

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A HIGH CLEARANCE ANDROID-CONTROLLED INTER-ROW WEEDER FOR RICE INTENSIFICATION SYSTEM

SAMAILA SULEIMAN

FK 2017 112

DEVELOPMENT OF A HIGH CLEARANCE ANDROID-CONTROLLED INTER-ROW WEEDER FOR RICE INTENSIFICATION SYSTEM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2017

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

DEVELOPMENT OF A HIGH CLEARANCE ANDROID-CONTROLLED INTER-ROW WEEDER FOR RICE INTENSIFICATION SYSTEM

By

SAMAILA SULEIMAN

June 2017

Chairman: Professor Wan Ishak Wan Ismail, PhDFaculty: Engineering

Research was carried out to develop a high clearance inter-row weeder machine with Android control system, to address the challenge of high crop damage associated existing inter-row weeding machines due to low ground clearance under the system of rice intensification. This research was carried out in three main stages namely: Preliminary studies to evaluation of some existing inter-row weeders, Development of a prototype high clearance Android controlled weeding machine and Evaluation of the prototype machine.

Four existing mechanical inter-row weeding machines with different design configurations used by farmers in Tanjung Karang Malaysia under system of rice intensification were selected and evaluated in terms of crop damage factor at forty days after transplanting. The result revealed that none of the four existing machines could weed up to forty days after transplanting (40DAT) due high crop damage as a result of inadequate machine ground clearance. The frequency of weeding cycles was found to increase rice yield, with 13.1tons/ha for the three cycle weeded plots, whereas a maximum of only 9 tons/ha was recorded with two cycle weeded plots.

A prototype hydraulic powered inter-row weeder having 60cm ground with Android control was developed to weed in paddy field at different stages of paddy heights under the system of rice intensification. The machine was built on Kubota S125 engine as its prime mover. A 120cm diameter cage wheel designed with lugs to aid traction, adequate adjustable track width of 25cm to 30cm to accommodate variation in inter-row distance to reduce crop damage. Other components of the machine are the main frame attached to the prime mover; five row rotary weeding assembly units with hydraulic depth control attached to the main frame. A 12V 3-2 way solenoid directional control valves mounted on MMC-01-4 Manifold block regulate flow to

and out of actuators. An android application was developed to automate the prototype machine via Android phone Bluetooth within 100m operating radius. A 2.4G wireless video module on the machines as the mobile node transmits real time video signal, thus enabling tele-operation of the machine via android phone.

The prototype machine was evaluated to establish its performance parameters at block D, Sawah Sempandan, Tanjung Karang, Selangor Malaysia. The experiment was a Split Plot Design experiment with five (5) main and sub-plots were studied. The plot size of 2.3m x 16.5m (37.95m²) each was used for the evaluation. The main plots are two levels of plant spacing of 30cm x 21cm and 30cm x 18cm, Number of weeding cycles (5 levels), two level of rotor 500 RPM & 600 RPM, Seed rate (two levels). Mechanical weeding was carried out using the high clearance inter-row weeder at 10 days interval as recommended by the system of rice intensification (SRI). Data collected on machine weeding performance were subjected to ANOVA and DUNCAN test analysis using the SAS (version 9.3) statistical software.

Result showed that the prototype machine was able to weed up to fifty days after transplanting with low percentage of crop damage of 2.54%. The mean comparison of rice vegetative height were 61.90cm and 62.18cm while yield were 7.09tons/ha and 7.01tons/ha respectively for the fourth and fifth weeding cycles. These results suggest no significant difference between the fourth and fifth weeding cycles, thus implying weeding can be stopped at the fourth cycle without significant loss in yield. The seed rate and hill spacing were also observed to significantly influence the yield positively. The single seedling plots yielded an average of 9tons/ha both for four and five weeding cycles, while the 2-3 seedling per hill plots yielded an average 5.5 tons/ha to 6 tons/ha for same level of weeding. The analysis of machine rotor rpm was shown to be significant on weeding efficiency and fuel consumption at $P \le 0.05$ level, having 92.93% and 1.29 lit/hr respectively at 600 rpm. However, a similar trend was observed in the percentage of crop damage with increase in rotor speed. The android control user interface design implementation among three groups of planters (A) 18-25 years, (B) 26-32 years and (C) above 32 years, revealed no significant different in the scores of the three age groups that participated in the evaluation. This suggests the ability of all age groups to satisfactorily operate the machine via the android control.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PEMBANGUNAN JENTERA MERUMPAI BERKELEGAAN TINGGI KAWALAN ANDROID UNTUK SISTEM INTENSIFIKASI PADI

Oleh

SAMAILA SULEIMAN

Penyelidikan telah dijalankan untuk membangunkan mesin merumpai antara baris barkelegaan tinggi dengan sistem kawalan Android, untuk menangani cabaran kerosakan tanaman yang tinggi yang dikaitkan dengan mesin merumpai antara baris yang sedia ada kerana berkelegaan rendah di bawah sistem intensifikasi padi. Penyelidikan ini dijalankan dalam tiga peringkat utama iaitu: Kajian permulaan untuk menilai beberapa mesin merumpai yang sedia ada, Pembangunan prototaip mesin merumpai berkelegaan kawalan Adroid dan Penilaian mesin prototaip.

Empat mesin merumpai antara baris yang sedia ada dengan konfigurasi reka bentuk yang berbeza yang digunakan oleh petani di Tanjung Karang Malaysia di bawah sistem intensifikasi padi telah dipilih dan dinilai dari segi faktor kerosakan tanaman pada empat puluh hari selepas pemindahan. Hasilnya menunjukkan bahawa kesemua empat mesin yang sedia ada tidak boleh merumpai sehingga empat puluh hari selepas pemindahan (40DAT) mengakibatkan kerosakan tanaman yang tinggi kerana kelegaan tanah yang tidak mencukupi. Kekerapan kitaran rumpai didapati meningkatkan hasil beras, dengan 13.1 ton / ha untuk tiga plot rumpai, sedangkan maksimum hanya 9 tan / ha dicatatkan dengan dua plot kitaran merumpai.

 \bigcirc

Prototaip mesin merumpai antara baris berkuasa hidraulik dengan kelegaan 60cm tanah dengan kawalan Android telah dibangunkan untuk merumpai di sawah padi pada tahap ketinggian yang berbeza di bawah sistem intensifikasi padi. Mesin ini di bangunkan di atas enjin Kubota S125 sebagai penggerak utamanya. Roda sangkar bergarispusat 120cm yang direka bentuk dengan 5baris perumpai berputar untuk membantu daya tarikan, lebar trek laras yang boleh disesuaikan 25cm hingga 30cm untuk menampung variasi jarak antara baris untuk mengurangkan kerosakan tanaman. Komponen lain mesin ini adalah bingkai utama yang dipasang pada

penggerak utama melalui perhimpunan penyangkut kerangka utama. Lima baris unit dengan kawalan kedalaman hidraulik dilampirkan pada bingkai utama. Injap kawalan arah solenoid 12V 3-2 yang dipasang pada blok MMC-01-4 Manifold mengawal aliran kepada dan daripda penggerak. Aplikasi android telah dibangunkan untuk automasi mesin prototaip melalui Bluetooth telefon Android dalam lingkungan radius 100m. Modul video tanpa wayar 2.4G pada mesin merumpai sebagai nod mudah alih menghantar isyarat video masa nyata, sekali gus membolehkan operasi mesin melalui telefon android.

Mesin prototaip dinilai untuk menentukan parameter prestasinya di blok D, Sawah Sempandan, Tanjung Karang, Selangor Malaysia. Eksperimen ini adalah Eksperimen rekabentuk plot tapak lima (5) plot utama dan sub-plot dipelajari. Saiz plot 2.3m x 16.5m (37.95m2) masing-masing digunakan untuk penilaian. Plot utama adalah dua peringkat jarak tumbuhan 30cm x 21cm dan 30cm x 18cm, Bilangan kitaran merumpai (5 tahap), dua tahap rotor 500 RPM & 600 RPM, Kadar biji (dua peringkat). merumpai mekanikal dilakukan dengan menggunakan mesin merumpai berkelegaan tinggi pada selang 10 hari seperti yang diperakukan oleh sistem intensifikasi padi (SRI). Data yang dikumpul pada prestasi merumpai mesin dikenakan analisis ujian ANOVA dan TURKEY menggunakan perisian statistik SAS (versi 9.3).

Hasilnya menunjukkan bahawa mesin prototaip dapat merumpai sehingga lima puluh hari selepas pemindahan dengan peratusan rendah kerosakan tanaman sebanyak 2.54%. Perbandingan purata ketinggian vegetasi padi adalah 61.90cm dan 62.18cm manakala hasil masing-masing adalah 7.09 ton / ha dan 7.01 ton / ha untuk kitaran merumpai keempat dan kelima. Keputusan ini menunjukkan tiada perbezaan yang ketara antara kitaran merumpai keempat dan kelima, dengan itu menyimpulkan merumpai boleh dihentikan pada kitaran keempat tanpa kehilangan hasil yang ketara. Kadar biji dan jarak pokok juga diperhatikan dengan ketara mempengaruhi hasilnya secara positif. Plot anak benih tunggal menghasilkan purata 9 ton / ha untuk empat dan lima pusingan merumpai, sementara plot 2-3 anak setiap plot menghasilkan ratarata 5.5 ton / ha hingga 6 ton / ha untuk tahap merumpai yang sama. Analisis rpm rotor mesin ditunjukkan dengan ketara pada kecekapan pemotongan dan penggunaan bahan api pada tahap P \leq 0.05, masing-masing mempunyai 92.93% dan 1.29 liter /jam pada 600 rpm. Walau bagaimanapun, gaya yang sama diperhatikan dalam peratusan kerosakan tanaman dengan peningkatan kelajuan rotor. Pelaksanaan reka bentuk antara muka pengguna kawalan android di antara tiga kumpulan penanam (A) 18-25 tahun, (B) 26-32 tahun dan (C) di atas 32 tahun, menunjukkan tiada perbezaan yang signifikan dalam skor tiga kumpulan umur yang menyertai penilaiannya. Ini mencadangkan keupayaan semua kumpulan umur untuk mengendalikan mesin dengan memuaskan melalui kawalan android.

ACKNOWLEDGEMENTS

I hereby express my sincere appreciation to the following organizations and individuals who made the realization of this research work reported in this thesis possible.

