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In this era of multiscreen generation, with connected devices per person 
escalating dramatically, the transmission of uncompressed videos and tons of 
data over wireless networks have driven the wireless networks to migrate from 
lower radio frequency to higher mm wave frequency band. The standard 
802.11ad recommends the usage of 7 GHz unlicensed frequency spectrum at 
60 GHz. The spectrum with low multipath impairment, suffers a high channel 
attenuation that demands mixed architecture of radio and fiber for 
enhancement of coverage distance. Radio over Fiber (RoF) using Mach 
Zehnder Modulator (MZM) is the most widely adapted architecture for mm-
wave generation. However, the architecture with low insertion loss, power 
consumption, and dispersion effects suffers the effect of MZM nonlinearity that 
significantly limits the performance of RoF system.   

 

This thesis proposes an I/Q channel separated coherent optical OFDM 
transmission system at 60 GHz, that employs mm-wave generation by optical 
frequency up-conversion using cascaded dual drive MZM (DD-MZM) and dual 
parallel MZM (DP-MZM) architecture at the transmitter and with coherent 
optical detection at the remote antenna unit. The first stage DD-MZM generates 
a carrier suppressed odd harmonics of the input optical signal from the laser 
diode modulated by RF signal.  The second stage DP-MZM followed by the 
Gaussian optical band pass filter (GOBPF) that passes the desired (fifth) 
harmonic of the optical signal at its output, generates I/Q channel separated 
OFDM baseband modulated optical signal. The coherent detection of the 
modulated optical signal received at the Remote Antenna Unit (RAU) produces 
the 60 GHz mm-wave that is transmitted wirelessly to the Mobile Unit (MU).
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 The theoretical and simulation analysis of the techniques for 16QAM/OFDM 
signal is performed. The simulation results in an Error Vector Magnitude (EVM) 
of 10 percent and 13 percent at 10km and 80 km respectively, a reduced power 
penalty of 2 dB/km at 80 km and enhanced data rate of 40 Gbps with only 10 
GHz signal bandwidth that clearly indicates the accuracy of the technique in 
mm-wave radio signal generation and transmission over fiber. Further with I/Q 
channel separation, harmonic distortion due to intermediate frequency 
translation is reduced along with the reduced computational and circuit 
complexity. However, with coherent optical orthogonal frequency division 
multiplexing adopted to achieve multi-gigabit transmission the system becomes 
sensitive to nonlinear distortions induced by MZM.  

 

Therefore, this thesis further analyses the modulator nonlinearity and proposes 

an adaptive digital pre-distortion (DPD) to mitigate the MZM modulator 

nonlinearity. The proposed adaptive digital pre-distortion is based on memory 

polynomial (MP) model with indirect learning architecture (ILA) where the 

predistorter is modeled as an inverse polynomial model of the nonlinear RoF 

system. The predistorter is the copy of the training filter that is connected as 

the post distorter to the nonlinear RoF system. The coefficient computation is 

performed using recursive prediction error method (RPEM) algorithm which 

shows a dominant spectral regrowth reduction and in-band distortion reduction 

with reduced complexity compared to the commonly used slow converging, 

least mean square algorithm. The RoF system with and without the DPD is 

simulated and the results demonstrate that the MZM nonlinearity is 

compensated using the proposed adaptive DPD and substantially improves the 

performance of the system in terms of Adjacent Channel Leakage Ratio 

(ACLR) and EVM. The ACLR is improved by 10 dB and the EVM is reduced 

from 13 percent to 0.06 percent at 80 km. 
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Pada era multi paparan, perhubungan antara peranti semakin meningkat 
secara dramatik, transmisi video tidak mampat dan jutaan data melalui 
rangkaian tanpa wayar telah menyebabkan kecenderungan rangkaian tanpa 
wayar untuk beralih dari radio dengan frekuensi rendah kepada jalur frekuensi 
gelombang mm yang lebih tinggi. Piawaian 802.11ad mencadangkan 
penggunaan spektrum frekuensi 7 GHz yang tidak berlesen kepada frekuensi 
60 GHz. Spektrum dengan herotan pelbagai arah yang rendah terpaksa 
berhadapan dengan pengecilan saluran yang tinggi yang memerlukan 
gandingan radio dan gentian untuk meningkatkan jarak liputan.   Radio atas 
Gentian (RoF) menggunakan Mach Zehnder Modulator (MZM) merupakan 
senibina yang digunakan secara meluas untuk penjanaan gelombang mm. 
Walaubagaimanapun, senibina tersebut yang mempunyai kehilangan sisipan 
rendah, penggunaan kuasa dan kesan penyebaran menghadapi kesan 
ketaklurusan MZM yang mengehadkan prestasi sistem Radio atas Gentian 
(RoF).   

