DEVELOPMENT OF MIXED-EFFECTS MODELS FOR PREDICTING EARLY HEIGHT GROWTH AND TIMBER VOLUME OF FOREST TREE SPECIES PLANTED IN SARAWAK, MALAYSIA

ABDUL RAZAK BIN HJ.TARIP

FH 2014 19
DEVELOPMENT OF MIXED-EFFECTS MODELS FOR PREDICTING EARLY HEIGHT GROWTH AND TIMBER VOLUME OF FOREST TREE SPECIES PLANTED IN SARAWAK, MALAYSIA

ABDUL RAZAK BIN HJ.TARIP

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2014
DEVELOPMENT OF MIXED-EFFECTS MODELS FOR PREDICTING EARLY HEIGHT GROWTH AND TIMBER VOLUME OF FOREST TREE SPECIES PLANTED IN SARAWAK, MALAYSIA

By

ABDUL RAZAK BIN HJ. TARIP

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

July 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DEVELOPMENT OF MIXED-EFFECTS MODELS FOR PREDICTING EARLY HEIGHT GROWTH AND TIMBER VOLUME OF FOREST TREE SPECIES PLANTED IN SARAWAK, MALAYSIA

By

ABDUL RAZAK BIN HJ. TARIP

July 2014

Chair: Professor Dato’ Wan Razali Wan Mohd, PhD

Faculty: Forestry

Indigenous timber species are the most valuable tree in Malaysian tropical forest nowadays. Modeling of height growth and volume for indigenous timber species has been a challenge to foresters in recent years due to the rapid loss of forest biodiversity. The selection of species for afforestation and reforestation program is one of the most crucial tasks as it affects the growth of such forest and hence the financial viability of such program. The challenges in modeling of multi species stand in tropical forest are the large number of species, small number of individuals per species and almost impossible to develop models for every species in predicting height growth and timber volume. The objective of this study is to develop mixed effect models for predicting early height growth and timber volume of forest tree species planted in Sarawak.

This investigation was conducted in the UPM-Mitsubishi Forest Rehabilitation Project area at Universiti Putra Malaysia, Bintulu, Sarawak, Malaysia. The joint research project started in July 1991 between Universiti Putra Malaysia (UPM) and Yokohama National University, Japan on a 47.5 ha forest site at UPM’s Bintulu campus, Sarawak. It is located about 600 kilometres northeast of Kuching and 50 meters above sea level. The joint project was
financially sponsored by the Mitsubishi Corporation of Japan. The data used in this investigation were from a permanent growth plot within the project forest area. The project initiated is an excellent example of a highly successful forest rehabilitation project on degraded area. The data came from sapling trees planted in 50m x 5m plot that was established in June 1991. Open planting method was employed in the plot. The planted trees mimic a compact stand of natural forest, equivalent to a Kerangas forest.

Several mixed-effects models were developed to represent the total height growth and volume of standing tree pattern of five Malaysian indigenous timber species planted in Sarawak. The result showed that the Linear Mixed-Effects Model (Model 1) with two random effect parameters is the best fitted model for predicting height growth of five indigenous timber species, and the Nonlinear Mixed-Effects Model (Model 2) with two random effect parameters is the best fitted model for predicting standing volume of the five indigenous timber species. Development of mixed-effects models based mainly on its early height and volume performance will help to overcome the species selection process for afforestation and reforestation in improving productive capacity of such forest. Statistical analysis were done using PROC MIXED and NLMIXED procedures in the SAS® 9.2 program.

The number of trees used to develop models for each species is: *Calophyllum sclerophyllum* (73), *Dryobalanops beccarii* Dyer (84), *Shorea meciostopteryx* Rdit. (74), *Shorea leprosula* Miq. (60) and *Shorea brunnescens* Ashton (72). Based on model comparison and criteria for height models indicates that Linear Mixed-Effects Model (Model 1) has smaller value of AIC (3106.0) and BIC (3104.8) among the other models tested. The goodness-of-fit statistics also indicates Model 1 has the smallest value of RMSE (16.4806), MAE (11.2394) and a highest R^2 (0.93396) compare to other models. Based on model comparison and criteria for volume models indicates that Nonlinear Mixed-Effects Model (Model 2) has smallest value of AIC (4165.7) and BIC (4163.3) among other model tested. The goodness-of-fit statistics also indicates Model 2 has the smallest value of RMSE (70.1363), and a highest R^2 (0.99059) compare to other models.

The models developed in this study can be implemented in prediction of sapling tree only. Based on prediction for height (Model 1), it can be concluded that the early height (cm) growth performance of the five species are in the following order: *Shorea brunnescens* Ashton (highest), followed by *Calophyllum sclerophyllum, Dryobalanops beccarii* Dyer, *Shorea leprosula* Miq., and *Shorea meciostopteryx* Rdit. (lowest). It indicat that *Shorea brunnescens* Ashton has the best early height growth among the five species compared. Based on prediction for volume (Model 2), it can be concluded that the volume (cm3) performance of the five species are in the following order: *Shorea brunnescens* Ashton (highest), follow by *Dryobalanops beccarii* Dyer, *Calophyllum sclerophyllum, Shorea leprosula* Miq. And *Shorea meciostopteryx* Rdit. (lowest). It indicated that *Shorea brunnescens* Ashton has the best early volume among the five species compared. The results of this study indicated that *Shorea brunnescens* Ashton has good early height growth and volume performance. *Shorea brunnescens* Ashton is thus a better species for afforestation and reforestation program. Other most potential species for rehabilitation in terms of early height growth, volume and survival performance is *Dryobalanops beccarii* Dyer.
Based on the development of mixed-effects models in this study, there is also a limitation need to be considered here where the data came from early growth trees or sapling trees (31 months after planted). The models indicate a good result for predicting species performance based on height and volume as a method to select species for afforestation and reforestation program. However application of the models coefficient to predict (e.g. height and volume) other trees from this data need to be caution beyond the range of basal diameter. This model cannot represent trees beyond the range of basal diameter in this study.