First, I would thank the creator 'Allah' the most high, for his favor and blessing in my life to this stage and beyond. Secondly, I would say a big thank you to the management and staff of Adamawa State Polytechnic, Yola for their support and encouragement to undertake these studies.

My sincere appreciation and gratitude to Prof. Ir. Dr. Wan Ishak Wan Ismail, the chairman of my supervisory committee for opening your doors even when not on appointment, offering valuable guidance, support and availing his research grant to fund this study. The cooperation and contributions of my co-supervisory committee members, Dr Muhammad Razif Othman and Dr Mohammad Saufi Muhammad Kassim is highly appreciated. Thank you all for giving me your ears and sharing your thoughts to see the success of this study. May you all continue to stay blessed by the Almighty Allah.

I hereby say a big thank you to the following staff of Biological and Agricultural Engineering Department, Universiti Puta Malaysia: Mr Zakaria bin Ismail of Robotic and Control Laboratory, Mr. Zainal Abidin b. Abdul Ghani of Power & Energy System Laboratory and Mr Mohd. Rashdi bin Zamri of Machine Design Laboratory for their immense and valuable assistance during the research process. Similarly, I say a big thank you to Mr Salehudeen Yahya and Mr Othman Mogek for providing the needed support and assistance during the preliminary and final evaluation of the machine at block D Sawah Sempadan, Tanjung Karang Irrigation Scheme, Malaysia.

I'm very thankful to my funding agency, the Tertiary Education Trust Fund (TETFund) base in Abuja, Nigeria for providing funding in the form of scholarship award to me and thousand others in support of higher and qualitative education. Similarly, my appreciation goes to the Research Universiti Grant of the Universiti Putra Malayasia for funding the research.

C

I hereby register my appreciation for the patience, encouragement and support of my wife, children, immediate and extended family members for enduring my absence during the period of this study. Finally to my friends Idris Isa Makama and Abubakar Garba Mshelia, thank you for taking good care of my family during my absence.

I certify that a Thesis Examination Committee has met on 21 June 2017 to conduct the final examination of Samaila Suleiman on his thesis entitled "Development of a High Clearance Android-Controlled Inter-Row Weeder for Rice Intensification System" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Desa bin Ahmad, PhD Professor Ir. Faculty of Engineering Universiti Putra Malaysia (Chairman)

Aimrun Wayayok, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Khalina binti Abdan, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ray A. Bucklin, PhD Professor University of Florida United States (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 August 2017

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Wan Ishak Wan Ismail, PhD

Professor, Ir Faculty of Engineering Universti Putra Malaysia (Chairman)

Muhammad Razif Mahdi, PhD

Senior Lecturer Faculty of Engineering Universti Putra Malaysia (Member)

Muhamad Saufi Mohd Kassim, PhD

Senior Lecturer Faculty of Engineering Universti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:	\mathbf{DN}	Date:	

Name and Matric No: Samaila Suleiman, GS38185

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of Chairman	
of Supervisory	
Committee:	Professor Dr. Wan Ishak Wan Ismail
	a constant of the second
Signature:	
Name of Member	
of Supervisory 🔼	
Committee:	Dr. Muhammad Razif Mahdi
Signature: Name of Member of Supervisory Committee:	Dr. Muhamad Saufi Mohd Kassim

TABLES OF CONTENTS

	1 "50
	i
ABSTRACI	1
ACKNOWLEDGEMENTS	III V
APPROVAL	vi
DECLARATION	Viii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF APPENDICES	xxvii
LIST OF ABBREVIATIONS	XXX
CHAPTER	
1 INTRODUCTION	1
1.1 Overview of the chapter	1
1.2 Background of the Study	1
1.3 Statement of Problem	4
1.4 Research Objective	5
1.5 Scope of the Study	5
1.6 Outline of the Thesis	6
2 LITERATURE REVIEW	7
2.1 Overview of the Chapter	7
2.2 Global rice perspective	7
2.3 Rice Production in Malaysia	13
2.3.1 Malaysia Rice Granaries	13
2.3.2 Malaysia rice production among South Ea	ast 15
Asian Nations Region	1 1 10
2.3.3 Malaysia's Current Rice Production, Supp	ply and 18
Demand	
2.3.4 The MR 219 New Rice Variety from Mal	aysia 20
2.3.4.1 Physiology of MR 219	20
2.4 Organic Rice Production and Practices	20 22
2.4.1 MITOROANIC (Malaysian Organic Scher 2.5 System of Disc Intensification (SDI)	me) 22
2.5 System of Rice Intensification (SRI)	22
2.5.1 SKI Objectives and Attribute	24
2.5.2 Deficities of SKI	24
2.5.5 Elimitations to SIT	25
2.5.5 SRL in Malaysia	30
2.5.5 Six in Malaysia 2.6 Types of Weed Control Methods in Rice	30
2.6 1 Preventive Weed Control Method	21
2.6.2 Cultural Weed Control Methods	31
2.6.3 Mechanical Weed Control	32
2.6.4 Inter-row Weeding	32
2.6.4.1 Brush Weeders	35

 \bigcirc

		2.6.4.2 Finger and Torsion Weeders	37
		2.6.4.3 Rotary Weeder	39
		2.6.4.4 Sweep Hoe Weeder	40
		2.6.4.5 Torsion Weeders	41
		2.6.5 Biological Weed Control Methods	43
	2.7	High Clearance Concept Machines in Rice Production	43
	2.8	Hydraulic Systems in Agricultural Machinery	47
		2.8.1 Hydraulic Power	48
		2.8.2 Flow Rate in Hydraulic System	49
		2.8.3 Fluid Horsepower and Toque	50
		2.8.4 Hydraulic Pump	51
		2.8.5 Hydraulic Motors	53
	2.9	Automations in Weed control.	53
	2.10	Android Development Platforms	58
	2.11	Wireless control for Agricultural Equipments	58
		2.11.1 Types of Wireless Communication	58
		2.11.2 Bluetooth Communications	58
	2.12	Tele-operation Control	59
	2.13	Mechanical properties of paddy soil and machine Mobility	59
	2.14	Factor of Safety	60
	2.15	Field Performance of Mechanical Weeders	61
		2.15.1 Weeding Efficiency	61
		2.15.2 Damage Factor (DF)	62
		2.15.3 Performance Factor (PF)	62
		2.15.4 Effective field capacity	62
3	MA	FERIALS AND METHODS	64
	3.1	An Overview of the Chapter	64
	3.2	Experimental Site	65
	3.3	Preliminary Studies on Four Inter-row Weeding machines	66
	3.4	Design and Development of High Clearance Inter-row	68
		Weeder	
		3.4.1 Technical Specifications of the Kubota S125	68
		Plus power tiller	
		3.4.2 Design Process and Considerations	69
		3.4.3 Design Parameters	69
		3.4.4 Power Requirement of the Rotor Unit	71
		3.4.5 Design of the Rotor Shaft, Cover and Frame	74
	3.5	Determination of Prototype Traction Performance	75
		Parameters	
		3.5.1 Rolling Resistance:	76
		3.5.2 Tractive efficiency:	76
		3.5.3 Drawbar power:	77
	3.6	Basic Principles of Fluid Power	77
	3.7	Development of Hydraulic System for the Prototype	78
		weeder	00
		5.7.1 Pump System Analysis	80 00
		3.7.2 Hydraulic Cylinder Sizing Selection	85 01
		5.7.5 Enguratine Cymilder analysis	ð4