 
Tesis in mencadangkan saluran 1/Q yang mengasingkan sistem transmisi asas 
OFDM pada frekuensi 60 GHz yang menggunakan penjanaan gelombang mm 
pada frekuensi optik dimana dwi-pemanduan MZM dan dua rekabentuk MZM 
yang selari digunakan pada pemancar dan dengan pengesanan optik koheren 
di Unit Antena Kawalanjauh. Pada peringkat pertama, DD-MZM menjana 
pembawa harmonik ganjil isyarat awal optik dan diod laser isyarat RF. Pada 
peringkat kedua, DP-MZM diikuti oleh jalur laluan penapis Gaussian (GOBPF), 
yang melalui harmonik kelima isyarat optik akhir, menjana saluran 1/Q yang 
mengasingkan OFDM iaitu jalur asas isyarat optik yang dimodulasi. 
Pengesanan koheren isyarat optik yang dimodulasi pada Unit Antenna 
Kawalanjauh (RAU) menghasilkan gelombang mm berjumlah 60 GHz yang 
dihantar secara tanpa wayar ke Unit Mobil (MU). Analysis secara teori dan 
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simulasi berkenaan dengan teknik untuk isyarat 16QAM/BB-OFDM dijalankan. 
Keputusan simulasi Magnitud Vektor Ralat (EVM) adalah 10 peratus pada 
10km dan 13 peratus pada 80km.Ini menunjukkan pengurangan kuasa penalti 
pada 2 dB/km pada 80km dan peningkatan kadar data pada 40 Gbps dengan 
hanya isyarat jalur lebar 10 GHz. Ini jelas menunjukkan ketepatan teknik dalam 
penjanaan gelombang mm isyarat radio dan transmisi fiber. Dengan 
pengasingan saluran I/Q, kemerosotan harmonik yang disebabkan 
penterjemahan frekuensi pertengahan dikurangkan berserta pengurangan 
kekompleksan pengiraan dan litar. Walaubagaimanapun, dengan 
menggunakan optik frekuensi ortogon pemultipleksan pembahagian frekuensi 
untuk mencapai penghantaran multi-gigabit, sistem menjadi cenderung kepada 
herotan tak lurus yang disebabkan oleh MZM. 
 

 
Justeru, tesis ini menganalisa ketaklurusan modulator dengan lebih mendalam 
dan mencadangkan penyelewengan pra-digital adaptif (DPD) untuk 
mengurangkan ketaklurusan modulator MZM. Teknik penyelewengan yang 
dicadangkan untuk adalah berdasarkan model memori polynomial (MP) yang 
menggunakan senibina cara pengarajaran secara tidak langsung (ILA) dimana 
ia dimodelkan secara model polynomial songsang untuk sistem yang tidak 
lurus. Predistorter ialah salinan  penapis latihan yang dihubungkan sebagai 
post distorter kepada sistem RoF tidak lurus.  Dua algoritma adaptif iaitu kuasa 
dua paling kurang yang tidak kompleks dan teknik algoritma ramalan ralat 
rekursif yang menunjukkan pengurangan pertumbuhan semula spektrum 
dominan dan penyelewengan dalam jalur digunakan. Sistem RoF disimulasi 
dengan dan tanpa DPD menunjukkan ketaklurusan MZM boleh diganti 
menggunakan adaptif DPD yang dicadangkan boleh meningkatkan prestasi 
sistem Nisbah Kebocoran Saluran Bersebelahan (ACLR) dan EVM secara 
langsung. Prestasi ACLR meningkat sebanyak 10 dB manakala EVM 
berkurang dari 13 peratus ke 0.15 peratus di 80 km.
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CHAPTER 1 

INTRODUCTION 

1.1. Research Background 

In this era of multiscreen generation, with connected devices per person 
escalating dramatically as illustrated in Figure 1.1, it is predicted that there will 
be 50 billion connected devices on internet by 2020 [1][2]. 