The models error variances in this study shown non-constant based on Breusch-Pagan test and it indicates that the heteroscedasticity presence in the mixed effect models (height and volume). The heterogeneity of error variance presence due to a different of basal diameter size class of trees. Model transformations were also carried out in this study in order to reduce the error variance heterogeneity for height and volume models using Log transformation. However, the model transformation method didn’t improving the mixed effect models where the models perform not very well with a reduction of R^2 and highest value of MAE and RMSE compare to a real mixed effect models without transformation. The nature biological of the data in this study is a key factor affect for models development and efficiency. It indicates that development of models using sapling trees are not appropriate and need to be caution when using this model, especially for development of local height and volume table. Based on the results in this study indicate that there is no need for model transformation and the best fitted of mixed-effects models for height and volume are still adequate mostly for predicting timber species performance in this study based on highest R^2 value.

The models developed in this study should be used with caution, that is, they provide a good early height and volume prediction within the range of tree diameters and heights of the data to develop the models. Furthermore, verification models were not developed for all five species due to small number of trees within each species.
ABSTRAK
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PEMBANGUNAN MODEL KESAN BERCAMPUR UNTUK MERAMAL TUMBESARAN KETINGGIAN DAN ISIPADU AWAL POKOK BALAK BAGI SPESIES POKOK HUTAN YANG DITANAM DI SARAWAK, MALAYSIA

Oleh
ABDUL RAZAK BIN HJ.TARIP
Julai 2014

Pengerusi: Profesor Dato’ Wan Razali Wan Mohd, PhD
Fakulti: Perhutanan

Spesies kayu asli adalah pokok yang paling berharga di hutan tropika Malaysia pada masa kini. Pemodelan pertumbuhan ketinggian dan isipadu bagi spesies pokok balak asli telah menjadi cabaran kepada perhutanan dalam beberapa tahun kebelakangan ini disebabkan oleh kehilangan pesat biodiversiti hutan. Pemilihan spesies untuk program pemulihan hutan adalah salah satu tugas yang paling penting kerana ia memberi kesan kepada pertumbuhan hutan dan daya maju kewangan program tersebut. Antara cabaran dalam pemodelan spesies pelbagai dirian di hutan tropika adalah seperti bilangan spesies yang banyak, jumlah individu setiap spesies yang kecil dan hampir mustahil untuk membangunkan model bagi setiap spesies dalam meramalkan pertumbuhan ketinggian dan isipadu pokok. Objektif kajian ini adalah untuk membangunkan model kesan bercampur untuk meramal tumbesaran ketinggian dan isipadu awal spesies pokok balak yang ditanam di kawasan hutan di Sarawak.

Kajian telah ini dijalankan di kawasan Projek Pemuliharaan Hutan UPM-Mitsubishi di Universiti Putra Malaysia, Bintulu, Sarawak, Malaysia. Projek penyelidikan bersama ini bermula pada Julai 1991 antara Universiti Putra Malaysia (UPM) dan Universiti Kebangsaan Yokohama, Jepun di kawasan hutan seluas 47.5 hektar di kampus UPM Bintulu, Sarawak. Ia

Beberapa model kesan campuran telah dibangunkan untuk mewakili jumlah pertumbuhan ketinggian dan corak isipadu dirian pokok untuk lima spesies kayu asli Malaysia yang ditanam di Sarawak. Hasilnya menunjukkan bahawa Model Linear Kesaran Bercampur (Model 1) dengan dua parameter kesan rawak adalah model yang terbaik untuk meramalkan pertumbuhan awal ketinggian lima spesies kayu asli, dan Model Tidak Linear Kesaran Bercampur (Model 2) dengan dua parameter kesan rawak adalah model yang terbaik untuk meramalkan jumlah dirian isipadu pokok daripada lima spesies kayu asli. Pembangunan model kesan campuran berasaskan kepada prestasi ketinggi dan jumlah isipadu akan membantu mengatasi proses pemilihan spesies untuk program penghutanan semula dalam meningkatkan kapasiti produktif hutan itu. Analisis statistik telah dilakukan dengan menggunakan prosedur PROC MIXED dan NLMIXED dalam program SAS ® 9.2.

Bilangan pokok yang digunakan untuk membangunkan model bagi setiap spesies adalah: *Calophyllum sclerophyllum* (73), *Dryobalanops beccarii* Dyer (84), *Shorea mectistopteryx* Ridt. (74), *Shorea leprosula* Miq. (60) dan *Shorea brunnescens* Ashton (72). Berdasarkan daripada perbandingan dan kriteria model untuk model ketinggian menunjukkan bahawa Model Linear Kesaran Campuran (Model 1) mempunyai nilai AIC (3106.0) dan BIC (3104.8) yang lebih kecil berbanding model lain yang diujii. Berdasarkan goodness-of-fit statistik turut menunjukkan Model 1 mempunyai nilai RMSE (16.4806), MAE (11.2394) yang paling kecil dan R^2 (0.93396) yang lebih tinggi berbanding dengan model lain. Berdasarkan daripada perbandingan dan kriteria model untuk model isipadu menunjukkan bahawa Model Tidak Linear Kesaran Campuran (Model 2) mempunyai nilai AIC (4165.7) dan BIC (4163.3) yang terkecil di kalangan model lain yang diujii. Berdasarkan goodness-of-fit statistik turut menunjukkan Model 2 mempunyai nilai RMSE (70.1363) yang paling kecil dan R^2 (0.99059) yang lebih tinggi berbanding dengan model lain.