3.7.5 Hydraulic Motor Mounting Design 87 3.7.6 Clutch Actuation Coupler Design 88 3.7.7 Hydraulic Tank Design 88 3.8 Design of High Clearance Weeder Components 89 3.8.1 Main Frame Design 91 3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype Machine 98 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 110 3.10.1 Determination of Differential Lock Pulling Force 183 3.10.2 Determination of Differential Lock Pulling Force 111 3.10.2 Determination of Differential Lock Pulling Force 117 3.12.5 Nather Brototype High Clearance Weeder 117 3.12.1 Careator Queeder 117		3.7.4	Hydraulic Pump Mounting Design	85
3.7.6 Clutch Actuation Coupler Design 88 3.7.7 Hydraulic Tank Design 88 3.8 Design of High Clearance Weeder Components 89 3.8.1 Main Frame Design 91 3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 98 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of spring constant for Differential 110 3.10 Development for High Clearance Weeder 112 3.11 Android Control Development for High Clearance Weeder 117 3.12.4 Field Evaluation Procedure of the High 117 3.12.5 Machine Effective Figh Clearance Weeder 117 3.12.6 Android User Interfa		3.7.5	Hydraulic Motor Mounting Design	87
3.7.7 Hydraulic Tank Design 88 3.8 Design of High Clearance Weeder Components 89 3.8.1 Main Frame Design 91 3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 96 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Design 101 3.0.1 Determination of Spring constant for Differential 110 10.2 Determination of Apring constant for Differential 111 11.1 Circuit Diagram of the Control Unit 115 3.10.2 Determination of Android Graphical User Interface 117 3.11.1 Circuit Diagram of the Control Unit 115		3.7.6	Clutch Actuation Coupler Design	88
3.8 Design of High Clearance Weeder Components 89 3.8.1 Main Frame Design 91 3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 98 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Design requirements for cage wheels 102 3.9.1 Design requirements for cage wheels 103 3.10.1 Determination of pring constant for Differential 110 3.10.2 Determination of Spring 111 3.11 Android Control Development for High Clearance Weeder 112 3.11.1 Circuit Diagram of the Control Unit 115 3.12.5 Field Evaluation of Android Graphical User Interface 117 3.12.6 Field Audation Procedure of the High 117 3.12.7 Field Machine Weeding Efficiency 119 3.12.8 Machine Weeding Efficiency 119 3.12.5 Machine Effective Field Capaci		3.7.7	Hydraulic Tank Design	88
3.8.1 Main Frame Design 91 3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 97 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 103 3.10.1 Determination of pring constant for Differential 110 Lock Return Spring 3.11 Evaluation of the Prototype High Clearance Weeder 117 3.12 Evaluation of Android Graphical User Interface 117 3.12.4 Percentage of Crop Damage (%) 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Andrib Weeding Efficiency 119 3.12.7 <td< td=""><td>3.8</td><td>Design of</td><td>of High Clearance Weeder Components</td><td>89</td></td<>	3.8	Design of	of High Clearance Weeder Components	89
3.8.2 Rotary Unit Design 94 3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 97 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Free 108 3.10.2 Determination of Spring constant for Differential Lock Pulling Free 110 Lock Return Spring 3.11 Android Control Development for High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Effective Field Capacity 120 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120		3.8.1	Main Frame Design	91
3.8.3 Rotor Cover Design 95 3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance 97 1nter-row Weeder 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of pring constant for Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential Lock Return Spring 111 3.11 Android Control Development for High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Weeding Efficiency 120 3.12.6 Android User Interface Test Procedure		3.8.2	Rotary Unit Design	94
3.8.4 Rotor Frame Design 96 3.8.5 The Assembly of the Prototype High Clearance Inter-row Weeder 97 3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of Spring constant for Differential 110 Lock Return Spring 3.11 Android Control Development for High Clearance Weeder 117 3.12.5 Field Evaluation of Android Graphical User Interface 117 3.12.4 Fereentage of Crop Damage (%) 119 3.12.5 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 </td <td></td> <td>3.8.3</td> <td>Rotor Cover Design</td> <td>95</td>		3.8.3	Rotor Cover Design	95
3.8.5 The Assembly of the Prototype High Clearance 97 Inter-row Weeder 97 3.8.6 Center of Mass for Prototype Machine 98 98 3.8.7 Manufacturing Cost of the Machine 101 99 3.9.1 Design requirements for cage wheels 102 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 101 3.10 Development of automated system for the machine 106 101 3.10.1 Determination of spring constant for Differential 106 102 3.10.2 Determination of spring constant for Differential 110 102 1.1.2 Creatin Diagram of the Control Unit 115 113 3.12 Evaluation of the Prototype High Clearance Weeder 117 11.1 3.12.1 Evaluation of Android Graphical User Interface 117 11.2.2 3.12.5 Machine Effective Field Capacity 120 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 121 3.12.9 MR219 Rice Seedling Preparation 124 121 3.12.9 MR219 Rice Seedling Preparation 124 121 3.12.1 Transplanting MR219 Seedlings on 125 128 3.		3.8.4	Rotor Frame Design	96
Inter-row Weeder 3.8.6 3.8.7 Manufacturing Cost of the Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of spring constant for Differential 102 3.10.2 Determination of spring constant for Differential 110 Lock Return Spring 111 111 110 1.1.1 Circuit Diagram of the Control Unit 115 3.1.2 Evaluation of Android Graphical User Interface 117 3.1.2.1 Evaluation of Android Graphical User Interface 117 3.1.2.4 Percentage of Crop Damage (%) 119 3.1.2.5 Machine Effective Field Capacity 120 3.1.2.6 Android User Interface Test Procedure 120 3.1.2.7 Experimental Plot 123 3.1.2.8 Land Preparation of the Experimental Plot 123 3.1.2.9 MR219 Rice Se		3.8.5	The Assembly of the Prototype High Clearance	97
3.8.6 Center of Mass for Prototype Machine 98 3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Deterdopment of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential 110 Lock Return Spring 3.11 Android Control Development for High Clearance Weeder 117 3.11.1 Circuit Diagram of the Control Unit 115 112 Evaluation of Android Graphical User Interface 117 3.12.1 Evaluation Procedure of the High 117 Clearance Weeder 119 3.12.3 Machine Weeding Efficiency 119 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.8 Land Preparation of the Experimental Plot 123 3.12.8 Land Preparation of the Experimental Plot 123 3.12.10 Machines Performance of Experimental Plot			Inter-row Weeder	
3.8.7 Manufacturing Cost of the Machine 101 3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Spring constant for Differential 100 3.10.2 Determination of spring constant for Differential 110 10.2 Determination of Spring constant for Differential 110 11.1 Circuit Diagram of the Control Unit 115 3.12.5 Field Evaluation of Android Graphical User Interface 117 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Weeding Efficiency 119 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.1 Machine Weeding of Experimental Plot 127 3.12.1 Harvesting Procedure of Experimental Plot 123		3.8.6	Center of Mass for Prototype Machine	98
3.9 Cage Wheel Design 101 3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential 110 Lock Return Spring 111 110 3.11 Circuit Diagram of the Control Unit 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Effective Field Capacity 120 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.1 Tarsplanting MR219 Seedlings on 125 Experimental Plot 3.12.10 Tansplanting MR219 Seedlings on 125 <tr< td=""><td></td><td>3.8.7</td><td>Manufacturing Cost of the Machine</td><td>101</td></tr<>		3.8.7	Manufacturing Cost of the Machine	101
3.9.1 Design requirements for cage wheels 102 3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential Lock Return Spring 111 3.11 Android Control Development for High Clearance Weeder 112 3.12.1 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 3.12.13 Harvesting Procedure of Experimental Plot 127 3.12.12	3.9	Cage W	heel Design	101
3.9.2 Cage Wheel Finite Element Stress Analysis 103 3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential 110 Lock Return Spring 111 Android Control Development for High Clearance Weeder 112 3.11.1 Circuit Diagram of the Control Unit 115 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 Clearance Weeder 112 3.12.3 Machine Weeding Efficiency 119 3.12.5 Machine Effective Field Capacity 120 120 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 3.12.10 Transplanting MR219 Seedling of Experimental Plot 127 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.11 Mechanical Weeding of Experimental Plot 127<		3.9.1	Design requirements for cage wheels	102
3.10 Development of automated system for the machine 106 3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential 110 Lock Return Spring 111 Android Control Development for High Clearance Weeder 112 3.11 Android Control Development for High Clearance Weeder 117 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 Clearance Weeder 112 112.1 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 121 3.1		3.9.2	Cage Wheel Finite Element Stress Analysis	103
3.10.1 Determination of Differential Lock Pulling Force 108 3.10.2 Determination of spring constant for Differential Lock Return Spring 110 3.11 Android Control Development for High Clearance Weeder 112 3.11.1 Circuit Diagram of the Control Unit 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.13 Harvesting Procedure of Preliminary Ex. Plot 130 Summary 133 14.	3.10	Develop	ment of automated system for the machine	106
3.10.2 Determination of spring constant for Differential Lock Return Spring 110 3.11 Android Control Development for High Clearance Weeder 3.11.1 112 3.11 Circuit Diagram of the Control Unit 115 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 115 3.12.1 Evaluation of Android Graphical User Interface 117 117 3.12.2 Field Evaluation Procedure of the High Clearance Weeder 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Weeding Efficiency 119 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.10 Transplanting MR219 Seedlings on Experimental Plot 125 3.12.10 Transplanting Mr219 Seedlings on Experimental Plot 126 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 14.1 Overview of the Chapter 133 4.1 RESULTS AND DISCUSSIONS 133		3.10.1	Determination of Differential Lock Pulling Force	108
Lock Return Spring 3.11 Android Control Development for High Clearance Weeder 112 3.11.1 Circuit Diagram of the Control Unit 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 130 Summary 133 4.1 Overview of the Chapter 133 4.1 RESULTS AND DISCUSSIONS 13		3.10.2	Determination of spring constant for Differential	110
3.11 Android Control Development for High Clearance Weeder 112 3.11.1 Circuit Diagram of the Control Unit 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.11 Mechanical Weeding of Experimental Plot 127 130 133 4.1 Overview of the Chapter 133 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135			Lock Return Spring	
3.11.1 Circuit Diagram of the Control Unit 115 3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 Clearance Weeder 119 117 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.12 Harvesting Procedure for Preliminary Ex. Plot 130 130 Summary 133 4.1 Overview of the Chapter 133 4.1 Overview of the Chapter 133 133 4.2 Result of preliminary studies on selected Inter-row Weeder used in SRI 137	3.11	Android	Control Development for High Clearance Weeder	112
3.12 Evaluation of the Prototype High Clearance Weeder 117 3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 128 128 12.12.13 130 Summary Summary 133 4.1 Overview of the Chapter 133 133 4.1 Overview of the Chapter 133 133 137 137 4.2.2 Result of preliminary studies on selected Inter-row Weeder 133 137		3.11.1	Circuit Diagram of the Control Unit	115
3.12.1 Evaluation of Android Graphical User Interface 117 3.12.2 Field Evaluation Procedure of the High 117 Clearance Weeder 119 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.12 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 130 4 RESULTS AND DISCUSSIONS 133 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Number of Tillers and Vegetative Paddy Height 137 4.2.3 Machines perfo	3.12	Evaluati	on of the Prototype High Clearance Weeder	117
3.12.2 Field Evaluation Procedure of the High Clearance Weeder 117 3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 128 130 Summary 4 RESULTS AND DISCUSSIONS 133 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Number of Tillers and Used in SRI 137 4.2.2 Machines performance on percentage of Crop 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop		3.12.1	Evaluation of Android Graphical User Interface	117
Clearance Weeder3.12.3Machine Weeding Efficiency3.12.4Percentage of Crop Damage (%)3.12.5Machine Effective Field Capacity3.12.6Android User Interface Test Procedure3.12.7Experimental Design3.12.8Land Preparation of the Experimental Plot3.12.9MR219 Rice Seedling Preparation3.12.10Transplanting MR219 Seedlings on2.12.11Mechanical Weeding of Experimental Plot3.12.12Harvesting Procedure of Experimental Plot3.12.13Harvesting Procedure for Preliminary Ex. Plot3.12.14Overview of the Chapter3.12.15Machines Performance on Weeding Efficiency4RESULTS AND DISCUSSIONS4.1Overview of the Chapter4.2Result of preliminary studies on selected Inter-row Weeder4.3Nachines Performance on Weeding Efficiency4.2.1Machines performance on Number of Tillers and Vegetative Paddy Height4.2.3Machines performance on percentage of Crop137Damage		3.12.2	Field Evaluation Procedure of the High	117
3.12.3 Machine Weeding Efficiency 119 3.12.4 Percentage of Crop Damage (%) 119 3.12.5 Machine Effective Field Capacity 120 3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedlings reparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plot 128 130 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 4.1 Overview of the Chapter 133 4.1 Overview of the Chapter 133 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and Vegetative Paddy Height 137 4.2.3 Machines performance on percentage of Crop 137 </td <td></td> <td></td> <td>Clearance Weeder</td> <td></td>			Clearance Weeder	
3.12.4Percentage of Crop Damage (%)1193.12.5Machine Effective Field Capacity1203.12.6Android User Interface Test Procedure1203.12.7Experimental Design1213.12.8Land Preparation of the Experimental Plot1233.12.9MR219 Rice Seedling Preparation1243.12.10Transplanting MR219 Seedlings on Experimental Plot1273.12.11Mechanical Weeding of Experimental Plot1273.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot Summary1304RESULTS AND DISCUSSIONS1334.1Overview of the Chapter used in SRI1334.2Result of preliminary studies on selected Inter-row Weeder Vegetative Paddy Height137 Vegetative Paddy Height4.2.3Machines performance on percentage of Crop Damage137 Damage		3.12.3	Machine Weeding Efficiency	119
3.12.5Machine Effective Field Capacity1203.12.6Android User Interface Test Procedure1203.12.7Experimental Design1213.12.8Land Preparation of the Experimental Plot1233.12.9MR219 Rice Seedling Preparation1243.12.10Transplanting MR219 Seedlings on Experimental Plot1273.12.11Mechanical Weeding of Experimental Plot1273.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot Summary1304RESULTS AND DISCUSSIONS1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder used in SRI1374.2.1Machines Performance on Weeding Efficiency 4.2.21374.2.3Machines performance on percentage of Crop Damage137		3.12.4	Percentage of Crop Damage (%)	119
3.12.6 Android User Interface Test Procedure 120 3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plots 128 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 used in SRI 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on percentage of Crop 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137		3.12.5	Machine Effective Field Capacity	120
3.12.7 Experimental Design 121 3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.9 MR219 Rice Seedling Preparation 124 3.12.10 Transplanting MR219 Seedlings on Experimental Plot 125 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plots 128 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137		3.12.6	Android User Interface Test Procedure	120
3.12.8 Land Preparation of the Experimental Plot 123 3.12.9 MR219 Rice Seedling Preparation 124 3.12.0 Transplanting MR219 Seedlings on 125 Experimental Plot 127 3.12.10 Transplanting MR219 Seedlings on 125 Superimental Plot 127 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plots 128 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 12.3 Machines performance on percentage of Crop 137		3.12.7	Experimental Design	121
3.12.9MR219 Rice Seedling Preparation1243.12.10Transplanting MR219 Seedlings on Experimental Plot1253.12.11Mechanical Weeding of Experimental Plot1273.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot130SummarySummary1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder133used in SRI4.2.1Machines Performance on Weeding Efficiency1354.2.2Machines performance on Number of Tillers and Vegetative Paddy Height1374.2.3Machines performance on percentage of Crop137		3.12.8	Land Preparation of the Experimental Plot	123
3.12.10 Transplanting MR219 Seedlings on Experimental Plot 125 3.12.11 Mechanical Weeding of Experimental Plot 127 3.12.12 Harvesting Procedure of Experimental Plots 128 3.12.13 Harvesting Procedure for Preliminary Ex. Plot 130 Summary 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and Vegetative Paddy Height 137 4.2.3 Machines performance on percentage of Crop 137		3.12.9	MR219 Rice Seedling Preparation	124
Experimental Plot3.12.11Mechanical Weeding of Experimental Plot1273.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot130SummarySummary1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder133used in SRI4.2.1Machines Performance on Weeding Efficiency1354.2.2Machines performance on Number of Tillers and Vegetative Paddy Height1374.2.3Machines performance on percentage of Crop137DamageDamage137		3.12.10	Transplanting MR219 Seedlings on	125
3.12.11Mechanical Weeding of Experimental Plot1273.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot130SummarySummary1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder1334.2.1Machines Performance on Weeding Efficiency1354.2.2Machines performance on Number of Tillers and Vegetative Paddy Height1374.2.3Machines performance on percentage of Crop137			Experimental Plot	
3.12.12Harvesting Procedure of Experimental Plots1283.12.13Harvesting Procedure for Preliminary Ex. Plot130SummarySummary1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder1334.2Machines Performance on Weeding Efficiency1354.2.1Machines performance on Number of Tillers and Vegetative Paddy Height1374.2.3Machines performance on percentage of Crop137DamageDamage137		3.12.11	Mechanical Weeding of Experimental Plot	127
3.12.13Harvesting Procedure for Preliminary Ex. Plot Summary1304 RESULTS AND DISCUSSIONS 4.1 4.2133 Overview of the Chapter used in SRI 4.2133 Result of preliminary studies on selected Inter-row Weeder used in SRI 4.2.1 4.2.1 4.2.2133 Machines Performance on Weeding Efficiency 135 4.2.2133 134 134 135 135 135 136 137 <b< td=""><td></td><td>3.12.12</td><td>Harvesting Procedure of Experimental Plots</td><td>128</td></b<>		3.12.12	Harvesting Procedure of Experimental Plots	128
Summary 4 RESULTS AND DISCUSSIONS 133 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage Damage Damage Damage Damage		3.12.13	Harvesting Procedure for Preliminary Ex. Plot	130
4RESULTS AND DISCUSSIONS1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder1334.2Result of preliminary studies on selected Inter-row Weeder133used in SRI4.2.1Machines Performance on Weeding Efficiency1354.2.2Machines performance on Number of Tillers and137Vegetative Paddy Height4.2.3Machines performance on percentage of Crop137DamageDamageDamage137			Summary	
4 RESULTS AND DISCUSSIONS 1334.1Overview of the Chapter1334.2Result of preliminary studies on selected Inter-row Weeder1334.2Result of preliminary studies on selected Inter-row Weeder133used in SRI4.2.1Machines Performance on Weeding Efficiency1354.2.2Machines performance on Number of Tillers and137Vegetative Paddy Height4.2.3Machines performance on percentage of Crop137DamageDamageDamage137		III TO AN	ID DISCUSSIONS	122
 4.1 Overview of the Chapter 133 4.2 Result of preliminary studies on selected Inter-row Weeder 133 used in SRI 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage 	4 RES	Ouerrie	ND DISCUSSIONS	133
 4.2 Result of preliminary studies on selected inter-row weeder 133 used in SRI 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage 	4.1	Dvervie Dogult o	w of the Chapter	133
 4.2.1 Machines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage 	4.2		The premimary studies on selected inter-row weeder	133
 4.2.1 Watchines Performance on Weeding Efficiency 135 4.2.2 Machines performance on Number of Tillers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage 			JNI Machinas Darformanaa on Waading Efficiency	125
 4.2.2 Watchines performance on Number of Thiers and 137 Vegetative Paddy Height 4.2.3 Machines performance on percentage of Crop 137 Damage 		4.2.1 1 2 2	Machines performance on Number of Tillers and	133
4.2.3 Machines performance on percentage of Crop 137 Damage		4.2.2	Wagetative Daddy Height	13/
Tachines performance on percentage of Clop 157		123	Machines performance on percentage of Cron	127
		т.2.Ј	Damage	137