  

 
Figure 1.1: Global growth of connected devices [1] 

 
 
According to the statistics of CISCO Visual Network Index, the annual global 
internet traffic has passed 1 Zettabyte per year in 2016 and would be 2.3 
Zettabyte per year by 2020[3]. The total internet traffic has tremendously 
leaped from 100 GB per day in 1992 to 20235 GB per second in 2015 and 
would be 61386 GB per second in 2020. The monthly traffic internet per capita 
has grown from 10 MB in 2000 to 7Gb in 2015 and expected to be 21 GB in 
2020. The number of connected devices which was 4.9 billion in 2015 would be 
50 billion by 2020. The global connected devices per capita would be 6.58 in 
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2020 which would be 4 times the world population. In a nutshell the statistics 
illustrated graphically in Figure 1.2, clearly indicates that the busy hour traffic 
increase rapidly than average traffic, smart phone traffic exceeds the personal 
computer traffic, traffic from mobile and wireless devices would account for two 
third of the total traffic of which two third would be content delivery like ultra-
high definition videos. 

 
Figure 1.2: Global monthly traffic in petabytes[3] 

 
 
Furthermore, Internet of Things (IoT) born between 2008 and 2009, claimed as 
network of networks, is looked as the next industrial and network revolution. 
IoT is directed to interconnect every possible living and non-living things 
commonly referred as ‘‘things’ and convert them as smart things such that they 
can communicate, be tracked, controlled, monitored and secured remotely 
through networks. The sky rocketing growth of IoT demands a connectivity 
significantly in terms of high data rate, low latency, extended coverage, low 
power, low deployment cost with support for massive number of high speed, 
bandwidth hungry devices at personal, local and wide area networks. 
Furthermore, the success of IoT completely relies on extending the multi-
gigabit network at indoor and rural area. 

 
 
Thus the demand in high traffic on wireless networks across first and last mile 
requires high speed multi-gigabit wireless networks. With this high demand in 
data rate the Wireless Local Area Network (WLAN) 802.11ad aims to use the 
unlicensed mm-wave frequency between 57 GHz and 64 GHz. The Wireless 
Wide Area Network (WWAN) like WiMax and Long Term Evolution-Unlicensed 
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(LTE-U) specifies mm-wave frequencies between 10 GHz and 66 GHz for first 
and last mile access. 

 
 
The requirement of multi-gigabit data transmission speed at Wireless Personal 
Area Network (WPAN), Wireless Local Area Network (WLAN), Wireless 
Metropolitan Area Network (WMAN) and Wireless Wide Area Network 
(WWAN), in general at every point of the network, have fueled the use of extra 
high frequency bands commonly called as millimeter waves and the 60 GHz 
band mm-wave have been identified as a suitable candidate. The standard 
802.11ad by WiGig consortium, recommends the usage of 60 GHz millimeter 
wave band to achieve the high data rate in Wireless Local Area Networks 
(WLAN) [4]. Similarly the IEEE 802.16 work group are to incorporate 60 GHz 
band for Wireless Metropolitan Area Networks[5]. The radio technologies at 60 
GHz utilize the unlicensed 7 GHz frequency band extending from 57 GHz to 66 
GHz. The channelization of 60 GHz band which is typically around 7 GHz, as 
listed in Table 1.1, with the central two channels available for 60 GHz 
applications around the world as shown in Figure 1.3. The specification 
supports 7Gbps transmission speed with OFDM and 4.6 Gbps over single 
carrier.  

 
Table 1.1: 57 – 66 GHz band channelization [4] 

 
 

 
Figure 1.3: Worldwide spectrum of 60 GHz band [4] 

Channel 
Number 

Low 
Frequency 

(GHz) 

Center 
Frequency 

(GHz) 

High 
Frequency 

(GHz) 

Nyquist 
Bandwidth 

(MHz) 

Roll-
Off 

Factor 

A1 57.240 58.320 59.400 1.728 0.25 

A2 59.400 60.480 61.560 1.728 0.25 

A3 61.560 62.640 63.720 1.728 0.25 

A4 63.720 64.800 65.880 1.728 0.25 
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The spectrum even though has an advantage of low multipath impairment; the 
coverage range is limited due to free space attenuation which limit the distance 
of coverage as shown in Figure 1.4. For instance, the free space attenuation of 
60 GHz at 1 km is the same as 600 MHz free space attenuation at 10 km. 
Apart from free space attenuation the 60 GHz signal is attenuated by 
atmospheric gases such as oxygen and water vapor. Furthermore the 60 GHz 
spectrum is highly susceptible to rain attenuation which may exceed up to 40 
dB/km [5][6].      