Berdasarkan daripada pembangunan model kesan campuran dalam kajian ini, terdapat juga had yang perlu dipertimbangkan dimana data ini diperoleh daripada anak pokok dari peringkat awal pertumbuhan (31 bulan selepas ditanam). Model ini menunjukkan hasil yang baik untuk meramalkan prestasi awal spesies pokok berdasarkan ketinggian dan isipadu sebagai kaedah untuk memilih spesies untuk program penanaman semula hutan. Walau bagaimanapun penggunaan model ini perlulah berhati-hati untuk meramal ketinggian dan isipadu pokok khususnya pokok diluar lingkungan basal diameter dalam kajian ini. Dalam kajian ini, model ini tidak boleh mewakili pokok-pokok diluar lingkungan basal diameter.

Model yang dibangunkan dalam kajian ini harus digunakan dengan berhati-hati, data untuk membangunkan model ini memberikan ramalan ketinggian dan isipadu pada peringkat awal yang baik dalam pelbagai diameter pokok dan ketinggian. Tambahan pula, pengesahan model tidak dibangunkan untuk semua lima spesies disebabkan oleh bilangan pokok yang kecil dalam setiap spesies.
ACKNOWLEDGEMENTS

First and foremost, I am deeply indebted to my major supervisor, Professor Dato’ Dr. Wan Razali Wan Mohd. I greatly appreciated for his, guidance, encouragement and cooperation throughout of my post graduate study. He has always taught me the best way of approaching scientific research problems by careful and detailed revision of several topics. His knowledge in forest growth and yield modelling, statistical analysis and life in general has been instrumental to me. I was really honoured to work under his supervisor and guidance.

I also wish to thank to my committee members, Associate Professor Dr. Kamziah Abd Kudus and Associate Professor Dr. Mohamad Azani Alias, who were more than generous with their expertise and precious time. I also would like to express gratitude to Dr. Ahmad Selamat from the Department of Crop Science, Faculty of Agriculture and Institute of Mathematical Research, UPM for his advice and guidance on various procedures to model development and analysis using SAS® 9.2 program for linear and nonlinear mixed effect models.

Profound appreciation and thanks are extended to Universiti Putra Malaysia (UPM), Yokohama National University, Japan and Mitsubishi Corporation, Japan for providing the opportunity to making growth data and other information from their joint project freely available. I am indebted to the Ministry of Higher Education Malaysia (MyBrain15) and Universiti Putra Malaysia (Graduate Research Fellowship) for their scholarship towards the completion of this study at the Universiti Putra Malaysia.

Finally, I would like to thank to my lovely mom and dad Hjh. Habibah bt. Jaludin and Hj. Tarip Bin Hj. Sulaiman who have supported in all possible ways toward my life and my study. Their constant encouragement, understanding, and patience help me to pursue this venture to completion. This victory is presented just for both of them and all others mentioned above.
APPROVAL

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Dato’ Wan Razali Wan Mohd, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Mohamad Azani Alias, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Kamziah Abd Kudus, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
APPREVAL

I certify that a Thesis Examination Committee has met on 08 July 2014 to conduct the final examination of Abdul Razak Bin Hj.Tarip on his thesis entitled “Development of Mixed-Effects Models For Predicting Early Height Growth and Timber Volume of Forest Tree Species Planted in Sarawak, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Shukri Mohamed, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Awang Noor Abd.Ghani, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Mohd. Zaki Hamzah, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Abd Rahman Kassim, PhD
Senior Research Officer
Division of Forestry and Environmental
Forest Research Institute Malaysia (FRIM)
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

▪ this thesis is my original work;
▪ quotations, illustrations and citations have been duly referenced;
▪ this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
▪ intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
▪ written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
▪ there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ________________

Name and Matric No.: Abdul Razak Bin Hj. Tarip (GS31534)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Professor Dato’ Dr. Wan Razali Wan Mohd

Signature: __________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Mohamad Azani Alias

Signature: __________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Kamziah Abd Kudus
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Forest Growth and Yield Models</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Problems Statement</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.4 Limitation of the Study</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.5 Research Objectives</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1 A General Introduction to Forest Growth Models</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 Types of Forest Growth and Yield Models</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Whole Stand Models</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Diameter Class Models</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Individual Tree Models</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.3 Forest Growth and Yield Simulators</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.4 Introduction to Mixed-Effects Models</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Assumption 1</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Assumption 2</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Likelihood Estimation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.5 Application of Mixed-Effects Models in Forestry</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.1 Background of Research Area</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Forestry in State of Sarawak</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Study Site</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Species and Data Measurement</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3.2 Data Management</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.3 Methods for Data Analyses and Modeling</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Exploratory Data Analyses</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.3.1.1 Height (H) Vs. Basal diameter (D_{10})</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3.3.1.2 Volume (V) Vs. Basal diameter (D_{10})</td>
<td>51</td>
</tr>
</tbody>
</table>
3.3.2 Classification of Mixed-Effects Models

Page 52

3.3.3 Estimation and Computing

Page 54

3.3.4 Models Comparison Criteria

Page 56

3.3.5 Models Checking

Page 57

3.3.6 Heteroscedasticity Test of Error Variance

Page 58

3.3.7 Comparison of Fixed-Effect and Mixed-Effects Models

Page 60

3.3.8 Species Comparison Test

Page 60

3.3.9 Final Model Prediction

Page 61

3.4 Fitting the Mixed-Effects Models

Page 62

3.4.1 Height Models

Page 62

3.4.2 Volume Models

Page 63

3.5 Estimation of Random-Effect

Page 64

4 RESULTS AND DISCUSSION

Page 65

4.1 Height Models

Page 65

4.1.1 Parameters Estimate for Linear Mixed-Effects (Model 1)

Page 65

4.1.2 Parameters Estimate for Nonlinear Mixed-Effects (Model 2)

Page 68

4.1.3 Parameters Estimate for Logistic Mixed-Effects (Model 3)

Page 71

4.1.4 Parameters Estimate for Chapman-Richards Mixed-Effects (Model 4)

Page 74

4.1.5 Residual Plots and Analysis

Page 77

- 4.1.5.1 Residual Against Basal Diameter (cm)