xii

	4.2.4	Machines performance on Yield of Rice	138
	4.2.5	Summary of Results on preliminary studies	138
4.3	Result of	of Success Rate Evaluation of Android Controller	138
4.4	Result of	of Android Controller User Interface Evaluation	139
4.5	Perform	nance evaluation of Prototype High Clearance	142
	Inter-ro	w Weeder	
4.6	Main Fa	actors Effect Plots	145
4.7	Single F	Factor Effect on response variables	152
	4.7.1	Effect of number of weeding cycles on response	152
		Variables	
	4.7.2	Effect of Hill Spacing on dependents variables	155
	4.7.3	Effect of RPM on dependents variables	157
	4.7.4	Effect of Forward speed on dependents variables	159
	4.7.5	Effect of Seed rate on response variables	160
4.8	Two Fa	ctor Interaction Effect on response variables	162
	4.8.1	Effect of Number of Weeding and Hill spacing	164
		on response variable	
	4.8.2	Effect of Number of Weeding and RPM on	167
		response variables	
	4.8.3	Effect of Number of Weeding and Forward	170
		Speed on response variables	
	4.8.4	Effect of Number of Weeding and Seed Rate on	173
		response variables	
	4.8.5	Effect of Number of Hill spacing and RPM on	175
		response variables	
	4.8.6	Effect of Hill spacing and Forward speed on	177
		response Variables	
	4.8.7	Effect of Number of Hill spacing and Seed Rate	178
		on response variables	
	4.8.8	Effect of RPM and Forward speed on response	179
		Variables	
	4.8.9	Effect of RPM and Seed rate on response	181
		variables	
	4.8.10	Effect of Forward speed and Seed rate on	183
		response variables	
4.9	Three F	actor Interaction Effect on response variables	186
	4.9.1	Effect of Number of weeding, Hill spacing and	186
		RPM on response variables	
	4.9.2	Effect of Number of weeding, forward speed,	190
		Seed rate on response variables	
	4.9.3	Effect of Hill spacing, RPM and Forward speed	194
		on response variables	
	4.9.4	Effect of Hill spacing, RPM and Seed rate on	196
		response Variables	
4.10	Four Fa	ctor Interaction Effect on response Variables	199
	4.10.1	Effect of Number of weeding, Hill spacing,	199
		Forward speed and Seed rate on response	
		Variables	

		4.10.2	Effect of Hill spacing, RPM, Forward speed and Seed rate on response variables	200
	4.11	Five Fact	tor Effect on response variables	202
		4.11.1	Effect of Number of weeding, Hill spacing,	202
			RPM, Forward speed and Seed rate on Weeding	
			Efficiency	
		4.11.2	Effect of Number of weeding, Hill spacing,	203
			RPM, Forward speed and Seed rate on Effective	
			field capacity	
		4.11.3	Effect of Number of weeding, Hill spacing,	203
			RPM, Forward speed and Seed rate on Plant	
			Height	
		4.11.4	Effect of Number of weeding, Hill spacing,	203
			RPM, Forward speed and Seed rate on Fuel	
			Consumption	
		4.11.5	Effect of Number of weeding, Hill spacing,	203
			RPM, Forward speed and Seed rate on Number	
			of Tillers	
		4.11.6	Effect of Number of weeding, Hill spacing,	204
			RPM, Forward speed and Seed rate on Number	
			of Effective Tillers	
		4.11.7	Effect of Number of weeding, Hill spacing,	204
	4.10	G 1.	RPM, Forward speed and Seed rate on Yield	204
	4.12	Correlati	on Coefficient among studied responses	204
5	CON		NS AND DECOMMENDATIONS	207
3	5 1	Conclusio	NS AND RECOMMENDATIONS	207
	5.1	Recomm	endations	207
	5.2	Contribut	tion of the Research	208
	5.5	Contribu	tion of the Research	208
REFE	RENCI	ES		210
APPE	NDICE	S		230
BIOD	ATA O	- F STUDE	NT	332
LIST	OF PUI	BLICATI	ONS	333

