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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the Degree of Doctor of Philosophy 

DESIGN OF A WIDE-RANGE CMOS DIGITAL DELAY LINE WITH 

SUB-PICOSECOND JITTER FOR IMAGE SENSOR APPLICATIONS 

By 

BILAL ISAM ABDULRAZZAQ 

September 2016 

Chairman :   Izhal Abdul Halin, PhD 

Faculty :   Engineering 

Development of high-performance CMOS delay lines is becoming a crucial 

necessity for many advanced applications such as high-speed computer memory 

controllers and advanced time-resolved image sensors such as Time-of-Flight (ToF) 

image sensors and Fluorescence Lifetime Imaging Microscopy (FLIM) image 

sensors that would benefit from having a high-performance delay line integrated 

along with the system as a SoC solution. In this thesis, a 3-stage architecture CMOS 

digital delay line is proposed, designed, and analysed for generating picosecond-

resolution delay steps, microsecond delay range, and at a sub-picosecond jitter 

performance.  

To achieve wide delay range with fine-linear delay steps, a 3-stage circuit is 

proposed. In the first stage, a new 10-bit counter-based circuit is developed to allow 

a delay range of up to 2s in steps of 2ns. The coarse delay output of this stage is fed 

to a medium-resolution second stage. The second stage uses a typical tapped-delay 

line topology that exploits the propagation delay of stacked logic circuits to generate 

medium-resolution delay steps. This stage generates a delay range of 2ns with steps 

of 65ps. This stage is used to interpolate between the coarse-resolution delay steps 

generated in the first stage. The output of this stage is then fed to a third stage 

designed using a Delay-Locked Loop (DLL) circuit with a new charge resetting 

technique. The charge pump of the DLL is reset by a specialized circuit designed to 

trigger using the input signal that is to be delayed. A small-signal model of the 

proposed circuit along with analytical modeling are presented to show the 

relationship between the DLL's internal control voltage and output fine time delay 

steps. The delay range generated for this last and third stage is 70ps with a step of 

1ps. This fine delay stage is used to interpolate between the medium-resolution delay 

steps generated in the second stage. The output of the entire delay line is read at the 

output of this final stage. 



© C
OPYRIG

HT U
PM

ii 

The delay specifications for the 3-stage CMOS digital delay line in this work are 

confirmed by simulation using a standard 0.13μm Silterra CMOS process. Apart 

from the mentioned delay specifications, analyses show that the Integral-Non 

Linearity (INL) of the first stage, second stage, and third stage is 0.13LSB, 1.94LSB, 

and 1.7LSB, respectively. The jitter performance at the output of the third stage is 

only 0.39ps RMS. The total power consumption of the full implemented 3-stage 

CMOS digital delay line circuit is only 2.7 μW. The active layout area of this delay 

line is approximately (285220) μm
2
 making it suitable to be integrated as a SoC 

solution for chips that may require high-delay specifications. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

REKABENTUK TALIAN LAMBATAN CMOS BERJARAK JAUH DENGAN 

KETARAN WAKTU SUB-PIKO SAAT UNTUK PENGAPLIKASI SENSOR 

IMEJ 

Oleh 

BILAL ISAM ABDULRAZZAQ 

September 2016 

Pengerusi : Izhal Abdul Halin, PhD 

Fakulti : Kejuruteraan 

Keperluan talian lambatan masa berprestasi tinggi menjadi semakin penting untuk 

aplikasi termaju seperti pengawal memori komputer berkelajuan tinggi dan penderia 

imej kawalan masa termaju seperti penderia imej masa penerbangan dan penderia 

imej jangkahayat fluorescene di mana sistem-sistem ini mendapat manfaat besar 

apabila diintegrasi dengan talian lambatan masa tersebut dalam sesebuah 

penyelesaian SoC. Dalam tesis ini, sebuah talian lambatan masa CMOS 3-tahap 

dicadangkan, direkabentuk dan dianalisa untuk menghasilkan langkah lambatan 

masa piko-saat, jarak lambatan masa mikro-saat dengan kejituan masa sub-piko-saat. 