Page 77

- 4.1.5.2 Residual Against Predicted Value

Page 79

4.1.6 Comparison of Fixed-Effect and Mixed-Effects Models

Page 82

- 4.1.6.1 Residual Against Predicted Value

Page 82

- 4.1.6.2 Normal Quantile Plots of Residual

Page 85

- 4.1.6.3 Histogram and Normal Distribution of Residual

Page 87

- 4.1.6.4 Comparison of Residual Skewness for Fixed-Effect and Mixed-Effects Models

Page 90

4.1.7 Heteroscedasticity Test of Error Variance

Page 90

4.1.8 Models Comparison

Page 93

4.1.9 The Best Fitted Equations for Predicting Height Growth

Page 94

4.1.10 Prediction of Total Height

Page 94

4.1.11 Least Significant Difference (LSD) Test for Height (cm)

Page 96

4.2 Volume Models

Page 98

4.2.1 Parameter Estimate for Linear Quadratic Mixed-Effects Model (Model 1)

Page 98

4.2.2 Parameter Estimate for Nonlinear Mixed-Effects Model (Model 2)

Page 101

4.2.3 Parameter Estimate for Logistic Mixed-Effects Model (Model 3)

Page 105

4.2.4 Parameter Estimate for Chapman-Richards Mixed-Effects Model (Model 4)

Page 108

4.2.5 Residual Plots and Analysis

Page 111

- 4.2.5.1 Residual Plots Against Basal Diameter (cm)

Page 111

- 4.2.5.2 Residual Plots Against Predicted Value (cm4)

Page 114
4.2.6 Comparison of Fixed-Effect and Mixed-Effects Models 116
4.2.6.1 Residual Plots Against Predicted Value 117
4.2.6.2 Normal Quantile Plots of Residual 120
4.2.6.3 Histogram and Normal Distribution of Residual 122
4.2.6.4 Comparison of Residual Skewness for Fixed-Effect and Mixed-Effects Models 125
4.2.7 Heteroscedasticity Test of Error Variance 125
4.2.8 Models Comparison 128
4.2.9 The Best Fitted Equations for Predicting Standing Volume 129
4.2.10 Prediction of Volume 130
4.2.11 Least Significant Difference (LSD) Test for Volume (cm3) 132
4.3 Survival Rate 134
4.4 Species Performance Rank and Best Fitted Equation of Mixed-Effects Models 135
4.5 Discussion and Limitation of Study 138