6

LIST OF TABLES

Table		Page
2.1	Comparison of rice productivity among the various rice growing areas in the Peninsular of Malaysia	14
2.2	Rice Production, Supply and Demand of Milled rice in Malaysia.	19
2.3	Farming practices of organic and conventional rice farming	21
2.4	Principles and Practices of SRI	24
3.1	Specification of SRI Inter-row Weeders evaluated	67
3.2	Standard values of Cone Index for different soil surface condition	75
3.3	Drawbar power coefficient for Tractors and soil condition	77
3.4	Rexpower Hydraulic Pump RG-F Series Specification data sheet.	82
3.5	Mass Properties of Rotor Unit Assembly	83
3.6	Weight of Power tiller components removed.	91
3.7	Material Properties of the main frame	92
3.8	Main Frame loading and magnitude	93
3.9	Von Mises Stress Analysis of the Main Frame Assembly	94
3.10	Technical Specification of the Machine	100
3.11	Cost of manufacturing prototype high clearance inter-row weeder	101
3.12	Material Properties of Alloy Steel used for Cage Wheel	104
3.13	Cage Wheel Loading fixture	104
3.14	Mass properties of cage wheel assembly	106
3.15	Differential brake action force	109
3.16	Spring properties	111

	4.1	Result of Mechanical Inter-row Weeders performances	134
	4.2	ANOVA for performance parametes	135
	4.3	Tukey mean comparison of dependent variables	136
	4.4	Success Rate for Android Controller Evaluation.	139
	4.5		
	4.6	Grouping Information Using Tukey Method	141
	4.7	ANOVA for Mean squares single and interaction effects on response variable	143
	4.8	Tukey Mean comparison of treatment effects	144
	4.9	Tukey Mean comparison effect of number of weeding on responses	152
	4.10	Tukey mean comparison of hill spacing on responses	156
	4.11	Tukey Mean comparison of RPM on response	158
	4.12	Tukey mean comparison for effect of forward speed on responses	159
	4.13	Tukey mean comparison of effect of seed rate on response variable	160
	4.14	ANOVA for Two factor interaction effects on response variables	163
	4.15	Tukey means effect of Number of Weeding and Hill spacing onWeeding efficiency	164
	4.16	Tukey mean effect of Number of Weeding and Hill spacing on Plant height	164
	4.17	Tukey mean effect of Number of Weeding and Hill spacing on Number of Tillers	165
	4.18	Tukey mean effect of Number of Weeding and Hill spacing on Number of Effective Tillers	165
	4.19	Tukey mean effect of Number of Weeding and Hill spacing on Yield	166
	4.20	Effect of Number of Weeding and RPM on Weeding efficiency	167

	4.21	Tukey mean effect of Number of Weeding and RPM on Plant height	167
	4.22	Tukey mean effect of Number of Weeding and RPM on Fuel Consumption	168
	4.23	Tukey mean effect of Number of Weeding and RPM on Percentage of crop damage	168
	4.24	Tukey mean effect of Number of Weeding and RPM on Number of Tillers	169
	4.25	Tukey mean effect of Number of Weeding and RPM on Number of Effective Tillers	169
	4.26	Tukey mean effect of Number of Weeding and RPM on Yield	170
	4.27	Turkey mean effect of Number of Weeding and Forward Speed on EFC	170
	4.28	Tukey mean effect of Number of Weeding and Forward Speed on Plant height	171
	4.29	Tukey mean effect of Number of Weeding and Forward Speed on Fuel Consumption	171
	4.30	Tukey mean effect of Number of Weeding and Forward Speed on Number of Tillers	172
	4.31	Tukey mean effect of Number of Weeding and Forward Speed on Number of Effective Tillers	172
	4.32	Tukey mean effect of Number of Weeding and Forward Speed on Yield	173
	4.33	Tukey mean effect of Number of Weeding and Seed Rate on Plant height	173
	4.34	Effect of Number of Weeding and Seed Rate on Number of Tillers	174
	4.35	Tukey mean effect of Number of Weeding and Seed Rate on Number of Effective Tillers	174
	4.36	Tukey mean effect of Number of Weeding and Seed Rate on Yield	175
	4.37	Tukey mean effect of Number of Hill spacing and RPM on weeding efficiency	176

4.38	Tukey mean effect of Hill spacing and RPM on Fuel consumption	176
4.39	Tukey mean effect of Number of Hill spacing and RPM on percentage of Crop damage	176
4.40	Tukey mean effect of Number of Hill spacing and RPM on Yield	177
4.41	Tukey mean effect of Number of Hill spacing and Forward speed on Effective field capacity	177
4.42	Tukey mean effect of Number of Hill spacing and Forward speed on Fuel consumption	178
4.43	Tukey mean effect of Number of Hill spacing and Forward speed on Yield	178
4.44	Tukey mean effect of Number of Hill spacing and Seed Rate on Number of Tillers	178
4.45	Tukey mean effect of Number of Hill spacing and Seed Rate on Number of Effective Tillers	179
4.46	Turkey mean effect of Number of Hill spacing and Seed Rate on Yield	179
4.47	Tukey mean effect of RPM and Forward speed on weeding efficiency	180
4.48	Tukey mean effect of RPM and Forward speed on Effective field capacity	180
4.49	Tukey mean effect of RPM and Forward speed on Fuel consumption	180
4.50	Tukey mean effect of RPM and Forward speed on crop damage	181
4.51	Tukey mean effect of RPM and Seed rate on weeding efficiency	181
4.52	Tukey mean effect of RPM and Seed rate on Fuel consumption	182
4.53	Tukey mean effect of RPM and Seed rate on percentage of crop damage	182
4.54	Tukey mean effect of RPM and Seed rate on Number of Tillers	182
4.55	Tukey mean effect of RPM and Seed rate on Number of Effective Tillers	183

4.56	Tukey mean effect of RPM and Seed rate on Yield	183
4.57	Tukey mean effect of Forward speed and Seed rate on Effective field capacity	184
4.58	Tukey mean effect of Forward speed and Seed rate on plant height	184
4.59	Tukey mean effect of Forward speed and Seed rate on Fuel consumption	184
4.60	Tukey mean effect of Forward speed and Seed rate on Number of Tillers	185
4.61	Tukey men effect of Forward speed and Seed rate on Number of effective Tillers	185
4.62	Tukey mean effect of Forward speed and Seed rate on Yield	186
4.63	Tukey mean effect of Nweeding, HS, and RPM on weeding efficiency	186
4.64	Tukey mean effect of Number of weeding, Hill spacing and RPM on plant height	187
4.65	Tukey mean effect of Number of weeding, Hill spacing and RPM on Fuel consumption	188
4.66	Tukey mean effect of Number of weeding, Hill spacing and RPM on percentage of crop damage	188
4.67	Tukey mean effect of Number of weeding, Hill spacing and RPM on Number of Tillers	189
4.68	Tukey mean effect of Number of weeding, Hill spacing and RPM on Number of Effective Tillers	189
4.69	Turkey mean effect of Number of weeding, Hill spacing and RPM on Yield	190
4.70	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Effective field capacity	190
4.71	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Plant height	191
4.72	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Fuel consumption	192

	4.73	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Number of Tillers	
	4.74	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Number of Effective Tillers	193
	4.75	Tukey mean effect of Number of weeding, Forward speed, Seed rate on Yield	193
	4.76	Tukey mean effect of Hill spacing, RPM and Forward speed on Weeding efficiency	194
	4.77	Tukey mean effect of Hill spacing, RPM and Forward speed on Effective field capacity	194
	4.78	Tukey mean effect of Hill spacing, RPM and Forward speed on Fuel consumption	195
4.79		Tukey mean effect of Hill spacing, RPM and Forward speed on percentage of crop damage	195
	4.80	Turkey mean effect of Hill spacing, RPM and Forward speed on Yield	196
4.8		Tukey mean effect of Hill spacing, RPM and Seed rate on Weeding efficiency	196
2	4.82	Tukey mean effect of Hill spacing, RPM and Seed rate on Fuel consumption	197
4.83		Tukey man effect of Hill spacing, RPM and Seed rate on percentage of crop damage	197
	4.84	Tukey men effect of Hill spacing, RPM and Seed rate on Number of Tillers	198
	4.85	Tukey mean effect of Hill spacing, RPM and Seed rate on Number of Effective Tillers	198
	4.86	Tukey mean effect of Hill spacing, RPM and Seed rate on Yield	198
	4.87	Simple correlation for the studied factors and responses.	205

LIST OF FIGURES

Figure		Page
2.1	World map illustrating the centers of origins for crop plants as proposed by Vavilov (1926): 1. Mexico-Guatemala, 2. Peru- Ecuador-Bolivia, 2A. Southern Chile, 2B. Southern Brazil, 3. Mediterranean, 4. Middle East, 5. Ethiopia, 6. Central Asia, 7. Indo	8
2.2	Historical and modern map of rice distribution	8
2.3	Milled rice world production map	9
2.4	World map showing consumption, import, and export of milled rice 2009–2010	10
2.5	Current Global Paddy Production and Imports	11
2.6	Average Rice Productivity by Country 2000-2008	11
2.7	World/Asia per capita rice consumption	12
2.8	World Rice Consumption trend 1960-2011	12
2.9	Malaysian Rice Granary Map	14
2.10	Malaysia rice yield target for self-sufficiency (a) and Rice Cultivated Area (b)	16
2.11	Southeast Asia rice area and milled rice	16
2.12	Southeast Asia nations rice productions in tons per hectare 2005-2016	17
2.13	Malaysia Rice Yield Productivity Changes per Year	18
2.14	Malaysia rice yield	19
2.15	MR219 Vegetative height measurement	20
2.16	Global adoption of System of Rice Intensification	23
2.17	Cono Weeder being used on SRI plot at Putrajaya, Malaysia	26
2.18	Two-row low clearance motorised weeder for SRI	27
2.19	Five-row walk behind weeder for SRI	27

