positive nature of the
PK subsystem (Farina and Rinaldi, 2000). Consequently, the control prob-
lem can be treated as a positive stabilisation problem. Since in most of the
biological modellings, plant variability remains bounded with a priori known
bounds (Gouzé et al., 2000), the variability can be accounted for during con-
troller design using a linear programming (LP) approach (Rami and Tadeo,
2007). Due to the fact that the states of the anaesthesia system cannot be
measured on-line, an observer is also added (Rami et al., 2011). Nonetheless,
this controller is only suitable when the variability of nonlinearity is small.

When the inter-patient variability is large, a multi-model generalised predic-
tive control (GPC) may be a promising control strategy. GPC is a popular
control strategy due to a number of reasons (Clarke et al., 1987b): it has an
inherent integral action to eliminate offset, it is capable to deal with unstable
system, it shows a certain degree of robustness, and it allows the incorporation
of control constraints. Note that GPC employed a linear model for prediction.
A reasonable model candidate would be a linearised PKPD model. It is worth
mentioning that upon linearisation of PKPD model, most of the variabilities
can be represented by a single factor – the process gain. In other words, the
inter-individual variability can be tackled by utilising prediction models with
different process gain. Compared to fix controller or adaptive predictive con-
troller, a multi-model GPC with switching is expected to give a safer, robust
and more reliable performance.

1.4 Objectives

This research work aims to analyse and control uncertain system in intra-
venous general anaesthesia. Two analyses were performed, namely the sen-
sitivity analysis and absolute stability analysis. The sensitivity analysis was
performed on an open-loop anaesthesia model while the absolute stability
analysis was performed on a closed-loop system. In addition, two types of
controllers were developed. They are the observer-based output feedback con-
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troller and the generalised predictive controllers (GPCs). More specifically,
the objectives of this work are:

1. To analyse model uncertainty in the propofol PKPD model using global
sensitivity analysis.

2. To analyse absolute stability of uncertainty in nonlinearity in closed-loop
anaesthesia system using circle criterion.

3. To design observer-based output feedback controller that regulates depth
of hypnosis of uncertain system by imposing state positiveness through
linear programming (LP).

4. To develop a multi-model generalised predictive controller (MMGPC)
to tackle model uncertainty.

5. To evaluate and compare the performance of multiple GPCs.

The first objective is to analyse the uncertainty in propofol PKPD model
using global sensitivity analysis. Nine input factors are evaluated to assess
their influences of each input parameters on the output uncertainty. They are
the patient’s age, body weight, height, four PK model parameters and two
PD model parameters.

The second objective is to analyse the absolute stability of a closed-loop anaes-
thesia system with uncertainty in the nonlinearity. Through the analysis, the
sector of uncertainty in nonlinearity that guarantees absolute stability of the
system is identified.

The third objective makes use of the positive nature of PK subsystem to
design an observer-based output feedback controller. With a priori known
bound of parameter’s variability, states positivity of the uncertain system
can be imposed under state feedback controls using a LP approach. Since the
states of anaesthesia system cannot be measured on-line, an observer is added
to the control system.

Motivated by the effort to design a safe, reliable and robust controller, the
fourth objective is to propose an MMGPC for the regulation of propofol infu-
sion rate. The performance of this controller is then evaluated and compared
with other extensions of GPCs. These controllers are tested for set-point
changes, and disturbance, noise and time delay that may occur during the
surgery.

1.5 Limitation and scope of study

In this thesis, all the analysis and controller designs have used propofol infu-
sion rate as the model input and Bispectral Index (BIS) as the model output
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(controlled variable). In other words, this work only concentrated on con-
trolling hypnotic component of general anaesthesia. BIS was assumed as a
reliable index that measures depth of hypnosis.

In Chapter 3, the relative importance of each model parameters is expressed in
terms of their first order sensitivity index. Higher order sensitivity indexes are
not computed because the purpose of this study is only on factor prioritisation.

Throughout the thesis, inter-individual variability only refers to parametric
uncertainty. Uncertainty due to unmodeled dynamic was not considered.

Further, all control performances and studies presented in this thesis were
only obtained through simulation. No clinical validation was performed.

1.6 Thesis layout

This thesis contains seven chapters addressing the descriptions, analyses and
controls of uncertain system in intravenous general anaesthesia. The structure
of the thesis is given below:

Chapter 1 provides the background of intravenous general anaesthesia and in-
troduces the objective of the research. The background described includes the
definition of anaesthesia, current clinical practice, anaesthetic agents, recent
technologies in anaesthesia control, and uncertainty in anaesthesia system.

Chapter 2 presents an extensive review of the various modelling and control
strategies applied in anaesthesia control system.

Chapter 3 quantifies the relative importance of input parameters of propofol
PKPD model on BIS variability. The assessment is based on Sobol’ variance
sensitivity analysis.