5 CONCLUSION 140

REFERENCES 143
Appendices A 159
Appendices B 172
Appendices C 178
Appendices D 179
Appendices E 180
Appendices F 181
BIODATA OF STUDENT 182
LIST OF PUBLICATION 183
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tree growth and yield simulation models/systems</td>
</tr>
<tr>
<td>3.1</td>
<td>Forest areas in Sarawak state (2007)</td>
</tr>
<tr>
<td>3.2</td>
<td>Forest types in Sarawak state (2007)</td>
</tr>
<tr>
<td>3.3</td>
<td>Species planted in plot 50m x 5m and number of tree per species</td>
</tr>
<tr>
<td>3.4</td>
<td>Five indigenous timber species planted in plot 50m x 5m (1991 to 1993)</td>
</tr>
<tr>
<td>3.5</td>
<td>Descriptive statistics of height model variable by species (1991 to 1993)</td>
</tr>
<tr>
<td>3.6</td>
<td>Descriptive statistics of volume model variable by species (1991 to 1993)</td>
</tr>
<tr>
<td>4.1 (a)</td>
<td>Model 1: Fixed-effect parameters estimate for linear mixed-effects.</td>
</tr>
<tr>
<td>4.1 (b)</td>
<td>Model 1: Random-effect parameters estimate for linear mixed-effects.</td>
</tr>
<tr>
<td>4.2</td>
<td>Equations for predicting height (cm) using Model 1.</td>
</tr>
<tr>
<td>4.3 (a)</td>
<td>Model 2: Fixed-effect parameters estimate for nonlinear mixed-effects.</td>
</tr>
<tr>
<td>4.3 (b)</td>
<td>Model 2: Random-effect parameters estimate for nonlinear mixed-effects.</td>
</tr>
<tr>
<td>4.4</td>
<td>Equations for predicting height (cm) using Model 2.</td>
</tr>
<tr>
<td>4.5 (a)</td>
<td>Model 3: Fixed-effect parameters estimate for logistic mixed-effect.</td>
</tr>
<tr>
<td>4.5 (b)</td>
<td>Model 3: Random-effect parameters estimate for logistic mixed-effects.</td>
</tr>
<tr>
<td>4.6</td>
<td>Equations for predicting height (cm) using Model 3.</td>
</tr>
<tr>
<td>4.7 (a)</td>
<td>Model 4: Fixed-effect parameters estimate for Chapman-Richards mixed-effects.</td>
</tr>
<tr>
<td>4.7 (b)</td>
<td>Model 4: Random-effect parameters estimate for Chapman-Richards mixed-effects.</td>
</tr>
<tr>
<td>4.8</td>
<td>Equations for predicting height (cm) using Model 4.</td>
</tr>
<tr>
<td>4.9</td>
<td>Fixed-effect models and mixed-effects models</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of residual skewness for fixed-effect and mixed-effects models.</td>
</tr>
<tr>
<td>4.11</td>
<td>Breusch-Pagan test for mixed-effects models using all observation (minimum basal diameter to maximum basal diameter).</td>
</tr>
<tr>
<td>4.12</td>
<td>Breusch-Pagan test for mixed-effects models using basal diameter less than (≤ 0.7 cm)</td>
</tr>
<tr>
<td>4.13</td>
<td>Breusch-Pagan test for mixed-effects models using diameter more than (≥ 0.7 cm)</td>
</tr>
</tbody>
</table>
Comparisons of models information criteria and goodness-of-fit statistic between fixed-effect models and mixed-effects model for height growth models.
Best fitted equations for predicting timber height growth using linear mixed-effects model (Model 1)
Prediction value of total height growth (meter) using basal diameter (cm) as predictor variable.
ANOVA table for height (cm)
Species comparison significant test at $\alpha = 0.05$ level for height (cm).
Model 1: Fixed-effect parameters estimate for linear quadratic mixed-effects.
Model 1: Random-effect parameters estimate for linear quadratic mixed-effects.
Equations for predicting volume (cm3) using Model 1
Model 2: Fixed-effect parameters estimate for nonlinear mixed-effects.
Model 2: Random-effect parameters estimate for nonlinear mixed-effects.
Equations for predicting volume (cm3) using Model 2.
Model 3: Fixed-effect parameters estimate for logistic mixed-effects.
Model 3: Random-effect parameters estimate for logistic mixed-effects.
Equations for predicting volume (cm3) using Model 3.
Model 4: Fixed-effect parameters estimate for Chapman Richards mixed-effects.
Model 4: Random-effect parameters estimate for Chapman Richards mixed-effects.
Equations for predicting volume (cm3) using model 4
Fixed-effect models and mixed-effects models for volume
Comparison of residual skewness for fixed-effect and mixed-effects models
Breusch-Pagan test for mixed-effects models using all data (minimum basal diameter to maximum basal diameter).
Breusch-Pagan test for mixed-effects models using basal diameter less than (≤ 1cm)
Breusch-Pagan test for mixed-effects models using diameter more than (≥ 1cm)
Comparison of models information criteria and goodness-of-fit statistic between fixed-effect models and mixed-effect model for volume models.
Best fitted equations for predicting total standing volume using nonlinear mixed-effect model (Model 2)
Prediction value of total standing volume (m3) using basal diameter (cm) as predictor variable.
| 4.35 | ANOVA table for volume (cm3) | 132 |
| 4.36 | Species group comparison significant test at $\alpha = 0.05$ level for volume (cm3). | 133 |
| 4.37 | Survival and mortality rate for five species after 31 months planted in field (1991 to 1993). | 134 |
| 4.38 | Rank of height (cm) growth performance for five species using linear mixed effect model (Model 1). | 136 |
| 4.39 | Rank of volume (cm3) performance for five species using nonlinear mixed effect model (Model 2). | 136 |
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Forest Growth and Yield Models Classification According to Davis et al. (2001).</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Distribution of major forest types in Sarawak (2007)</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of Sarawak state and location of Bintulu.</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Scatter plot of height (cm) versus basal diameter (cm) of all trees (n=363).</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Scatter plot of volume (cm3) versus basal diameter (cm) of all trees (n=363).</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Observation and prediction curve using linear mixed-effects (Model 1).</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Observation and prediction curve using nonlinear mixed-effects (Model 2).</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Observation and prediction curve using logistic mixed-effects (Model 3).</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Observation and prediction curve using Chapman-Richards mixed-effects (Model 4).</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Residual against predictor variable for linear mixed-effects model (Model 1)</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Residual against predictor variable for nonlinear mixed-effects model (Model 2)</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>Residual against predictor variable for logistic mixed-effects model (Model 3)</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>Residual against predictor variable for Chapman-Richards mixed-effects model (Model 4)</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>Residual against predicted value for linear mixed-effects model (Model 1)</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>Residual against predicted value for nonlinear mixed-effects model (Model 2)</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>Residual against predicted value for logistic mixed-effects model (Model 3)</td>
<td>81</td>
</tr>
<tr>
<td>4.12</td>
<td>Residual against predicted value for Chapman-Richards mixed-effects model (Model 4)</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>Residual against predicted value without random-effect (Model 1)</td>
<td>83</td>
</tr>
<tr>
<td>4.14</td>
<td>Residual against predicted value with random-effect (Model 1)</td>
<td>83</td>
</tr>
<tr>
<td>4.15</td>
<td>Residual against predicted value without random-effect (Model 2)</td>
<td>83</td>
</tr>
<tr>
<td>4.16</td>
<td>Residual against predicted value with random-effect (Model 2)</td>