2.20	Un-weeded area left behind due to inadequate rotor width	28
2.21	Three-row weeding machine for paddy	29
2.22	Lack of ground clearance for three-row weeder	29
2.23	Crop damage path due to lack of clearance height at 30DAT	30
2.24	Inter-row Mechanical weeders for SRI	34
2.25	Inter-row Mechanical Weeding in Vegetables	35
2.26	Illustrating the working principles of vertical brush weeding	36
2.27	The Thermec B brush weeder	36
2.28	Horizontal axis Inter-row Brushing Machine	37
2.29	Tine mechanical inter-row weeder	37
2.30	Finger weeder	38
2.31	Finger weeder components and pattern.	38
2.32	Powered rotary weeder	39
2.33	Tractor Mounted Three Point Hitch Rotary Weeder	40
2.34	Sweep hoe weeder (Non-Spring)	40
2.35	Spring Loaded Sweep Weeder	41
2.36	Torsion Weeder	42
2.37	Torsion weeder sketch	42
2.38	High Clearance Sprayer for Paddy Developed at MARDI	44
2.39	High Clearance Sprayer Developed on Kubota Tractor by Paddy Farmers at Tanjung Karang, Malaysia	44
2.40	High Clearance Boom Sprayer Developed by MARDI	45
2.41	High Clearance Sprayer Build on Paddy Transplanter at MARD	45
2.42	High Clearance Track Boom on Kubota Tractor (MARDI)	46
2.43	Utility Vehicle (Sprayer Version, Iseki JK-14).	46

2.44	Hydraulic operated weeder and depth control	47
2.45	Pump Classification chart	52
2.46	External gear pump	52
2.47	Layout of sensors and components Robot Vehicle	55
2.48	Row-following control system.	56
2.49	Cultivator with weeding cleaner.	56
2.50	Schematic diagram of dual-spectra camera system.	57
2.51	Vehicle teleoperation.	59
3.1	Flow Chart of the research processes	64
3.2	Google map of experimental plot at Tanjung Karang Malaysia	65
3.3	Inter-row SRI mechanical weeders evaluated	67
3.4	Kubota RT125 Plus power tiller used as prime mover	68
3.5	Paddy parameters adopted in design	70
3.6	Weeding Claw Unit Geometry	71
3.7	Alternate arrangement of weeding claw units on octagonal rotary wheel	72
3.8	Five units of weeding Rotors	74
3.9	Hydraulic Manifold circuite showing solenoids and connection ports	78
3.10	Hydraulic Manifold with 12V solenoid directional control valves	79
3.11	Hydraulic Manifold 3D & 2D design	79
3.12	Hydraulic Circuit Diagram of the Andriod Wireless Inter-row Weeder	80
3.13	Rexpower Hydraulic Pump RG-F306 Series mounted on the Machine	82
3.14	BOSCH 18cm stroke hydraulic cylinders and Rotor unit assembly	83

3.15	The Rotor Unit Assembly	
3.16	Hydraulic Pump Mounting arrangement	86
3.17(a)	3D model of Hydraulic Motor coupler	87
3.17(b)	Hydraulic motor mounting and coupler.	87
3.18	Hydraulic Clutch actuation design	88
3.19	3D Model of the hydraulic tank	89
3.20	Fabricated Hydraulic tank design and features	89
3.21	Weighing of Soil Working Components of the Power Tiller	90
3.22	Main hitch frame	91
3.23	Main Frame dimensions and Assembly	92
3.24	Main Frame 3D Mesh	93
3.25	Rotor weeding Unit.	95
3.26	Orthographic views and dimensions of the Rotor unit	95
3.27	Rotor chain cover housing	96
3.28	Rotor frame Assembly	97
3.29	3D Design of high clearance assembly	98
3.30	Prototype high clearance inter-row weeder	99
3.31	Cage Wheel with Lugs for high clearance Weeder	103
3.32	Cage Wheel Mesh analysis	105
3.33	Cage Wheel Von Mises Stress analysis	106
3.34	Flow Chart diagram of Android Application	107
3.35	Measurement of brake actuation force on the prime mover.	108
3.36	An 8Kgf Electromagnetic Pull type Solenoid	109
3.37	Spring property test on Instron Universal Testing Machine Model 5565	111

xxiv

3.38	Coiled Springs tested	
3.39	Spring Load (N) Vs Compression Extesion (mm)	112
3.40	Block Diagram of Android Wireless Control Architecture.	113
3.41	Layout Architecture for the Wireless Control	114
3.42	Solenoid actuators for left and right differential locks	115
3.43	Circuit Diagram of the Mobile Node	116
3.44	Mobile Node Hardware	116
3.45	Mobile node hardware mounted on Prototype machine	117
3.46	Weed density data collection	118
3.47	Rotor rpm experimental measurement	118
3.48	Tank refill and rpm throttle control	119
3.49	Android User Inter face	121
3.50	Experimental factors and their levels	122
3.51	Rotavation, Leveling and Puddling operations	123
3.52	Seed treatment and seedling tray preparation	124
3.53	MR219 Seedling Nursery	125
3.54	MR219 Seedling showing inset machine transplanting	126
3.55	MR219 transplanted on 11/07/2016	126
3.56	Experimental Plot at Nine (9) days after Transplanting	127
3.57	Shows (a) Tiller counting, (b) Plant height measurement and (c) Weed sampling.	128
3.58	(a) Weeding at 40DAT and (b) Weeding at 50DAT	128
3.59	Matured rice before harvesting operation	129
3.60	Experimental yield harvesting process	130
3.61	ISEKI 695 model rice combine on experimental plot	131

	3.62	.62 The Mini GAC, moisture meter	
	4.1	Effect of Machine ground clearance and Vegetative paddy component	134
	4.2	Graphical performance of the selected machines	135
	4.3	Effect of small rotor width (five row weeder) of cut on weeding efficiency	137
	4.4	Success Rate of Wireless Connectivity	139
	4.5	Android control Application interface.	140
	4.6	Normal Probability plot of residuals	141
	4.7	Main effect plots on yield of rice	145
	4.8	Main effect plots on Number of Effective Tillers	146
	4.9	Main plot effect on Number of Plant Tillers	147
	4.10	Main plot effect on percentage of Crop damage	148
	4.11	Main plot effect on Fuel consumption	149
	4.12	Main plot effect on Plant Vegetative height	150
	4.13	Main plot effect on effective field capacity of the machine	151
	4.14	Main plot effects on weeding efficiency of the machine	151
4.15		Line plot yield with respect to number of weeding and seeding rate	154
	4.16	Line plot of Yield from N.weeding Vs Hill spacing	155
	4.17	Line plot of rice yield vs hill spacing and number of weeding	157
	4.18	Line plot of effect of seed rate on rice yield	161
	4.19	Box plot Number of weeding Vs Hill spacing on Yield	166
	4.20	Box plot of Number of weeding Vs Seed rate on Yield	175

LIST OF APPENDICES

	Appendix		Page
	A1	Technical specifications of Kubota S125 power tiller	230
	A2	Performance curve for Kubota RT125DI power tiller engine	231
	B1	Detailed Working Drawing of the High Clearance SRI Mechanical Weeder	232
	B2	2 inch Rotor Frame support bar	233
	В3	Rotor Frame Assembly	234
	B4	Main Frame Assembly	235
	В5	Crop Protection Guard	236
	B6	Main Frame Hitching Bar	237
	В7	Hydraulic Motor Coupler	238
	B8	Lower Rotor Drive Sprocket	239
	В9	Upper drive sprocket	240
	B10	Sprocket casing	241
	B11	Rotor shaft	242
	B12	Rotor Frame	243
	B13	Weeding claw	244
	B14	Rotor unit assembly	245
	B15	Lug Wheel Traction Unit	246
	B16	Rotary Unit Exploded View	247
	B17	Main Frame Hitch	248
	B18	Rear Wheel Adjuster	249
	B19	Caster Wheel carrier	250
	B20	New rear wheel assembly	251

	B21	Rear wheel section	252
	B22	Cage Wheel	253
	С	Android Program/Sketch	254
	D1	ANOVA Table: Effect of independent variables on Weeding efficiency	263
	D2	ANOVA Table: Effect of independent variables on Effective Field Capacity (EFC)	264
	D3	ANOVA Table: Effect of independent variables on Plant height	265
	D4	ANOVA Table: Effect of independent variables on Fuel Consumption	266
	D5	ANOVA Table: Effect of independent variables on Percentage of Crop Damage	267
	D6	ANOVA Table: Effect of independent variables on Number of Tillers (NT)	268
	D7	ANOVA Table: Effect of independent variables on Number of Effective Tillers (NET)	269
	D8	ANOVA Table: Effect of independent variables on Yield	270
	D9	SAS Codes and Data set	271
	D10	Table 0.1 : One-way ANOVA: score versus age groups	278
	E1	Mass property simulation of Rotor unit assembly	279
	E2	Mass properties of Main frame	280
	E3	Mass properties of Cage Wheel Assembly	281
	E4	Table 4.2 : ANOVA: Weeding efficiency versus Machines (Treatments)	282
	E5	Table : ANOVA: Paddy Height 30 DAT (cm) versus Machines (Treatments)	282
	E6	Table : ANOVA: Number of Tillers 30 DAT versus Machines (Treatments)	282
	E7	Table : ANOVA: Cd versus Machines (Treatments)	282

E8	Table : Grouping Information Cd Using Tukey Method	283
E9	Table ANOVA: Yield versus Machines (Treatments)	283
E10	Table : Mean comparison of Yield and Treatments Using Tukey Method	283
F1	Table 4.87	284
F2	Table 4.88	286
F3	Table 4.89	288
F4	Table 4.90	290
F5	Table 4.91	292
F6	Table 4.92	294
F7	Table 4.93	296
F8	Table 4.94	297
F9	Table 4.95	298
F10	Table 4.96	299
F11	Table 4.97	300
F12	Table 4.98	301
F13	Table 4.99	302
F14	Table 4.100	303
G1	Table 4.101	304
G2	Table 4.102	308
G3	Table 4.103	312
G4	Table 4.104	316
G5	Table 4.105	320
G6	Table 4.106	324
G7	Table 4.107	328