Chapter 4 applies the circle criterion theorem to study the absolute stability
of a given closed-loop anaesthesia system. The circle criterion systematically
define the range of nonlinearity uncertainty that provides an absolute stable
closed-loop system for a specified system.

Chapter 5 describes the control of hypnosis using an observer-based output
feedback control. State feedback gain and observer gain were determined
using a LP approach that ensure positiveness of states.

Chapter 6 proposes a new controller, MMGPC with switching, for the regu-
lation of hypnosis using propofol. This chapter also evaluates and compares
the performances of several extensions of GPC.

Finally, Chapter 7 concludes the thesis and provides recommendation for fu-
ture work.
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Mortier, E. P. 2004. Performance evaluation of two published closed-loop
control systems using bispectral index monitoring: a simulation study.
Anesthesiology 100 (3): 640–647.

Struys, M. M. R. F., De Smet, T., Versichelen, L. F. M., Van de Velde,
S., Van den Broecke, R. and Mortier, E. P. 2001. Comparison of Closed-
loop Controlled Administration of Propofol Using Bispectral Index as the
Controlled Variable versus “Standard Practice” Controlled Administration.
Anesthesiology 95 (1): 6–17.

Tao, Y., Fang, M. and Wang, Y. 2013. A fault tolerant closed-loop anesthesia
system based on internal model control and extended state observer. In
25th Chinese Control and Decision Conference (CCDC), 2013 , 4910–4914.

Ting, C., Arnott, R., Linkens, D. and Angel, A. 2004. Migrating from target-
controlled infusion to closed-loop control in general anaesthesia. Computer
Methods and Programs in Biomedicine 75 (2): 127 – 139.

Ting, C., Arnott, R., Linkens, D., Angel, A. and Mahfouf, M. 2002. Gener-
alised predictive control of evoked potentials for general anaesthesia. IEE
Proceedings-Control Theory and Applications 149 (6): 481–493.

Upton, R. N. and Ludbrook, G. 2005. A Physiologically Based, Recirculatory
Model of the Kinetics and Dynamics of Propofol in Man. Anesthesiology
103 (2): 344–352.

Upton, R. N., Ludbrook, G. L., Grant, C. and Martinez, A. M. 1999. Cardiac
Output is a Determinant of the Initial Concentrations of Propofol After
Short-Infusion Administration. Anesthsia & Analgesia 89 (3): 545.

Urban, B. W. and Bleckwenn, M. 2002. Concepts and correlations relevant to
general anaesthesia. British Journal of Anaesthesia 89 (1): 3–16.

Vakkuri, A., Yli-Hankala, A., Talja, P., Mustola, S., Tolvanen-Laakso, H. and
Sampson, T, e. a. 2004. Time-frequency balanced spectral entropy as a mea-
sure pf anesthetic drug effect in central nevous system during sevoflurance,
propofol, and thiopental anesthesia. Acta Anaesthesiologica Scandinavica
48: 145–53.

134



© C
OPYRIG

HT U
PM

Van Den Hof, J. 1998. Positive linear observers for linear compartmental sys-
tems. SIAM Journal on Control and Optimization 36 (2): 590–608.

Vanluchene, A., Vereecke, H., Thas, O., Mortier, E. P., Shafer, S. L. and
Struys, M. 2004. Spectral entropy as an electroencephalographic measure
of anesthetic drug effect: a comparison with bispectral index and processed
midlatency auditory evoked response. Anesthesiology 101 (1): 34–42.

Vidyasagar, M. 1978. Nonlinear system analysis. 2nd edn. New Jersey: Pren-
tice Hall.

Vinik, H. R. 1997. Intravenous Drug Interactions. In Intravenous Anesthesia
(ed. P. F. White), 447. LWW.

Visser, K., Hassink, E. A., Bonsel, G. J., Moen, J. and Kalkman, C. J. 2001.
Randomized Controlled Trial of Total Intravenous Anesthesia with Propo-
fol versus Inhalation Anesthesia with IsofluraneNitrous OxidePostoperative
Nausea and Vomiting and Economic Analysis. Anesthesiology 95 (3): 616–
626.

Voss, L. and Sleigh, J. 2007. Monitoring consciousness: the current status
of EEG-based depth of anaesthesia monitors. Best Practice & Research
Clinical Anaesthesiology 21 (3): 313 – 325. Awareness during Anaesthesia.

Vuyk, J., Oostwouder, C., Vletter, A., Burm, A. and Bovill, J. 2001. Gender
differences in the pharmacokinetics of propofol in elderly patients during
and after continuous infusion. British journal of anaesthesia 86 (2): 183–
188.

Whelan, E. and Davies, H. 1990. The pharmacology of drugs used in gen-
eral anaesthesia. In Fundamentals of operating department practice (eds.
A. Davey and C. S. Ince), 143–158. Cambridge University Press.
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