<td>83</td>
</tr>
<tr>
<td>4.17</td>
<td>Residual against predicted value without random-effect (Model 3)</td>
<td>84</td>
</tr>
</tbody>
</table>
4.18 Residual against predicted value with random-effect (Model 3) 84
4.19 Residual against predicted value without random-effect (Model 4) 84
4.20 Residual against predicted value with random-effect (Model 4) 84
4.21 Normal quantile plot of residual without random-effect (Model 1) 85
4.22 Normal quantile plot of residual with random-effect (Model 1) 85
4.23 Normal quantile plot of residual without random-effect (Model 2) 86
4.24 Normal quantile plot of residual with random-effect (Model 2) 86
4.25 Normal quantile plot of residual without random-effect (Model 3) 86
4.26 Normal quantile plot of residual with random-effect (Model 3) 86
4.27 Normal quantile plot of residual without random-effect (Model 4) 87
4.28 Normal quantile plot of residual with random-effect (Model 4) 87
4.29 Histogram and normal distribution of residual without random-effect (Model 1) 88
4.30 Histogram and normal distribution of residual with random-effect (Model 1) 88
4.31 Histogram and normal distribution of residual without random-effect (Model 2) 88
4.32 Histogram and normal distribution of residual with random-effect (Model 2) 88
4.33 Histogram and normal distribution of residual without random-effect (Model 3) 89
4.34 Histogram and normal distribution of residual with random-effect (Model 3) 89
4.35 Histogram and normal distribution of residual without random-effect (Model 4) 89
4.36 Histogram and normal distribution of residual with random-effect (Model 4) 89
4.37 Graph of prediction total height using equation of linear mixed-effects model (Model 1) 95
4.38 Observation and prediction curve using linear quadratic mixed-effects (Model 1) 100
4.39 Observation and prediction curve using nonlinear mixed-effects (Model 2). 104
4.40 Observation and prediction curve using logistic mixed-effects (Model 3). 107
4.41 Observation and prediction curve using Chapman-Richards mixed-effects (Model 4). 110
4.42 Residual against predictor variable for linear quadratic mixed-effects model (Model 1) 112
4.43 Residual against predictor variable for nonlinear mixed-effects model (Model 2) 112
4.44 Residual against predictor variable for logistic mixed-effects model (Model 3) 113
4.45 Residual against predictor variable for Chapman-Richards mixed-effects model (Model 4) 113
4.46 Residual against predicted value for linear quadratic mixed-effects (Model 1) 114
4.47 Residual against predicted value for nonlinear mixed-effects model (Model 2) 115
4.48 Residual against predicted value for logistic mixed-effects model (Model 3) 115
4.49 Residual against predicted value for Chapman-Richards mixed-effects model (Model 4) 116
4.50 Residual against predicted value without random-effect (Model 1) 118
4.51 Residual against predicted value with random-effect (Model 1) 118
4.52 Residual against predicted value without random-effect (Model 2) 118
4.53 Residual against predicted value with random-effect (Model 2) 118
4.54 Residual against predicted value without random-effect (Model 3) 119
4.55 Residual against predicted value with random-effect (Model 3) 119
4.56 Residual against predicted value without random-effect (Model 4) 119
4.57 Residual against predicted value with random-effect (Model 4) 119
4.58 Normal quantile plot of residual without random-effect (Model 1) 120
4.59 Normal quantile plot of residual with random-effect (Model 1) 120
4.60 Normal quantile plot of residual without random-effect (Model 2) 121
4.61 Normal quantile plot of residual with random-effect (Model 2) 121
4.62 Normal quantile plot of residual without random effect (Model 3) 121
4.63 Normal quantile plot of residual with random-effect (Model 3) 121
4.64 Normal quantile plot of residual without random-effect (Model 4) 122
4.65 Normal quantile plot of residual with random-effect (Model 4) 122
4.66 Histogram and normal distribution of residual without random-effect (Model 1) 123
4.67 Histogram and normal distribution of residual with random-effect (Model 1) 123
4.68 Histogram and normal distribution of residual without random-effect (Model 2) 123
4.69 Histogram and normal distribution of residual with random-effect (Model 2) 123
4.70 Histogram and normal distribution of residual without random-effect (Model 3) 124
4.71 Histogram and normal distribution of residual with random-effect (Model 3) 124
4.72 Histogram and normal distribution of residual without random-effect (Model 4) 124
4.73 Histogram and normal distribution of residual with random-effect (Model 4) 124
4.74 Graph of prediction total standing volume (m^3) using equation of nonlinear mixed-effects model (Model 2). 131
4.75 Survival and mortality rate (%) for five species after 31 months planted in field (1991 to 1993). 135
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>PFR</td>
<td>Permanent Forest Reserve</td>
</tr>
<tr>
<td>PSP</td>
<td>Permanent Sample Plot</td>
</tr>
<tr>
<td>SFM</td>
<td>Sustainable Forest Management</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>USDA</td>
<td>United State Department of Agriculture</td>
</tr>
<tr>
<td>DBH</td>
<td>Diameter at Breast Height</td>
</tr>
<tr>
<td>PROGNOSIS</td>
<td>Prognosis model for stand development</td>
</tr>
<tr>
<td>STEMS</td>
<td>Stand and Tree Evaluation and Modeling System</td>
</tr>
<tr>
<td>CFI</td>
<td>Continuous Forest Inventory</td>
</tr>
<tr>
<td>SLPSS</td>
<td>Shortleaf Pine Stand Simulator</td>
</tr>
<tr>
<td>LHW</td>
<td>Light Hardwoods</td>
</tr>
<tr>
<td>MHW</td>
<td>Medium Hardwoods</td>
</tr>
<tr>
<td>HHW & MISC</td>
<td>Heavy Hardwoods and other Miscellaneous Species</td>
</tr>
<tr>
<td>CCF</td>
<td>Crown Competition Factor</td>
</tr>
<tr>
<td>FVS</td>
<td>Forest Vegetation Simulator</td>
</tr>
<tr>
<td>OAKSIM</td>
<td>Oak Simulator</td>
</tr>
<tr>
<td>TASS</td>
<td>Tree and Stand Simulator</td>
</tr>
<tr>
<td>CACTOS</td>
<td>California Conifer Timber Output Simulator</td>
</tr>
<tr>
<td>DFSIM</td>
<td>Douglas-fir Simulator</td>
</tr>
<tr>
<td>MYRLIN</td>
<td>Methods of Yield Regulation with Limited Information</td>
</tr>
<tr>
<td>GYMMTF</td>
<td>Growth and Yield Model for Mixed-Tropical Forests</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute Malaysia</td>
</tr>
<tr>
<td>LME</td>
<td>Linear Mixed-Effects</td>
</tr>
<tr>
<td>NLME</td>
<td>Nonlinear Mixed-Effects</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Information Criterion</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute Error</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>D_{10}</td>
<td>Basal diameter at 10 cm above ground</td>
</tr>
<tr>
<td>BLUP</td>
<td>Best Linear Unbiased Predictors</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>REML</td>
<td>Restricted/Residual Maximum Likelihood</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>NFI</td>
<td>National Forest Inventory</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Tropical rainforests are the world’s most complex biotic community, the result of supremely favourable condition for plant growth prolonged over millions of years (Kernan 1974). Tropical forest ecosystems are critically important for our well-being. Rainforests are often called the lungs of the planet for their roles in absorbing carbon dioxide and producing oxygen, upon which all creatures depend for survival. Rainforests also stabilize climate, house incredible amounts of plants and wildlife, and produce nourishing rainfall all around the planet. Tropical rain forests display a biodiversity unparalleled by that of other vegetation type. The height species-richness of rain forest floras clearly reflects evolution over periods of time (Morley, 2000).