6

LIST OF ABBREVIATIONS / NOTATIONS

AISC	American Institute of Steel Construction
ASME	American Society of Mechanical Engineers
ASABE	American Society of Agricultural and Biological Engineers
MARDI	Malaysian Agricultural Research and Development Institute
CCD	Charge-coupled device
DAT	Days after Transplanting
FAO	Food and Agricultural Organization
FAOSTAT	Food and Agricultural Organization. Statistics
GM	Genetically Modified
GPS	Global Positioning System
IPM	Integrated Pest Management
IADA	Integrated Agricultural Development Area
IRRI	International Rice Research Institute
KADA	Agricultural Development Authority
MADA	Muda Agricultural Development Authority
NIR	Near Infrared
NOSC	National Organic SRI Center
OA	Organic Agriculture
RMP	Recommended Management practice
RM	Malaysian Ringgit
SRI	System of Rice Intensification
USDA	United States Department of Agriculture
UPM	Universiti Putra Malaysia

UKM	National University of Malaysia
MMS	Multimedia Messaging Service
3D	Three dimensions
Р	Pressure (N/m^2)
F	Force (N)
A	Area (m^2)
W	Work done (Nm)
P _w	Power (Nm/s)
t	Time (s)
HP	Horsepower
V	Displacement in $in^3/stroke$
A	Cross section of the bore in in^2
L	Cylinder stroke in <i>in</i> .
Q	Flow rate gal/min orliter/min
N	Speed (rpm)
Т	Torque $(N.m)$
ηρ	Overall pump efficiency (%)
Tt	Theoretical torque $(lbf - in)$
Vp	Displacement (in ³)
Fs	Factor of safety
Sal	Allowable strength
σαρ	Applied stress
η _w	Weeding Efficiency
W1	Weight of weeds before weeding (g)

	W2	Weight of weeds after weeding (g)
	DF	Damage factor
	Q1	Number of tillers in 10 m row length before weeding.
	Q2	Number of tillers damaged along 10 m row length after weeding
	Се	Effective field capacity (hah ⁻¹)
	S	Travel speed of the weeder (kmh ⁻¹)
	Wc	Width of work (m)
	Fe	Field efficiency of the weeder (%)
	Tt	Total time (h)
	Te	Useful time working (h)
	Wc	Working capacity (hha ⁻¹)
	RPM	Revolution per minute
	Awc	Area of weeding claw (cm ²)
	Aru	Number of claws on each rotor
	Edf	Effective draft force (N)
	Aru	Area of rotor unit (cm ²)
	Ss	Shear stress of soil (Ncm ⁻²)
	Pr	Power requirement for the rotor unit (Hp)
	Ks	Maximum tangential force (kg)
	Cs	Reliability factor, 1.5 for non-rocky soils and 1 for rocky soil
	Nc	Power rating of the prime mover (Hp)
	ης	Tractive efficiency value for forward rotation of rotor shafts
	ηz	Coefficient of engine power reservation between 0.7 to 0.8
	μmin	Minimum tangential speed of the rotor (m/s)

xxxii

	F	Force applied (N)
	-K	Spring constant
	x	Spring extension (cm)
	Qact	Actual pump flow rate (gpm)
	D	Displacement (cc/rev)
	V _{eff}	Volumetric efficiency (%,)
	E_p	Pump's mechanical efficiency (%)
	Ls	Lug spacing (mm)
	h	Depth of lug sinkage (mm)
	S	Minimum shear spacing (mm)
	i	Maximum slip
	r	Wheel radius (mm)
	Μ	Mobility number (dimensionless)
	CI	Cone Index (kPa)
	W	Weight on tyre (kN)
	b, d & h	Tyre width, tyre diameter & tyre section height (m)
	δ	Tyre deflection underweight W, (1m)
	ρ	Coefficient of rolling resistance
	Wv	Dynamic weight on the tyres
	Dpull	Draw bar pull (N)
	Н	Tractive force (N)
	R	Rolling resistance (N)
	Ψ	Tractive coefficient
	V_f	Dynamic weight on the front wheel (N)
	V _r	Dynamic weight on the rear wheel (N)

xxxiii

$ ho_f$	Coefficient of rolling resistance on the front wheel
W_f	Static weight on the front wheel (N)
W_r	Static weight on the rear wheel (N)
Х	Distance between the front and rear axel (m)
<i>y'</i>	Distance between the point of action of the draw bar and ground level (m)
W1	One weeding plot
W2	Two weeding plot
W3	Three weeding plot
W4	Four weeding plot
W5	Five weeding plot
R1	Rotor 500 rpm
R2	Rotor 600 rpm
FS1	Forward speed 0.6m/s speed
FS2	Forward speed 0.8m/s speed
H1	Hill spacing (30cm x 18cm)
H2	Hill spacing (30cm x 21cm)
SR1	Seed rate (1 seedling)
SR2	Seed rate (2 to 3 seedlings)
Adj.Wt	Adjusted weight (ton)
Adj.Mc	Adjusted moisture content (%)
Aact.Mc	Actual moisture content at harvest (%)
Measured Wt	Measured weight at harvest (ton)

CHAPTER 1

INTRODUCTION

1.1 Overview of the chapter

This chapter describes the background of rice production, its increasing demand and concern for sustainability, environment and health. The growing need organic rice and the challenge that impede the adoption of organic practice such as the System of Rice Intensification (SRI) are highlighted. The problems identified with mechanical weeding in SRI, the objectives set to be achieved and the scope of work is presented.

1.2 Background of the Study

Rice a semi-aquatic grass species that comprises about twenty two species of the class Oryza, out of which twenty are wild. Thus, two classes or species of rice are essentially consumed by humans: Oryza sativa (Asian rice) and Oryza glaberrima (African rice) are the main food for about three quarter of the world population and fundamental to food security since majority of the global population depends on it. This translates to approximately about three to four billion people that depend on rice daily as staple food. It's been estimated that nearly 144 million hectares of land is cultivated with rice each year, with the annual global rice production and average yield at 454.6 million tons and 4.25 ton/ha respectively (Sumithra et al., 2014; Harijono and Desa, 2014 and International Rice Research Institute (IRRI), 2012). Rice production and consumption has been expanding in the last decade outside the traditional rice producing areas, especially in western Asia and Europe (Seck et al., 2012 and Cherati et al., 2012). Food habits, demand due to population, economic needs and related issues are encouraging people to produce rice anywhere water is available (Seck et al., 2012 and SRI, 2006). Rice a consistent constituent of cuisines of Asians, producing about 95% of the global rice, and provides up to 50% of the calories of Asian nourishment (Sumithra et al., 2014; Wayayok et al., 2014; Alizadeh, 2011 and Chamhuri et al., 2014). With current global rice yield of 454.6 million tons, it is uncertain if yield increases can be attained to keep leap with the increasing food demand. To this regard, Nellemann (2009) reported that current projections reveals that 50% raise in rice production is needed by 2050 to withstand the demand, taken into considerations the losses in yield and land mass due to environmental impact. Hence, Remesan et al., (2007) reported that the existing increasing domestic and international demand for rice as food can only be achieved through enhanced productivity and intensive cropping. These views suggest that, it is very vital to improve yield through intensive agriculture, meaning better inputs and management practices.

Rice is considered the number three most important crop in Malaysia, mostly cultivated in the eight granary areas of Peninsular Malaysia (Chamhuri et al., 2014; FAO, 2014 and Rezaul et al., 2004). Rice is cultivated on about 600,000 ha in

Malaysia; two-third of which are situated in Peninsula Malaysia's eight major granary areas (Muazu et al., 2014 and Cheong, 1998). These granary areas collectively produce about seventy percent (75%) of paddy cultivated in the country. About 150,000 farmers in Malaysia solely depend on rice production as their major source of income Najim et al., (2007). With Malaysia's current population figure of about 28, 401,000 and rice consumption per capita of 110kg/year, to achieve 100% self-sufficiency from the 75% level, rice production targets 3,216,100 tons and average yield of 5.32 tons/ha. Malaysia's high annual rainfall and humidity in conjunction with its tropical temperature supports double cropping system, thus a potential to increased yield and the desired self-sufficiency. However, notwithstanding yearly government expenditure to support paddy cultivation, the mean national rice yield standing at about 3.782 tons/ha is still about 10% less than global average yield (Muazu, 2015; Man and Sami, 2009 and Murad et al., 2008). Hence, increasing rice production in Malaysia is achievable if the limited (yet productive) land resource are matched with improve cultivation organic practices such as the system of rice intensification (SRI) in conjunction with high yielding seed such as MR219 developed by the Malaysian Agricultural Research and Development Institute (MARDI), with potential output of up to 10 tons/ha. On the other hand, increasing output should be pursued along with sustainability, environment and consumers growing interest in organic food.

The system of rice intensification (SRI), an Organic agriculture (OA) practice follows the principle of circular relationship and has arisen in response to questions about health, environment and sustainability issues Jitendra & Singh, (2012), advocates against use of chemical and genetically modified (GM) materials on farms Nandwani & Nwosisi, (2016). OA shuns the use of synthetic fertilizers, herbicides, and growth controllers. In its place encourages crop rotations, natural manures, mechanical method of weed control, and biological weed/pest control to preserve soil health, provide plant nutrient needs, minimize insects and control weed. Most agricultural producer's especially organic farmer's rank weed management as their major production cost. Thus, weed management has progressively turned out to be important in organic products such as SRI due to increased market stake and drawing greater courtesy in recent years (Fumitaka et al., 2015; Young and Pierce, 2014 and Ana, 2010). The challenge in mechanical weed control is further amplified due to rising choice of farmers and consumers for safety and healthy organic products (Fumitaka et al., 2015; Willer & Kilcher, 2011). The system of rice intensification (SRI), has been reported as a potential way to save resources (water, seed) in growing organic rice with an impressive average yield of about 7tons/ha under irrigated or rain-fed conditions. However, water management and controlling weeds through mechanical weeding are the main challenges connected with rice production under SRI (Preston, 2014). Therefore, SRI researchers and farmers as well have invented and deployed scientific methods in mechanical weed control (Kwesi & Datti, 1991; Merry et al., 2015).