Rekabentuk 3-tahap dicadangkan untuk menghasilkan jarak lambatan masa panjang 

dengan langkah lambatan masa halus. Tahap pertama menonjolkan rekabantuk litar 

baru yang berdasarkan litar pembilang digit 10-bit untuk menghasilkan jarak 

lambatan 2s dengan langkah lambatan 2ns. Keluaran lambatan masa yang kasar di 

tahap ini digunakan sebagai masukan untuk tahap kedua yang lebih halus lambatan 

masanya. Tahap kedua pula menggunakan topologi litar biasa di mana lengah 

perambatan litar-litar lojik digunakan untuk menghasilkan lambatan masa beresolusi 

separa halus. Tahap kedua ini menghasilakn jarak lambatan 2ns dengan langkah 

lambatan 65ps. Keluaran tahap ini digunakan untuk menginterpolasi  langkah 

lambatan masa kasar yang dihasilkan oleh tahap pertama. Keluaran tahap kedua ini 

pula digunakan sebagai masukan untuk tahap ketiga yang direkabentuk 

menggunakan sebuah DLL yang beroperasi dengan baru yang diperkenalkan iaitu 

kaedah set-semula cas. Pam cas DLL tersebut  disambungkan kepada sebuah litar 

penyahcas baru yang digera menggunakan isyarat masukan yang hendak 

dilambatkan. Sebuah model isyarat kecil litar tersebut dan analisis matematiknya 

dipersembahkan untuk menunjukkan hubungan di antara voltan kawalan dalaman 

DLL tersebut dengan keluaran langkah lambatan masa halus yang terhasil. Jarak 

lambatan yang dihasilkan oleh tahap ini adalah 70ps dengan  langkah 1ps. Langkah 

lambatan masa halus ini digunakan untuk menginterpolasi antara masa langkah 
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lambatan yang dihasilkan oleh tahap kedua yang separa halus. Keluaran litar 

lambatan keseluruhan diperolehi dari keluaran tahap ketiga ini. 

Spesifikasi lambatan masa untuk litar 3-tahap ini disahkan dengan simulasi litar 

proses CMOS Silterra 0.13μm. Selain dari spesifikasi lambatan masa, analisa data 

simulasi menunjukkan INL untuk tahap pertama, kedua dan ketiga adalah masing-

masing 0.13LSB, 1.94LSB, dan 1.7LSB. Prestasi ketaran untuk tahap ketiga pula 

memberi kejituan yang bernilai 0.39ps RMS. Penggunaan kuasa keseluruhan pula 

hanyalah 2.7 μW. Luas kawasan aktif litar keseluruhannya pula hanyalah (285 220) 

μm
2
 menjadikan litar ini sesuai diintegrasi dalam mana-mana chip sebagai

penyelesaian SoC yang memerlukan spesifikasi lambatan masa setinggi ini. 
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tT 

 

Input waveform transition time 

 

ID 

 

Drain current 

 

VGS 

 

Gate-to-source voltage 

 

Tox 

 

Gate-oxide thickness 

 

εox 

 

Oxide permittivity 

 

IDsat 

 

Drain saturation current 

 

μn 

 

Carrier mobility for nMOS electrons 

 

μp 

 

Carrier mobility for pMOS holes 
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Variance of propagation delay 
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Rw Interconnect resistance 

 

Τ 

 

Time constant 

 

ρ
 

 

Resistivity 

 

w 

 

Width of the interconnect 

 

t 

 

Thickness of the interconnect 

 

l 

 

Length of the interconnect 

 

Vthermal,rms 

 

RMS voltage of the thermal noise 

 

KB 

 

Boltzmann constant 

 

T 

 

Absolute temperature 

 

∆f 

 

Bandwidth 

 

Tu 

 

Absolute resolution 

 

td,n 

 

Time delay of the nth delay element 

 

ε 

 

Delay error 
 

'

,ndt  

 

Delay step position 

 
D

DDVS


 

 

Delay sensitivity to supply voltage fluctuations 

 

∆VDD 

 

Supply voltage variation 

 

Tr 

 

Room temperature 

 

td,N 

 

Time delay at the end of the CMOS delay line 

 

η
 

 

Delay shift induced by noise error 

 

∆Tabs 

 

Absolute/long-term jitter 

 

∆Tc 

 

Cycle jitter 

 

∆Tc-c 

 

Cycle-to-cycle jitter 
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Tref Period of the input reference signal 

 

 2
VCDLd  

 

Total timing error variance of the total VCDL 

 

σ(∆d
2
)
 

 

Timing error variance of the unit delay element 

 

ICP 

 

Charge pump current 

 

Kd 

 

Delay element gain 

 

Cf 

 

Capacitance of the loop filter's capacitor 

 

ϕoffset 

 

Undesired phase shift 

 

∆ton 

 

Pulse-width of the UP or DOWN pulse from the phase  

detector 

 

∆i 

 

Current mismatch 

 

TC 

 

Cycle period 

 

PIN 

 

Input signal to the Trigger Generator circuit 

 

PD 

 

Output delayed signal from the Delay Generator circuit 

 

TdC 

 

Coarse time delay 

 

TW 

 

Pulse width of the output delayed signal 

 

POUT1 

 

Output signal from CRDL stage 

 

POUT1,int 

 

Output signal from CRDL stage delayed by the intrinsic  

delay of the CRDL's building blocks 

 

POUT1,min 

 

Output signal from CRDL stage delayed by the minimum  

coarse delay step 

 

POUT1,max 

 

Output signal from CRDL stage delayed by the maximum  

coarse delay range 

 

TRG_P’ 

 

Output signal from Trigger Generator circuit 

 

STOP_PD 

 

Stop pulse of the Delay Generator circuit 

 

DSC,min 

 

Minimum coarse delay step 
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Maximum coarse delay range 

 

fclock 

 

Frequency of the counter clock 
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.nobits,counter2   2 powered to the counter bit-number 

 

STOP_PD 

 

Stop pulse of the Duty-Cycle Controller circuit 

 

TW,max 

 

Maximum pulse width of the output delayed signal 

 

DSM,min 

 

Minimum medium delay step 

 

POUT2 

 

Output signal from MRDL stage 

 

POUT2,min 

 

Output signal from MRDL stage delayed by the minimum  

medium delay step 

 

POUT2,max 

 

Output signal from MRDL stage delayed by the maximum  

 

medium delay range 

 

DRM,max 

Maximum medium delay range 

 

N 

 

Number of delay stages 
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Minimum fine delay step 

 

DRF,max 

 

Maximum fine delay range 

 

POUT 

 

Output signal from FRDL stage 

 

POUT,nom 

 

Output signal from FRDL stage delayed by the nominal delay  

of the DLL 

 

POUT,min 

 

 

Output signal from FRDL stage delayed by the minimum fine  

delay step 

 

POUT,max 

 

Output signal from FRDL stage delayed by the maximum  

fine delay range 

 

ϕR 

 

Reset pulse 

 

τR 

 

Time constant of the loop filter 

 

v0 

 

Initial voltage across the loop filter's capacitor 

 

gm 

 

Transistor transconductance 
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Drain-to-source resistance 

 

∆gm 

 

Change in transconductance 
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∆ddC 

 

Jitter generated from the CRDL stage 

 

∆ddM 
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∆ddF 
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∆R 
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∆t 
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Tdischarge,min 
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Tdischarge,max 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

This chapter presents an introduction of the work carried out.  A background on 

time management circuits is first presented with a focus on the importance of these 

circuits in science and industry applications. Then, a section on the limitations of 

conventional CMOS delay lines is presented, which explains how the problem 

statements have been formed as a result of the drawbacks found in the 

contemporary available CMOS delay lines. Subsequently, the research problem 

statements are listed in detail before presenting the research aim and objectives. To 

conclude this chapter, the research scope is discussed, followed by the thesis 

organization. 

 

 

1.1 Research background 

 

Time delay circuits, sometimes called time management circuits, serve the purpose 

of controlling the time difference between clocks or other pulses by 

adding/eliminating a pre-specified time delay. Moreover, depending on their 

application, these circuits can also be designed to control the duty cycle of an input 

pulse [1]. Time delay circuits are characterized by their delay range, delay step, and 

jitter performance. The delay range is the maximum time a signal can be delayed, 

while the delay step is a measure of the finest incremental time step a time delay 

circuit can produce. On the other hand, jitter is the time uncertainty in an output 

delayed signal and directly affects the smallest delay step [2-4]. 

 

 

There are two types of delay lines summarized in Figure 1.1. The first type shown 

in Figure 1.1 (a) delays a true input signal by an amount τD. The value of τD can be 

programmed by a digital word. The second type of delay lines is shown in Figure 

1.1 (b). This type uses an input trigger pulse and a Trigger Generator (TG) circuit to 

generate an output delayed signal. The output time delay is measured from the 

rising edge of the input trigger pulse to the rising edge of the output pulse. PW is 

used to control the pulse width of the output delayed pulse [1,5]. 
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Figure 1.1 : Programmable delay lines (a) with a true input signal. (b) with a 

trigger reference pulse. 

 

 

In this work, the second type of delay lines shown in Figure 1.1 (b) is studied for 

application in a Fluorescence Lifetime Imaging Microscopy (FLIM) image sensor. 