 
Figure 1.4: Free space path loss of 2.4, 5 and 60 GHz RF signal[5][6] 

 
 
The spectrum also suffers from high penetration loss across the walls as 
demonstrated in Figure 1.5 limiting the coverage inside a room[4]. 

 
 
Therefore, to enhance the coverage distance and to mitigate the challenges 
faced by conventional electronics in generation of 60 GHz millimeter wave, a 
mixed architecture of Radio over Fiber (RoF) is adopted widely. The RoF 
architecture that uses Mach Zehnder Modulator (MZM) for mm-wave 
generation dominates several other techniques such as direct modulation and 
optical heterodyning. Several MZM based RoF architecture that mitigates the 
insertion loss, power consumption, and dispersion effects are proposed by 
researchers[7]. However, with data transmission formats such as Orthogonal 
Frequency Division Multiplexing (OFDM) and Code Division Multiple Access 
(CDMA), adopted to achieve multi-gigabit transmission the system becomes 
sensitive to nonlinear distortions induced by MZM. Digital Predistortion (DPD), 
a highly efficient, highly flexible low cost linearization technique [8] is adopted 
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to mitigate the MZM nonlinearity in RoF and allows the use of MZM with high 
efficiency in system. 

 

 
 

Figure 1.5: Penetration loss(dB) of 60 GHz passing through standard wall 
of different materials [4] 

 
 

1.2. Research Problems 

 
MZM is the heart of RoF system that translates the RF signal to optical signal. 
Several schemes of mm-wave generation using MZM, based on double 
sideband (DSB), single sideband (SSB) and double sideband with suppressed 
carrier (DSBSC) have been demonstrated for multi-gigabit optical up-
conversion RoF system, among which DSBSC have the advantage of best 
receiver sensitivity, smaller bandwidth and low loss[9]. However, independent 
of the modulation adopted the MZM exhibits a nonlinear electro-optic (E/O) 
conversion response [9]–[13]. The significant problem dealt in this research is 
to mitigate the MZM nonlinearity in mm-wave RoF for multi-gigabit transmission 
using digital predistortion technique. The critical part of digital predistortion is 
realizing a non-linear model of MZM. Several behavioral model, that have been 
proposed for power amplifier linearization have been adopted for linearization 
of MZM nonlinearity. The fundamental model that is based on Volterra series, 
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suffers high complexity in computing the Volterra kernels, with increase in 
nonlinearity and memory length of the device under test and therefore is limited 
to devices with low nonlinearity and fading memory [14]. Thereafter several 
algorithms based on Volterra model with reduced complexity is proposed 
namely Memory Polynomial (MP) model, Envelop Memory Polynomial (EMP) 
model, Orthogonal Memory Polynomial (OMP) model and Generalized Memory 
Polynomial (GMP) model. Further two box model such as Wiener, 
Hammerstein, augmented Hammerstein and three box model as the 
combination of Wiener and Hammerstein models are proposed [8], [14]–[19].  
In this thesis an I/Q channel separated Coherent Optical Orthogonal Frequency 
Division Multiplexing (CO-OFDM) transmission system at 60 GHz that employs 
mm-wave generation by optical frequency up-conversion using cascaded Dual 
Drive MZM (DDMZM) and Dual Parallel (DPMZM) architecture is proposed. 
Furthermore, an adaptive predistortion with reduced number of coefficients and 
computational complexity for reduction of MZM nonlinearity is proposed. The 
proposed RoF system has shown better results compared to the other 
proposed techniques such as frequency quadrupling and frequency sextupling. 
As well the adaptive digital predistortion based on memory polynomial model 
has shown a significant improvement in the reduction of MZM nonlinearity of 
RoF system compared to other DPD proposed in literatures.     

      
  

1.3. Research Aim and Objectives 

 
The aim of the research is to model a mm-wave RoF system for multi-gigabit 
wireless transmission and to devise a predistortion technique for reduction of 
MZM nonlinearity in millimeter wave RoF system.  

 
The specific objectives that pave way to achieve the aim are to; 

 
 Design a robust millimeter wave radio over fiber system for multi-gigabit 

wireless transmission 
 

 Analyze the dispersive and non-linear effects of MZM in RoF system at 
mm-wave frequency. 
 

 Devise, analyze and optimize a digital predistortion technique for reduction 
of MZM non-linearity in the modeled mm-wave RoF system. 