The functions of tropical forests can be productive (timber, fibre, fuel-wood, and non-timber forest products), environmental (climate regulation, carbon sequestration and storage, reserve of biodiversity, and soil and water conservation), and social (subsistence and food security for local population and culture). Forests serve a combination of functions and can generate additional revenue for local population and national economic through ecotourism. Forests also have aesthetic, scientific, and religious values (Montagnin and Jordan, 2005). The distribution of tropical rain forests, as the name suggests, is essentially controlled by climate, and from a geological viewpoint, ‘tropical’ climates are those which today, are characteristic of tropical latitudes.

Forests have been managed since time immemorial for direct benefit of humankind, although some forests are kept untouched for several indirect (or even unknown) reasons. Forest management involves one or more than one objective such as timber production, biodiversity and water supply. With increasing understanding of basic sciences and increasing demand for resources, forest management is becoming more and more important (Davis et al. 2001). Progressive forest management requires a good understanding of how individual tree and stand grow over time under different environmental conditions. Therefore, forest growth and yield modelling is an integral part of forest management, at least in developed countries.

Two of the most critical environmental scenarios facing the world today are anticipated increase in temperature (climate change scenario) and loss of forest bio-diversity (bio-
diversity scenario). Reforestation has been proposed almost by everyone at local, national and international fora and meetings as a mean to negate these two scenarios. Details of both scenarios can be explored in documents published by IPCC (2001) and FRIM (2007). Afforestation and reforestation is one of the ways to increasing or maintaining forest area. It will increase biodiversity by planting multi-species through reduction of deforestation and degradation (IPCC Working Group III, 2007).

The widespread concern about tropical forests is focused mainly on two issues, deforestation and forest degradation, both resulting in potentially disastrous environmental, economic, social and cultural negative consequences. With the implementing shortage of raw timber supply and the increasing area of degraded natural forest, forest rehabilitation is the key answer to overcome this problem (Mohamad Azani 1998). Kobayashi and Ueda (2003) state, the rehabilitation of degraded forests and lands is a most urgent matter from the viewpoints of both compensation or enrichment of ecosystems and sustainable used of degraded areas in a regional and a global scale. Study and analysis of biological and physiological characteristics of regenerated tree or newly planted tree and of the processes influencing productivity in such areas are necessary in order to make afforestation and reforestation activities successful.

1.2 Forest Growth And Yield Models

According to Vanclay (1994), growth refers to the increase in dimensions of one or more individuals in a forest stand over a given period of time (e.g. volume growth in m3 ha$^{-1}$ y$^{-1}$); yield refers to their final dimensions at the end of a certain period (e.g. volume in m3 ha$^{-1}$). In even-aged stands, a growth equation might predict the growth of diameter, basal area or volume in units per annum as a function of age and other stand characteristics, whereas a yield equation would predict the diameter, stand basal area or total volume production attained at a specified age. In an uneven-aged stand, yield is the total production over a given time period, while growth is the rate of production.

Growth models are important in both forest management and forest dynamics studies. A forest growth model is a system of mathematical equations that describes forest development and mimics some (or all) stages of its dynamics. Growth models are vital for decision-making in forest management because they predict forest development under several silvicultural regimens, which can be linked to forest optimization techniques and, subsequently, management. Forest growth models can also be used for generalizing specific (or broader) concepts of forest dynamics, as well as dynamics at the ecosystem scale. Growth models have been used not only for predicting timber development, but also as a basis for assessing other forest ecosystem elements such as wildlife habitat, hydrology, and landscape connectivity.
For instance, Sutmöller et al. (2011) develop a forest growth-hydrology modelling as an instrument for the assessment of effects of forest management on hydrology in forested catchments at the Oker catchment, northern Harz Mountains of Lower Saxony Germany. The approach adopted in this study necessitated the development of an interactive system for the spatially distributed modelling of hydrology in relation to forest stand development. Consequently, a forest growth model was used to simulate stand development assuming various forest management activities. Selected simulated forest growth parameters were entered into the hydrological model to simulate water fluxes under different conditions of forest structure.

The approach enables the spatially differentiated quantification of changes in the water regime (e.g. increased evapotranspiration). The results of hydrological simulations in the study area, the Oker catchment (northern Harz Mountains), show that forests contribute to the protection of water systems because they have a balancing effect on the hydrological regime. As scenario simulations also suggest, however, forestry practices can also lead to substantial changes in water budgets of forested catchments. The preservation of the hydrological services of forests requires a sustainable and long-term forest conversion on the basis of current management directives for near natural silviculture. Management strategies on basis of moderate harvesting regimes are preferred because of their limited impact on the water budget.

The results of the simulations show that forest management may have a distinct effect on water budgets of forests. The findings from the scenario analyses should be regarded with care, since simulation results are equipped with large uncertainty due to uncertainty in input data and possibly weak model formulations. However, the dynamic treatment of forest stand structure in the hydrological model improves the analysis of effects of silvicultural measures on water budgets substantially. A next step for the improvement of the forest growth-hydrology coupling would be the inclusion of a site index model into the growth simulator, which simulates tree growth dependent on climatic and site specific variables (Albert and Schmidt, 2010).

Growth models may also have a broader role in forest management and in formulation of forest policy (Vanclay, 1994). For instance, Vanclay (1989), develop a model for selection harvesting in tropical rain forests. Regression analyses were used to develop a model of current logging practice in the rain forests of north Queensland, Australia. This study has demonstrated a technique which enables selection logging yields to be estimated, and the impact on the residual stand to be quantified. Logistic regression enabled the development objective models for the selection of trees for harvesting, the incidence of defect in the selected trees, and for damage to the residual stand. Important predictors included tree species and size, stand basal area, basal area logged, logging history and topography. There was no evidence to suggest that soil type or site quality
influenced current tree marking practice. The approach is applicable to other mixed forest types managed for selection logging.