 

 

FLIM CMOS image sensors are used to capture biological cell images without the 

use of staining chemicals. They work by illuminating a short light pulse on the cell 

which will in turn produce bio-fluorescence light that is captured by pixels of the 

sensor. Since this bio-fluoroscec light decays exponentially over a period of 1µs, 

the pixel exposure time window is synchronized with the light pulse source and 

moved in fine-resolution delay increments over a delay range of 1µs, enabling 

many images related to sections of the decaying light samples to be obtained by the 

pixel for image construction. Currently, the experimental setup for imaging uses an 

external CMOS digital delay line for shifting the imaging window. However, it is 

desirable to integrate the delay line as a part of the image sensor system that can 

easily be packaged as a compact camera [6].  

 

 

Time-of-Flight (ToF) range image sensors acquire range images of a scene by using 

a ToF light source synchronized with the imagers capture window. They work by 

measuring the time-of-flight a light signal, emitted from the ToF light that is in-line 

with the ToF sensor, takes to travel to and from objects in a scene back to the 

sensor. In quantifying ToF sensors, delay lines are used to vary the delay of a ToF 

light source that back-reflects the light signal on a fixed white surface. Delay lines 

are used to delay the ToF light source in order to mimic objects at different 

distances even though a white fixed board is used. This technique considerably 

simplifies the measurement setup and process [7,8]. As ToF sensors are constantly 

evolving to measure micrometric-resolution distance within metric-range distance 

[9], delay lines should also be redesigned for picosecond and microsecond-range 

delays.  
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CMOS delay lines are also used in on-chip time measurements and the 

synchronization of a CPU with its interfaces [10,11]. To illustrate the 

synchronization application of the delay lines, Figure 1.2 is presented which shows 

the location of the delay line circuit. 

 

 
 

 
 

 

Figure 1.2 : Application of a delay line as a synchronization circuit. 

 

 

In Figure 1.2, the function of the programmable delay line is to ensure perfect 

synchronization of data packets at both the transmitting and receiving ends. This is 

to avoid functionality failure of the system. Since CMOS technology scaling and 

clock speeds are continuously progressing, chip size becomes smaller and the 

synchronization process becomes more challenging. Accordingly, design of a 

single- circuit block delay line, which can be integrated with the computer memory 

interface, becomes a necessity. 

 

 

1.2 Limitations of CMOS Delay Lines 

 

There are two main issues with conventional CMOS delay lines. The first issue is 

the jitter performance which is in the range of several picoseconds [12,13]. As jitter 

performance directly affects the finest achievable delay resolution, it is considered a 

crucial factor in determining the performance of delay lines [4]. Although the jitter 

performance of CMOS delay lines is not as fine as that of optics-based delay lines, 

extensive work to produce sub-picosecond jitter performance CMOS delay lines is 

actively undertaken by many parties due to the fact that IC-based delay lines are 

robust in terms of system integration and cost reduction when compared to their 

optical counterpart. The second issue is in realizing a delay line that has an 

exceptionally long delay range with fine, uniform, and linear delay steps [13]. Fine-

resolution solid-state circuit delay lines cannot simply be cascaded like optical 

delay lines because delay increments are non-linear mainly due to the complex 

nature of the parasitic capacitance network in the delay elements of the delay line 

[14]. The cascading methodology also leads to a complex PCB implementation. 

Thus, a single chip solution should be developed to overcome these shortcomings. 
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1.3 Problem statements 

 

As CMOS technology continuously evolves and the operating frequency of 

Integrated Circuits (ICs) constantly increases, achieving precise time managements 

becomes more challenging. This is due first to the reduced timing margins between 

signals within ICs and second to the significantly increasing effects of the Process, 

supply Voltage, and Temperature (PVT) variations. The increase in operating 

frequencies as CMOS technology scales down causes delay resolution to degrade 

because of the increase in timing jitter. Although significant improvements have 

been realized in terms of obtaining either wide delay range such as 46ns [15] and 

160ns [16], high-resolution delay steps such as 2ps [15] and 0.5ps [17], or 

remarkable jitter performance such as 0.1ps RMS [18] and 0.03ps RMS [19], these 

improvements may not satisfy the growing needs of today's and future's SoC 

applications. This is attributed to the fact that SoC applications, such as high-speed 

computer memories [20], on-chip time measurements [18] and time-dependent 

image sensors [6], require all the aforementioned high-delay specifications to be 

integrated together in one single-circuit block [13]. 

 

 

Through literature review presented in Chapter 2, it is concluded that there is a 

trade-off between delay range and delay resolution. The longer the maximum delay 

allowed by a circuit, the larger the steps are. For FLIM imaging applications, this is 

not desirable. Therefore, there is a necessity to realize a circuit that embodies both 

wide delay range and high-resolution delay steps. 

 

 

1.4 Research aim and objectives 

 

This work aims to develop a CMOS delay line that minimizes the trade-off between 

wide delay range and high-resolution delay steps. The delay line will function 

according to Figure 1.1 (b) where the time delay is measured with respect to the 

rising edge of a trigger pulse and the output delayed signal, whose pulse width can 

be varied. Since this delay line is to be integrated with a FLIM image sensor, the 

targeted delay range is 2µs with a 1ps delay step. The jitter performance should be 

no more than 0.5ps RMS. Towards the achievement of the proposed research goals, 

the following objectives are to be carried out: 

 

1. To investigate the circuit techniques used for obtaining both wide delay 

range and fine delay steps. For this, a study on the number of delay stages 

utilized in previous CMOS delay lines for the sake of increasing the 

maximum achievable delay range to the microsecond range is to be carried 

out. 

 

2. To investigate circuit techniques for designing a coarse-resolution delay step 

circuit with long delay range that is not power hungry. 

 

3. To investigate the circuit techniques targeted for achieving fine-resolution 

delay steps. This is for refining the finest achievable delay step to 

picosecond-resolution linear steps within a fine delay range of several tens 

of picosecond-linear steps. 
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4. To investigate minimization of Delay-Locked Loop's output jitter to sub-

picosecond for a fine delay range of several tens of picoseconds. This 

specific amount of the output jitter is set in order not to deteriorate the 

picosecond-resolution delay steps. 

 

 

1.5 Research scope 

 

To achieve the goals of this work, a 3-stage delay line topology is proposed. The 

idea behind this is that different stages will produce different delay range and 

different delay step sizes and when combined, a long-range fine-step delay line is 

produced. The proposed microsecond-range picosecond-step delay line is targeted 

for the application in FLIM image sensor whose fluorescence light's lifetime is in 

the microsecond range. 

 

 

As a summary, the first stage is designed to produce the pulse width of the output 

delayed pulse as well as introduce a long delay range with coarse-uniform delay 

steps. The output of this stage is fed to the second stage which fine tunes the delay 

to medium-resolution steps. The output from the second stage serves as input to the 

final stage that is responsible to further fine tune the delay steps into the picosecond 

value and at the same time minimize jitter. 

 

 

The scope of this research is limited to circuit design through analytical modeling 

and the use of industrial standard methodology of computer post-layout simulation 

for verification of the performance parameters set in the goal of this thesis. The 

CMOS technology used in the design of the proposed work is 0.13µm Silterra. 

 

 

1.6 Thesis organization 

 

This thesis is structured into five chapters. Chapter 1 presents an overview of the 

research area, focusing on the problems of the contemporary available delay line 

architectures that motivated this work. In addition, this chapter demonstrates the 

problem statements, aim, objectives, and scope of the research. Chapter 2 presents a 

comprehensive review on the existing CMOS delay line architectures, topologies, 

and control techniques. The effects of CMOS technology scaling, PVT variations, 

and noise sources as well as jitter on CMOS delay lines are also discussed. The use 

of DLLs and Phase-Locked Loops (PLLs) as high-resolution delay lines is also 

included and the difference between them is also discussed. The most relevant 

reported works to this work are critically reviewed, showing the trade-off in the 

performance of these works. The chapter ends with highlighting the main issues 

that should be taken into consideration when designing a CMOS delay line circuit 

with high-delay specifications. 

 

 

Chapter 3 gives the full description of the research methodology. The circuit 

designed for this work is divided into three stages. As mentioned previously, the 

first stage uses a novel circuit that is responsible for the generation of the maximum 
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delay range with coarse and uniform steps. In this stage, an input trigger pulse 

creates an output signal whose duty cycle and delay with respect to the trigger pulse 

can be programmed. The second stage interpolates the minimum-coarse delay step 

of the first stage. The last stage is responsible for generating the finest-resolution 

delay step and maintaining the output jitter in the sub-picosecond range. Detailed 

explanation using small-signal model is presented for better comprehension of how 

fine delay steps are achieved using the proprietary charge pump circuit. Analytical 

equations are derived to show the relationship between the proposed circuit‟s small-

signal model control voltage and generated fine delay steps. 

 

 

Chapter 4 presents the post-layout simulation results. Analysis including non-

linearity, PVT variations, and jitter is also presented and discussed.  

 

 

The thesis is ended with Chapter 5 that summarizes, concludes, and presents a list 

of contributions of this work. Potential ideas to be pursued as future works are also 

suggested. 
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