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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

PARTITIONING BEHAVIOURS AND SELECTIVE RECOVERY OF 

THERAPEUTIC PROTEIN IN AQUEOUS TWO-PHASE SYSTEM 

 

By 

CHOW YIN HUI 

February 2016 

Chairman : Mohd Shamsul Anuar, PhD 

Faculty  : Engineering 

 

Immunoglobulin G (IgG) is a type of high value therapeutic protein widely applied to 

the treatment of various chronic diseases such as cancer, immune and inflammatory 

disorders. The conventional expensive and rate-limiting chromatography-based 

downstream processing of IgG has been considered as the bottleneck in producing 

commercially viable therapeutic products. This thesis focused on the development and 

application of aqueous two-phase system (ATPS) as an effective and economical 

approach to recover the IgG from crude feedstock. The partition of pure IgG and the 

extraction of IgG from an artificial mixture of proteins, which contained IgG and bovine 

serum albumin (BSA) at a concentration that simulates the common IgG/impurities ratio, 

were significantly affected by the polyethylene glycol (PEG) molecular weight, phase 

compositions, and the addition of sodium chloride (NaCl). The monoclonal human IgG1 
was successfully recovered from the Chinese Hamster Ovary (CHO) cell supernatant by 

using an ATPS composed of 14.0% (w/w) PEG 1450, 12.5% (w/w) phosphate (pH 7.5), 

and 5.0% (w/w) NaCl in the first forward extraction. A total yield of 81.38%, high IgG 

purity of 95.06% and PF of 8.91 were achieved after the back extraction step. Also, 

relationship which describes the effect of the difference in composition of the phase-

forming component between the top and bottom phases on the interfacial partitioning of 

protein as well as relationship which linearly correlates the protein partitioning behaviour 

to phase compositions and system pH were proposed and verified by studying the 

partitioning behaviour of a model protein, BSA, in the PEG-phosphate ATPS. The results 

of goodness of fit test showed that the former relationship and an extended form of the 

latter relationship, which incorporated with the influence of NaCl concentration, were 
both applicable to the correlation of the partitioning behaviour of IgG in the ATPS which 

contained complex protein solutions. The molecular dynamics (MD) simulation of the 

partitioning of BSA in an optimised ATPS confirmed that the ATPS is a biocompatible 

separation technique. Therefore, these results open a promising prospect for the 

application of ATPS as an effective alternative purification tool in the downstream 

processing of IgG. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

SIFAT-SIFAT PENGASINGAN DAN PEMULIHAN KHUSUS PROTEIN 

TERAPEUTIK DALAM SISTEM DUA FASA AKUEUS 

 

Oleh 

CHOW YIN HUI 

Februari 2016 

Pengerusi : Mohd Shamsul Anuar, PhD 

Fakulti  : Kejuruteraan 

 

Imunoglobulin G (IgG) adalah sejenis protein terapeutik yang diguna secara meluas 
untuk rawatan pelbagai penyakit kronik seperti kanser, keradangan dan gangguan imun. 

Untuk mengatasi cabaran dari pemprosesan hiliran konvensional IgG yang memakan 

masa dan tinggi kosnya, pembentukan kaedah alternatif untuk menulenkan IgG menjadi 

semakin terdesak. Dengan itu, penyelidikan ini mengkaji pembangunan dan aplikasi 

sistem akueus dua fasa (ATPS) sebagai kaedah alternatif yang ekonomi dan berkesan 

bagi penulenan IgG dari supernatan kultur sel. Pengekstrakan IgG tulen dan IgG daripada 

campuran protein tiruan yang mengandungi IgG dan albumin serum lembu (BSA) pada 

kepekatan yang menyerupai nisbah IgG/bendasing yang biasa, telah terjejas dengan 

ketara oleh berat molekul polietilena glikol (PEG), komposisi fasa dan penambahan 

natrium klorida (NaCl). IgG1 manusia monoklonal telah berjaya dipulihkan daripada 

supernatan kultur sel ovari hamster China (Chinese Hamster Ovary (CHO)) dengan 
mengguna ATPS yang mengandungi 14.0% (w/w) PEG 1450, 12.5% (w/w) fosfat (pH 

7.5) dan 5.0% (w/w) NaCl pada pengekstrakan peringkat pertama. Hasil pemulihan 

keseluruhan, ketulenan dan faktor penulenan yang masing-masing sebanyak 81.38%, 

95.06% dan 8.91 telah dicapai selepas pengekstrakan balik IgG ke fasa fosfat yang baru. 