Forest growth modelling has evolved from yield tables to elaborate equations. The first forest growth models were tabulated values computed as an average of sample plots, known as yield tables, portraying stand volume development. The first yield tables were built at the end of the 1700s in Germany (Pretzsch, 2000), and at the beginning of the 20th Century in the United States of America (USA). Later, the first growth models (i.e., mathematical equations) were developed, and were improved with new available data sets and the fast development of computing power and advance statistics. The period, especially between 1960 and 2000, has been called a revolution in forest growth and yield research (Curtis 2007). Since the 1990s, forest growth modelling has also increased in Europe, and since then several European countries have developed their own growth models. Several types, forms, and levels of resolutions of growth models are available. Current models are able not only to predict stand level variables but also tree-level features.

Growth models offer forest managers a powerful analytical tool to investigate quickly and efficiently, the response of the forest to various management regimes. They allow foresters to determine a regime that should maximize volume or value production, or maximize the production of a particular product. It also enables them to determine the effect of a revised harvest programme to exploit a change in demand. They can investigate effects of many constraints on forest operations, and their effect on yields. But the most powerful feature is the ability of the model to assist managers to make reliable long-term forecasts, so that they can make long term commitments to the capital intensive wood processing industry, secure in the knowledge that the forest will not be over-exploited (Vanclay, 1994).

Forest growth and yield models can be developed either for natural stands or plantations. The models for natural stands could be for even-aged and uneven-aged. According to Davis et al. (2001), forest growth and yield models can be classified as follows:

i. Whole stand models:
 (a) density-free (b) variable-density

ii. Diameter class models

iii. Individual tree models:
 (a) distance-dependent (b) distance-independent

These models are reviewed in Chapter 2 (Literature Review).
Globalization put forward the need of quantitative information for management and planning. Reliable quantitative information is required to manage forest lands (Burkhart & Gregoire 1994). In this regard, forest growth models are crucial for not only analyzing forest scenarios at the forest level but also at larger scales (e.g., regions and countries). These scenarios would require precise timber information and, increasingly, other forest ecosystem features (e.g., wildlife habitat, hydrology, and non-timber products) (Salas Eljatib, 2011).

Most developing countries lack standardized quantitative forestry information (Saket 2002, Thuresson 2002, Holmgren et al. 2007); on the other hand, in developed countries like the US and Germany, there are well documented historical data sets (Curtis 1995, 2007, Buckman et al. 2006 and Pretzsch et al. 2007). Furthermore, as climate change has become an important topic for many scientific disciplines, re-engineering of previous growth models or building new ones are needed, in such a way that is appealing to have a model able to handle climate effects in their predictions.

Vanclay (1991a), states that the development of growth models requires data obtained from the remeasurement of permanent sample plots (PSPs). The most reliable and flexible modelling techniques require data in which the individual trees are identified. This requires that all trees on the PSP are permanently tagged and uniquely numbered. Irrespective of the modelling approach, unique numbering and tagging of trees is the only sure way of detecting measurement errors. Growth modelling also requires homogeneous plots, and this means minimising within plot variance: the ability of the PSPs to quantify the present resource is irrelevant. Thus the same plot series cannot be efficiently used for both resource inventory and growth model development.

He also noted, if the growth model is to be used to investigate silvicultural and management alternatives, the data base must include experimental data with paired treatment and control plots, both with adequate isolation. In contrast to continuous forest inventory plots, it is not necessary for PSPs to be representative or numerically proportional to forest type areas, but it is essential that they sample the full range of stand conditions.
1.3 Problems Statement

There are several problem statements in this study in order to develop models for predicting growth of indigenous tropical timber species:

a) The selection of species for afforestation and reforestation with indigenous species became an obvious alternative in improving the productive capacity of such degraded forest. Forestry is characterized by long terms between implementation and result, and most of the Research and Development do not last that long. Hence, a research question in this study would be to develop models that are able to predict the future height and volume, vis-a-vis. The species characteristics information (31 month in field after planted) will be used for predicting future early height and volume performance, thus as a main characteristic for species selection for afforestation and reforestation program.

b) Tropical forests are characterized as a multi-species or mixed species stands. In order to develop model for predicting growth of indigenous timber species, a better model are required. Mixed-effects models are one of the ways for modeling multi-species in our tropical forest. The advantages of employed mixed effect models in tropical forests are to solve the challenges in modeling of multi-species stand such as large number of species, small number of individual per species and almost impossible to run analysis for every species (Wan Razali, 2009).

c) Development of models with more precise, accurate and reduce bias. As noted by Calegario et al. (2005), the mixed-effects models approach is a statistical technique that has been used in many fields of study, generating improvements in parameter estimation. Several method will be used in this study in order to choose the best fit models (e.g. AIC, BIC, R^2, RMSE, MAE, residual plot, normality distribution, heteroscedasticity test, etc).
1.4 Limitation of the Study:

a) Based on the development of mixed-effects models in this study, there is a limitation need to be considered here where the data came from early growth trees or sapling trees (31 months after planted). The models indicate a good result for predicting species performance based on height and volume as a method to select species for afforestation and reforestation program. However application of the models coefficient to predict (e.g. height and volume) other trees from this data need to be caution beyond the range of basal diameter. This model cannot represent trees beyond the range of basal diameter in this study.

b) Development of height and volume models herein, there is no validation of the model due to scarcity of data of the five species. For further research, collection of new data is required to test the model prediction accuracy using an independent set of data (validation data).

c) As the height and volume model developed herewith used a limited range of diameter, height and volume, its application beyond the original range of data and outside the range of Bintulu campus, Sarawak needs some tests and validation for the model application.

d) The nature biological of the data in this study is a key factor affect for models development and efficiency, especially for development of local height and volume table. It indicates that development of models using sapling trees are not appropriate and need to be caution when using this model. Based on the results in this study indicate that there is no need for model transformation and the best fitted of mixed effect models for height and volume are still adequate.

1.5 Research Objectives

This thesis concerns development of mixed-effects models for predicting early height growth and timber volume of forest tree species planted in Sarawak. There are two main objectives in this research:

a) To construct mixed-effects models for predicting early height growth of indigenous timber species; and

b) To build mixed-effects models for predicting early volume of such timber species.
REFERENCES:

