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The substitutions of the amino acid residue at the predetermined critical point of the C-

terminal of L2 lipase may increase its thermostability and lipase activity. N and C-terminal 

regions in most proteins are often disordered and flexible. However, some protein function 

was closely related to flexibility as well as play a role in the enzyme reaction. The critical 

point of the stability of L2 lipase structure was predicted at position 385 (wild type residue 

Serine) of the L2 sequence based on I-Mutant2.0 software. The effects of substitution of 

the amino acids at the critical point with Glutamic acid, Isoleucine, and Valine were 

analyzed with Molecular Dynamics (MD) simulation by using Yet Another Scientific 

Artificial Reality Application (YASARA) software and it showed that the best predicted 

mutant L2 lipases had lower RMSD value as compared to L2 lipase. It indicated that the 

three mutants had higher compactness in the structure consequently enhancing the 

stability. From RMSF analysis, mutations had reduced the flexibility of the enzyme. The 

best predicted mutants (S385E, S385I, and S385V) were produced in the experimental lab 

by site-directed mutagenesis. The mutant L2 lipases (60.4 kDa) were purified to 

homogeneity by a single chromatography step before proceeding with characterization. 

There were high lipase activities produced by purified mutant L2 lipases at a temperature 

range of 60-85 °C with the optimum temperature of 80 ºC, 75 °C and 70 °C for S385E, 

S385V, and S385I lipases respectively. The optimum temperature for recombinant L2 

lipase was at 70 °C. Mutant L2 lipases (S385E and S385V) had higher optimum 

temperature compared to recombinant L2 lipase. The optimum pH for mutant L2 lipases 

(S385E and S385V) was found to be at pH 8 and for S385I was at pH 9, whereas the 

optimum pH for recombinant L2 lipase was at pH 9. S385I lipase was more thermostable 

as compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 

hours preincubation. The stability of S385V lipase in varies organic solvents was higher 

as compared to recombinant L2 lipase. S385V lipase had relative activities higher than 

100% which 111% in DMSO, 105% in acetone, 123% in diethyl ether and 124% in n-

hexane. Tm values for S385V and S385E lipases were at 85.96 °C and 84.85 °C and the 

values were higher as compared to recombinant L2 lipase which is only 66.73 °C.  This 
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showed the higher thermal stability of S385E and S38V lipases as compared to 

recombinant L2 lipase. Thus, the substitutions at the predetermined critical point of the C-

terminal (Ser385) changed the functionality of the protein structure towards the activity, 

stability, and flexibility of L2 lipase. The critical point mutation towards the structure of 

L2 lipase provided a very advantageous strategy for the improvement of enzyme with 

better function to adapt with harsh environment. 

 

 

Keywords: L2 lipase, thermostability, site-directed mutagenesis, Molecular Dynamics 

(MD) simulation. 
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Penggantian daripada sisa asid amino pada titik kritikal yang telah ditetapkan pada C-

terminal lipase L2 boleh meningkatkan termostabiliti dan aktiviti lipase. Kawasan N dan 

C-terminal di kebanyakan protein adalah sering tidak tersusun dan fleksibel. Walau 

bagaimanapun, sesetengah fungsi protein berkaitan rapat dengan fleksibiliti serta 

memainkan peranan dalam tindak balas enzim. Titik kitikal untuk kestabilan struktur 

lipase L2 telah dijangkakan pada kedudukan 385 (sisa jenis liar Serine) jujukan L2 yang 

berdasarkan perisian I-Mutant2.0. Kesan penggantian asid amino di titik kritikal dengan 

Asid glutamik, Isoleucine dan Valine dianalisis dengan Molekul Dinamik (MD) simulasi 

dengan menggunakan perisian ‘Yet Another Scientific Artificial Reality Application’ 

(YASARA) dan ia telah menunjukkan bahawa mutan lipase L2 yang terbaik diramalkan 

mempunyai nilai RMSD yang lebih rendah berbanding lipase L2. Ia menunjukkan bahawa 

tiga mutan tersebut mempunyai kepadatan yang lebih tinggi di dalam struktur yang 

seterusnya meningkatkan kestabilan. Daripada RMSF analisis, mutasi telah 

mengurangkan fleksibiliti enzim tersebut. Mutan yang terbaik diramalkan (S385E, S385I 

dan S385V) telah dihasilkan di makmal eksperimen oleh mutagenesis mengarah lokasi. 

Mutan lipase L2 tersebut (60.4 kDa) telah ditulenkan menjadi kehomogenan oleh satu 

langkah kromotografi sebelum meneruskan dengan pencirian. Terdapat aktiviti-aktiviti 

lipase yang tinggi dihasilkan oleh mutan lipase L2 yang ditulenkan pada julat suhu 60-85 

°C dengan suhu optimum masing-masing adalah 80 °C, 75 °C dan 70 °C untuk lipase 

S385E, S385V dan S385I. Suhu yang optimum untuk lipase L2 rekombinan adalah pada 

70 °C. Lipase L2 mutan (S385E dan S385V) mempunyai suhu optimum yang lebih tinggi 

berbanding dengan lipase L2 rekombinan. PH yang optimum bagi lipase L2 mutan (S385E 

dan S385V) didapati pada pH 8 dan untuk S385I adalah pada pH 9, manakala pH yang 

optimum bagi lipase L2 rekombinan adalah pada pH 9. Lipase S385I adalah lebih 

termostabil berbanding dengan lipase L2 rekombinan dan mutan yang lain pada suhu 60 

°C dalam tempoh 16 jam pra-inkubasi. Kestabilan S385V lipase dalam organik pelarut 

yang berbeza-beza adalah lebih tinggi berbanding lipase L2 rekombinan. Lipase S385V 

mempunyai aktiviti-aktiviti relatif yang lebih tinggi daripada 100% dimana 111% dalam 
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DMSO, 105% dalam aseton, 123% dalam dietil eter dan 124% pada n-heksana. Nilai-nilai 

Tm untuk lipase S385V dan S385E berada pada 85.96 °C dan 84.85 °C dan nilainya adalah 

lebih tinggi berbanding lipase L2 rekombinan yang hanya 66.73 °C. Ini menunjukkan 

kestabilan haba lebih tinggi untuk lipase S385E dan S385V berbanding lipase L2 

rekombinan. Oleh yang demikian, penggantian pada titik kritikal yang telah ditetapkan 

pada C-terminal (Ser385) telah menukar fungsi struktur protein terhadap aktiviti, 

kestabilan, dan fleksibiliti lipase L2. Mutasi titik kritikal terhadap struktur lipase L2 

menyediakan satu strategi yang sangat berfaedah untuk peningkatan enzim dengan fungsi 

yang lebih baik untuk menyesuaikan diri dengan persekitaran yang sukar.   

 

 

Kata kunci: lipase L2, termostabiliti, mutagenesis mengarah lokasi, simulasi molekul 

dinamik (MD). 
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IPTG                Isopropyl β-D-1-thiogalactopyranoside 

kb   Kilobase 

kcal                Kilocalories 

kDA   Kilodaltons 

L   Litre 

LB   Luria-Bertani 

M   Molar 

mA   Milliamps 

mM   Millimolar 

MD   Molecular Dynamics 

mg   Milligram 

mL   Millilitre 

N   Molar 

ng   Nanogram 

nm   Nanometre 

ns   Nanoseconds 
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PAGE   Polyacrylamide Gel Electrophoresis 

PCR   Polymerase Chain Reaction 

ps   Picoseconds 

RI   Reliability index 

RMSD   Root Mean Square Deviation 

RMSF   Root Mean Square Fluctuations 

RNA   Ribonucleic acid 

RPM   Rate per minute 
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SVM   Support vector machines 
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T opt   Optimal temperature 
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CHAPTER 1 

1 INTRODUCTION 

Protein function may be controlled by protein structure. Protein is composed of a precise 

sequence of amino acids that allow it to fold up into a particular three- dimensional 

shape, or conformation (Alberts et al., 2002).  Besides that, protein contains regions that 

are directly involved in protein function, such as active sites or binding sites, as well as 

regions that are less critical to the protein function and where mutations are likely to 

have less effect (Betts and Russell 2003). Protein sequences are classically considered 

as consisting of the whole information for their three-dimensional (3D) structure (Bornot 

et al., 2007). Each type of protein has a unique sequence of amino acids and has a 

particular three-dimensional structure, which governed by the order of the amino acids 

in its chain (Alberts et al., 2002). Changing of critical amino acid can cause changes in 

protein conformation. However, some studies have shown that changing of less 

hydrophobic residue (Arg) to a more hydrophobic residue (Ser) at the position 157 of 

ARM lipase increased the internal hydrophobicity to maintain the structural stability at 

a high temperature (Salleh et al., 2012).  

It is long known that the N and C-terminal regions in most proteins are often disordered 

and flexible (Kamarudin et al, 2014). Flexibility may be closely related to protein 

function, as well as play a role in enzyme catalysis (Karshikoff et al., 2015).  C-terminal 

of a protein is known as the residue that has free carboxyl group or at least does not 

acylate to another residue of amino acid, means that this residue is the end residue of the 

protein (Hardy et al., 1985). Gudiukaite et al., (2014) reported that 10 and 20 C-terminal 

amino acids of GD-95 lipase from Geobacillus sp. 95 crucially affect other 

physiochemical characteristics and the stability of this enzyme.  

This research explored the roles of the critical amino acid at the C-terminal towards the 

structure of L2 lipase. The lipase was isolated from bacteria known as Bacillus sp. L2, 

one of the thermophilic bacteria from a hot spring in Perak. Recombinant L2 lipase was 

successfully overexpressed with a 178-fold increase in activity compared to crude native 

L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single 

chromatography step. The purified lipase was found to be reactive at a temperature range 

of 55–80 °C and at a pH of 6–10 and the optimum activity was found to be at 70 °C and 

pH 9.  The melting temperature (Tm) of L2 lipase was 59.04 °C when analysed by 

circular dichroism (CD) spectroscopy studies. (Shariff et al., 2011).   

The substitution of the amino acid residues at the predetermined critical point at the C-

terminal of the L2 lipase may cause an increase in protein stability and lipase activity or 

may speed up the unfolding of the protein structure. The prediction of the critical point 

of the L2 lipase was done by using one of the software from internet known as I-

Mutant2.0 where 20 amino acids from the C-terminal were analysed in terms of stability. 

Then, the effects of substitution of the amino acids at the critical point were proceeded 
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by Molecular Dynamics (MD) simulation by using other software known as Yet Another 

Scientific Artificial Reality Application (YASARA) and followed by mutagenesis in the 

experimental lab. The mutant L2 lipases were analysed in terms of lipase activity and 

other physiochemical properties before can proceed with investigating the secondary 

structure of the protein. Therefore, the main objective of this research is to investigate 

the effects of critical amino acid at the C-terminal towards the activity, stability, and 

flexibility o L2 lipase. 

There are two sub-objectives of the research: 

 

• To predict the critical point and analyze the effects of amino acid 

substitutions at the C-terminal by in silico study. 

• To validate the effects caused by the substitution of selected amino acids at 

the target residue of the C-terminal of L2 lipase experimentally. 
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