Selain itu, model yang menerangkan kesan perbezaan kepekatan polietilena glikol (PEG) 

antara dua fasa pada pengasingan interfasa protein dan model yang menghubung kaitkan 

pengasingan protein dengan komposisi fasa dan sistem pH telah dibentuk dan disahkan 

dengan kajian sifat-sifat pengasingan protein model, BSA, dalam ATPS PEG-fosfat. 

Keputusan analisis statistik menunjukkan bahawa model pengasingan interfasa protein 

dan model sifat-sifat pengasingan protein yang telah diperkembangkan untuk 

merangkumkan pengaruh kepekatan NaCl boleh digunakan untuk ramalan sifat-sifat 
pengasingan protein dalam ATPS yang mengandungi larutan protein yang kompleks. 

Simulasi dinamik molekul (MD) bagi pengasingan BSA dalam ATPS mengesahkan 

bahawa ATPS adalah teknik penulenan protein yang  bioserasi. Oleh itu, kajian ini 

menunjukkan bahawa aplikasi ATPS mempunyai prospek yang cerah sebagai kaedah 

penulenan alternatif dalam pemprosesan hiliran IgG. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Antibodies, also known as immunoglobulins, are divided into five different classes (i.e. 
IgG, IgM, IgA, IgD and IgE) which differ in size, carbohydrate composition, and the 

sequence of amino acid in the heavy chain. Among various immunoglobulins, 

immunoglobulins of the IgG class are widely applied to diagnose and to treat various 

diseases and disorders, such as cancer, transplant rejection, immune and inflammatory 

disorders (Elvin et al., 2013). Since the first commercialization of therapeutic antibody 

in 1986, this class of biotechnology derived drugs have been hailed as a magic bullet in 

various medical applications due to their inherent high specificity (Ecker et al., 2014). 

Following the approval of the humanised and fully human antibodies (i.e. antibodies of 

non-human origin whose protein sequences have been genetically modified to enhance 

their resemblance to antibodies produced naturally in the human body) such as Xolair 

and Arzerra, the global sales revenue reached $75 billion in 2013, constituting nearly 
half of the biopharmaceutical products market (Ecker et al., 2014; Walsh, 2014). In view 

of the increasing market demand, market introduction of newly approved antibody 

products and the prevalence of cancer and diseases, the global sales are projected to 

increase at 8% per year, reaching $125 billion in 2020. Meanwhile, the growing market 

needs, the call for less costly products, the growing competition between the 

biopharmaceutical companies, and the economic constraints of healthcare systems have 

adversely increased the pressure for the establishment of a cost-effective and faster  

pharmaceutical production (Gagnon, 2012; Sommerfeld and Strube, 2005).  

 

In response to these needs, the upstream process development has advanced remarkably 

in the last few decades. While earlier in vivo production (Sommerfeld and Strube, 2005) 
yielded milligram to gram quantities of IgGs, the continuous improvements in the 

upstream processing of IgG have allowed their volumetric productivities to increase by 

20-fold over the past two decades (Kuczewski et al., 2011). However, the economies of 

scale brought by this improvement have failed to translate to the downstream processing 

of antibody which constitutes up to 50-80% of the total manufacturing costs (Walsh, 

2010).  

 

 

In general, most of the purification schemes of the antibody depend on the application of 

Protein A affinity chromatography, which needs prior centrifugation and filtration steps, 

as the primary capture and purification step (Shukla and Thömmes, 2010). This step is 
then followed by two chromatographic polishing steps and a filtration step. The high 

specific binding affinity of protein A ligand towards the Fc domain of antibody provides 

high selectivity and more than 95% product-related purity from a clarified cell culture 

supernatant (Hahn et al., 2003). However, this major rate-limiting process accounts for 

more than 70% of the downstream costs and an industrial scale protein A column could 

cost up to $1.5 million (Azevedo et al., 2009b; Walsh, 2010). Moreover, its purification 
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performance is overshadowed by several drawbacks such as the low capacity, long 

processing time, complex scale-up, high pressure drop within column and low 

proteolytic and chemical stability which may contaminate the end product (Low et al., 

2007). In addition to this, the polishing steps also suffer from the similar limitations 

aforementioned and the use of viral filters could cost $25,000 per production run 

(Gronemeyer et al., 2014; Walsh, 2010). As a whole, the conventional recovery 

processes are laborious, time-consuming, expensive and finite, which in turn make the 

therapeutic antibody product extremely expensive. Versatile and economical alternative 

purification methods are therefore required to be developed in order to improve the 

process throughput, scalability, and the processing time of the IgG purification processes 

(Thömmes and Etzel, 2007). Alternatively, they can reduce the number of purification 
stages, make excellent complements to the conventional operations and enhance the cost 

effectiveness of the recovery operations.  

 

 

In recent years, the aqueous two-phase system (ATPS), a bioseparation process that 

exploits the differential partitioning of solutes in the immiscible two-aqueous solutions, 

has been recognised as a versatile and superior alternative recovery step that can 

overcome several technical limitations of the conventional chromatographic purification 

processes for therapeutic antibodies. This purification method has not only shown good 

purification performance in the recovery of various proteins and enzymes, but also a 

number of industrial applications (Asenjo and Andrews, 2011). Judging from the product 
selectivity, recovery and purity, the use of inexpensive phase-forming chemicals has 

made this emerging technique more attractive and competitive. Its merits also include 

simplicity, high capacity, biocompatible separation environment, ease of upscale and 

continuous operation (Goja et al., 2013). Most importantly, the integration of the 

clarification, concentration and purification of proteins into a single ATPS extraction 

step can reduce the processing time, the number of unit operations, running costs and 

capital expenditure of the manufacturing process as well as providing favourable product 

yield and purity (Igarashi et al., 2004b; Rosa et al., 2010). These process advantages over 

the conventional primary chromatographic purification technique thus make the ATPS 

an excellent recovery method feasible for the large-scale purification of high value 

therapeutic IgG from complex feedstock. 

 
 

1.2 Research Problems 

 

The pressures for alternative low-cost and rapid pharmaceutical production are on the 

rise from various aspects. The economic constraints of healthcare systems, growing 

market demand and competition between companies inevitably place crucial challenges 

to the typically expensive and time-consuming conventional downstream processing that 

has failed to keep up with the advancement in the upstream processes (Rosa et al., 2011). 

The high production cost of $100-1000 per gram of therapeutic proteins not only makes 

the products not commercially viable, but also causes the antibody-based 

pharmacotherapy extremely expensive and may not be affordable for everyone 
(Sommerfeld and Strube, 2005). Thus, the development of alternative antibody recovery 

processes that could produce comparable or improved yield and decrease the purification 

cost and time are indispensable prerequisites to expand the market for the therapeutic 

antibodies. One of such alternative IgG purification methods that could circumvent these 

bottlenecks is the ATPS. However, despite the considerable academic research efforts as 

well as the favourable process economics and advantages offered, the industrial scale 
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application of the ATPS is still limited (Oelmeier et al., 2012b; Rosa et al., 2010). The 

limited application is caused by the poor understanding of the complex solute 

partitioning mechanism in the ATPS that makes the ATPS method development rather 

time, labour, and material intensive (Benavides and Rito-Palomares, 2008). Under such 

circumstances, a clear molecular picture of the underlying protein partitioning 

mechanism needs to be devised and detailed models in the form of equations which could 

predict and elucidate the protein partitioning behaviour have to be derived to achieve 

process optimisation in a rapid and inexpensive way. Unfortunately, most of the available 

models either demand excessive experimentally determined parameters or only valid 

over a limited set of condition. Besides this, the accumulation of product at the interface 

of the ATPS, a common phenomenon that has been reported in many literatures, has 
however been neglected by many researchers. This phenomenon is detrimental to the 

protein recovery process as it results in product loss and may cause subsequent process 

complication. This interfacial partitioning behaviour ought to be thoroughly investigated 

and accounted in order to fully exploit the industrial capabilities of the ATPS for the 

recovery of IgG.  

 

 

In light of these constraints, besides determining the best conditions for the recovery of 

IgG in the polymer-salt ATPS that promote rapid and cost effective recovery process, 

this work also sought to identify and formulate the relationships between the system 

variables and each of the “true” partitioning (i.e. the partition of protein between two 
bulk aqueous phases and with no accumulation of protein at the interface) and the 

interfacial partitioning of proteins (Figure 1.1). This approach could enhance the 

understanding of the ATPS and pave the way for the process development of industrial 

applications. Additionally, the molecular dynamics (MD) simulation of a small replica 

of the protein containing ATPS was demonstrated for the first time in the literature to 

give a clearer molecular insight into the underlying protein partitioning mechanism of 

the ATPS. Therefore, this work focused on the understanding, characterisation, and 

correlations of the “true” and interfacial partitioning behaviour of proteins with the ATPS 

parameters, as well as the selective recovery of IgG in the ATPS to guide the process 

development of ATPS as a rapid and economical IgG recovery process. 

 

 

1.3 Objectives 

 

In summary, the objectives of this research were: 

1. To identify and formulate the factors which contribute to the interfacial partitioning 

of a model protein, BSA, in the polymer-salt ATPS. 

2. To characterise the partitioning behaviour of a model protein, BSA, in the polymer-

salt ATPS by performing MD simulation and developing relationships between the 

partitioning behaviour of protein and ATPS parameters.   

3. To characterise the partitioning behaviour of pure IgG in the polymer-salt ATPS by 

studying and correlating the effect of ATPS parameters to the partitioning 

behaviour of pure IgG. 
4. To recover the IgG with high yield and purity from crude feedstock by using the 

polymer-salt ATPS.  
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Figure 1.1: Protein partitioning in the ATPS  
 

 

1.4 Summary of the research 

 

In this study, the ATPS was adopted for the recovery of IgG. The initial investigation 

focused on assessing the factors which affect the partitioning behaviour of a model 

protein and the pure IgG in the polyethylene glycol (PEG)-phosphate ATPS in order to 

develop relationships which could provide a better understanding of the interfacial 

protein partitioning and “true” protein partitioning behaviour. The best ATPS conditions 

for the selective recovery of monoclonal human IgG1 from the Chinese Hamster Ovary 

(CHO) cell culture supernatant was then determined. Also, the proposed relationships 
were applied to provide a framework for elucidating, correlating and ultimately 

predicting the IgG partitioning in the ATPS. The scope of this work is depicted in Figure 

1.2.  

 

 

 

 

 

 

 

“True” protein 

partitioning behaviour 

Interfacial protein 

partitioning behaviour 

Back-extraction 

Interface 

Salt-

rich 

bottom 

phase 

PEG-

rich 

top 

phase 

New 

salt 

phase 

Transfer 

of top 

phase 

Mixture of phase-

forming components 

and feedstock 

Reuse of 

PEG top 

phase 

Phase 

separation 

Phase 

separation IgG 

Impurities 



© C
OPYRIG

HT U
PM

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Schematic overview on the scope of the research. 
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Chapter 3 details the factors which contribute to the interfacial partitioning of a model 

protein (BSA) in the ATPS. An alternative method to evaluate the interfacial partition 

coefficient of protein in the ATPS was formulated.  

 

 

Chapter 4 describes the protein partitioning behaviour of BSA in the PEG-phosphate 

ATPS. The BSA serves as both the model protein for the evaluation of purification 

performance and as model impurity for the impurities present in an IgG containing 

feedstock. Relationships that correlate the protein partitioning with the ATPS parameters 

are developed and MD simulation of the partitioning of protein in an optimised ATPS is 

performed. The findings provide a new valuable insight into the underlying protein 
partitioning mechanism.   

 

 

With reference to the partitioning behaviour of the BSA studied in Chapter 4, Chapter 5 

details the influence of the ATPS parameters on the partitioning behaviour of pure IgG. 

The relationship proposed in Chapter 4 is further extended to correlate the partitioning 

behaviour of IgG with the ATPS parameters. The findings can serve as a guide for the 

recovery of various monoclonal antibodies (mAbs) from crude feedstock. 

 

 

Chapter 6 demonstrates the selective recovery of IgG from simulated protein mixture 
and crude feedstock, as well as the applicability of the proposed relationships in 

correlating the ATPS extraction of IgG from complex protein solution.  

 

 

Chapter 7 outlines the main conclusions of the studies in this work. Overall, the ATPS 

can effectively recover high value therapeutic protein, IgG with high product yield and 

purity from complex feedstock.    
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