 
    

1.4. Scope and Limitations 

 
The scope of the research is to mitigate the MZM nonlinearity in mm-wave RoF 
system using adaptive digital predistortion. The research is focused to mm-
wave RoF system at 60GHz. Therefore, the research primarily concentrates on 
the following questions; 

 
1. How to generate a 60 GHz mm-wave signal?  
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Several mm-wave generation techniques have been reported in literature that 
mitigates the insertion loss, power consumption, and dispersion effects. 
However, the effect of MZM nonlinearity is not considered in most of the 
design. This thesis proposes an I/Q channel separated coherent optical OFDM 
transmission system at 60 GHz, that employs mm-wave generation by optical 
frequency up-conversion using cascaded dual drive MZM and dual parallel 
MZM architecture at the transmitter and with coherent optical detection at the 
remote antenna unit. The proposed system suppresses unwanted harmonics 
with I/Q channel separation. 
 

 
2. How to reduce the nonlinearity of MZM in the mm-wave RoF transmission 

system?  
This thesis further analyses the modulator nonlinearity and proposes an 
adaptive DPD to mitigate the MZM modulator nonlinearity. The proposed 
adaptive digital pre-distortion is based on memory polynomial (MP) DPD model 
with indirect coefficient learning architecture. The coefficient learning is 
performed using the MP-DPD model combined with coefficient calculation 
subsystem that is based on recursive prediction error method algorithm. 
 
 
Limitations: The mm-wave RoF system is simulated using Optisystem that 
mimics the real time system and is not analyzed with prototype. The RoF 
system performance in terms of EVM and BER is improved using a cascade 
architecture of DD and DP MZM which increase the cost of the system which 
implies a cost performance trade-off. 

 
 

1.5. Scheme of Proposed Work 

 
The research is carried out as theoretical and simulation modelling of two major 
parts of the mm-wave RoF system design, namely mm-wave RoF system and 
adaptive digital predistortion. The pathway to achieve the objective of the 
research is indicated in Figure 1.6. Focusing on the mitigation of MZM 
nonlinearity in mm-wave RoF system using DPD the research is carried out in 
two main domains of technology, namely the design of a robust mm-wave RoF 
system and the adaptive DPD that reduces the MZM nonlinearity in the 
designed mm-wave RoF system. An extensive literature review is carried out to 
investigate the existing techniques in RoF system design. MZM based RoF 
system identified as a dominant technique in mm-wave generation, a RoF 
system based on cascaded DD-MZM and DP-MZM is proposed and simulated 
using Optisystem.  

 
Alongside with the RoF system, the existing DPD are investigated, and 

an adaptive digital predistortion technique is designed and simulated for the 
reduction of MZM nonlinearity in the proposed RoF system. The simulation 
results are further compared with other DPD techniques reported in literatures. 
The designed system is simulated for varied power and distance and evaluated 
based on the error vector magnitude (EVM), bit error rate (BER) and adjacent 
channel leakage ratio (ACLR). 
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1.6. Thesis Outline 

 
The PhD thesis extends over several areas of 60 GHz mm-wave Radio over 
Fiber, specifically from problems statement that indicate the requirement of a 
digital predistortion for reduction of MZM nonlinearity to the simulation of 
adaptive digital predistortion linearizer. 

 
 
Chapter 1 describes the motivation of work, problem statement and research 
objectives. 

 
 
In Chapter 2 an extensive literature review of mm-wave RoF architectures is 
reported followed by review of the effect of MZM modulator linear dispersion 
and nonlinearity on the performance of mm-wave RoF transmission system. 
Furthermore, an elaborate review of digital predistortion techniques adopted for 
the reduction of MZM nonlinearity in RoF system is reported. 

 
 
In Chapter 3 a new I/Q channel separated CO-OFDM transmission system at 
60 GHz that employs mm-wave generation by optical frequency up-conversion 
using cascaded DD-DP MZM architecture is proposed. The system is 
simulated with Optisystem 12. 

 
 
In Chapter 4 a new adaptive baseband digital predistortion is proposed. The 
proposed adaptive digital pre-distortion is based on memory polynomial DPD 
model with indirect learning architecture. The coefficient learning is performed 
using the MP-DPD model of the proposed RoF system combined with 
coefficient calculation subsystem based on recursive prediction error method 
(RPEM). Finally, the RoF system with DPD and without DPD is simulated using 
MATLAB and Simulink interfaced with Optisystem. 

 
 

Chapter 5 summarizes the results highlighting the main contributions of the 

research and suggests scope for the future works. 
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