Mechanical weeding an important and labour intensive unit operation in organic rice is fatiguing and time consuming. In practice, quite a number of weeding cycles may be required to ensure the crops are weed free crop to prevent yield losses. Globally, rice yield loss as a result of weeds is put at 10% of estimated yield (Fletcher, 1983), between 16 to 42 % depending on crop and location (Rangasamy et al.,1993) and 75-100% loss in yield (Mahdi et al., 2005; Cordill and Grift, 2011). These reports indicate that to achieve high yield in organic rice production, good agronomic practices such as intensive weeding are required. Thus, Dale et al., (2014); Olaoye et al., (2012); Cordill and Grift, (2011) and Tony et al., (2008) opined that the only sustainable solution to weed control is high-speed mechanical weed control or the deployment of weeding robots that can replace chemical application especially in organic agriculture. On the other hand, manual weeding though effective and its labour demand are high and time consuming (Marenya,2009). It was reported that averagely, the energy requirement of manual tillage (hoe) ranges from 7 to 9.5kJ/min in comparison to 4.5 kJ/min (75 watts) the optimum limit of constant energy output of man (Silas & Husseni, 2015 and Nwuba, 1981).

Mechanical weeding implements are available based on cutting, burying and uprooting of weeds. Based on the cutting and burying of weed, mechanical weeding implements are classified into inter-row and intra-row weeders. According to Pullen & Cowel, (1997) there are six categories of inter-row mechanical weeders deployed to control weeds namely: harrow, rotary hoe, duck foot, ground wheel driven rotary hoes and brush weeders. The efficacy of mechanical weeding operations according to Ahmad, (2012) depends on factors such as plant height, rooting depth and forward speed. He further opined that more aggressive operations, generally result in higher weeding efficiency, but often increase the risk of damaging crop plant. Similarly, it was reported in Uphoff et al (2002) and Uphoff (2006) that, rotary inter-row weeding increases aeration and better root growth development. Hence, choosing and deploying appropriate method of weed control for organic and system of rice intensification has been focused on increased yield, environment and health (Bhatt, 2015). On the other hand, the System of Rice Intensification (SRI) methodologies for producing rice under irrigated or rain-fed conditions, containing set of simple principles help produce more productive and robust organic rice with high yield. The main SRI Practices are: (a) Transplanting tender seedlings of 8-15days grown in an un-flooded nursery at 25cm x 25cm inter-row and intra-row. (b) Transplant seedlings carefully at shallow depth. (c) Controlled water management (no permanent flooding) (d) Intensive mechanical weeding at 10 days interval, up to 40 days after transplanting and (e) Application of organic matter or manure. These practices according to Barison & Uphoff (2010) and Uphoff (2006) can yield a better root and vegetative development of rice under SRI as compared to Non-SRI is shown in Figure 1.0 below. Under SRI, the MR219 variety developed by Malaysian Agricultural Research and Development Institute (MARDI), records yield of up to 13 tons per hectare as reported in Melati, (2012) and Styger et al. (2011). The success story of SRI prompted research interest to make comparative studies with other known cultural practices in rice cultivation. Thus, Alfred et al., (2016) studied and analyzed yield per hectare and opined that SRI present a substantial and economic advantage with about 60% of yield gains and reduced production cost per hectare. Earlier Thura, (2010) compared the performance of SRI and Recommended Management Practice (RMP), and reported that both practices resulted in high yield gains at row and intra-row spacing of 25cm x 25cm, however the yield under SRI was 40% higher than recommended practice. The result indicates that even the

recommended Management practice (RMP) yields better at SRI recommended spacing. Despite the potential of increased yield, cost and water saving potential under SRI, a major constraint to adoption by farmers is the high labor demands for mechanical weeding and single seedling transplanting (Alam et al., 2015; Ramachandra et al., 2012b; Reddy, 2009; Tilahun et al., 2015). The high labour demand in SRI practices may be due to the intensive mechanical weeding required, principally due lack of high clearance mechanical weeders. The limitation of low ground clearance weeders was further highlighted by Cloutier et al., (2007) they reported that, the constraint to mechanical weeding is that weed control can only be achieved at early stages of crop growth because of limited machine ground clearance and machine-crop contact can lead to substantial damage to the foliage or vegetative component of the crop at advanced state of growth. Similarly, Alam et al. (2015) and. Van der et al. (2008) further reported that the efficacy of mechanical weeding procedures usually depends on often factors such as crop height and depth of the root zone. Thus, the constraint for effective SRI recommended intensive weeding in rice by farmers, is lack of a high clearance weeder that can effectively weed when rice are at advanced stage of growth (height). However, high clearance machine for weed control in rice only exist in the form of sprayers, no documented mechanical inter-row weeders was found in literature capable of weeding up to forty days after transplanting (40DAT) in paddy fields at different stages of paddy height as recommended by the system of rice intensification. With mechanical rotary weeding, weeds are incorporated into the soil; build up soil organic matter and increase microbial activity in the soil, resulting in better rice yield (Styger et al, 2011; Uphoff et al., 2006 and Barison & Uphoff, 2010). To address the need for intensive mechanical weeding requirement under SRI, research was carried out to develop a high clearance inter-row weeder with android tele-oprated control for System of Rice Intensification (SRI), specifically for MR219. The new high clearance machine will enable weeding at stages of paddy growth, reduce high labour demand due to intensive weeding requirement in SRI, reduce drudgery, promotes organic rice production and making farming an interesting business venture. The research will also add to existing body of literature on android application in the control of agricultural machinery. Entrepreneurs in agricultural machinery development will also benefit from the technology by way of patronage from SRI/organic rice farmers.

1.3 Statement of Problem

The System of Rice Intensification (SRI), an organic rice production practice identified that mechanical weeding in paddy up to four times at ten days interval, increases yield up to above 7tons/ha. Weeds control under SRI however remains a serious challenge facing famers, due mainly to the practice of intensive mechanical weeding requirement up to 40DAT (Alam, 2015; Ramachandra, 2012c; Ramachandra, 2012b and Adusumilli et al. 2015). Studies on existing inter-row weeders used in SRI revealed no available machine with enough ground clearance to weed beyond thirty days after transplanting (30DAT) with minimum percentage of crop damage. Thus, there exist limitations to adoption of inter-row weeders, due to inadequate machine ground clearance. Currently cono-weeder and manual weeding are mainly used, they are however labour intensive and low field capacity (Adusumilli et al. 2015; Upadhyaya et al., 2007; Hegazy et al., 2014; Ahmad, 2012

 \bigcirc

and Cloutier et al., 2007). Hence, the constraint faced by SRI farmers for effective adoption of recommended intensive weeding needs is the lack of a high clearance weeding machine that can effectively weed with less crop damage when rice are at advanced stage of growth (height) and its labor intensive nature.

This research work was therefore aimed at developing a high clearance Inter-row weeding machine with android control to effectively weed in paddy fields at different stages of plant growth, without the need for the operator walking behind the machine along paddy field. Distinct parameters that could affect weed control efficacy will be studied. This research will add to the existing body of literature on mechanical weed control, and the application of android application to automate agricultural machinery to attract younger generation in paddy cultivation. Rice growers' especially those adopting SRI and organic rice producers can benefit from this research through access to a high clearance weeder suitable for multiple mechanical weeding at all stages of paddy growth with less fatigue and increase yield.

1.4 Research Objective

The general objective of this research is to develop a High Clearance Inter-row Weeder for the System of Rice Intensification (SRI), specifically for the MR2119 cultivar, widely grown by paddy farmers across the eight rice granary areas in Malaysia. The specific objectives of this study are:

- 1. To evaluate the existing inter-row weeders used for weed control in SRI
- 2. To develop a hydraulic powered inter-row rotor with appropriate clearance height to weed in paddy with less crop damage.
- 3. To develop an android operated control system to automate the high clearance inter-rwo weeder.
- 4. To evaluate the performance of the prototype high clearance inter-row weeder.

1.5 Scope of the Study

This study focuses on developing a new high clearance inter-row weeder with android control for SRI, to increase the frequency of weeding cycles to five times. Preliminary studies will be conducted on four selected inter-row weeders to assess their ability to weed up to 40DAT with less crop damage. The prototype will be evaluated with MR219 cultivar. Data collection on the cultivation practices was limited to those of mechanical weeding and yield, because of their direct relation with the operations of the high clearance inter-row weeding machine. Android application user interface for tele-operation of the machine via Android Hand-phone was equally evaluated in terms of obstacle avoidance.

1.6 Outline of the Thesis

This thesis is organized into five chapters. Chapter one explains the background of the research, provides an overview on rice production most especially on organic rice and the system of rice intensification along with the objective set to be achieved in the study. Literatures related rice production particularly on non-chemical weed control in paddy and factors considered for the design; development and control of the high clearance inter-row are presented in chapter two. The methodology, materials and evaluation procedure used to achieve the set objectives are explained carefully in chapter three. Chapter four contains the comprehensive results and subsequently discussed in relation to set objectives. The conclusions drawn at the end of the study and suggestions for further research are presented in chapter five.

REFERENCES

- Abdalla, M. O; Nagarajan, T and Fakhruldin M, H. (2013). Analysis of Innovative Design of Energy Efficient Hydraulic Actuators. *International Journal of Engineering Research and Applications (IJERA)* 3(1), 001-007.
- Abdelfattah, Badr; Hanaa, El-Shazly. (2012). Molecular approaches to origin, ancestry and domestication history of crop plants: Barley and clover as examples. *Journal of Genetic Engineering and Biotechnolo, 10*(1), 1-12. doi: 10.1016/j.jgeb.2011.08.002
- Abdullah, A. Jaradat. (2015). Organic Agriculture: The Science and Practices under a Changing Climate. *Emirates Journal of Food and Agriculture*, 27(5), 1-2. doi: 10.9755/ejfa.2015.04.142
- Abeels, P. F. J; H. Auernhammer; P. Balsari; J. F. Billot; D. Blary; E. H. Bourarach; A. G. Cavalchini; W. Chancellor; B. Cheze; B. Fritz; C. E. Goering; R. Hahn; M. Havard; H. J. Heege; R. O. Hegg; J. W. Hofstee; D. R. Hunt; H. D. Kutzbach; P. S. Lammers; A. Lara Lopez; E. Manfredi; R. Oberti; E. U. Odigboh; J. Ortiz-Canavate; C. B. Parnell; R. Peters; R. Pirot; G. Quick; K. T. Renius; A. G. Rijk; M. Ruiz-Altisent; J. Sakai; B. Scheufler; J. K. Schueller; B. Shaw; L. Speelman; T. Tanaguchi; H. J. Tantau; A. A. Wanders; G. H. Weise and R. Wilkinson. (1999). CIGR Handbook of Agricultural Engineering Vol. III. B. A. S. B. Cheze (Ed.) Plant Production *Engineering* (pp. 660). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.3899&rep=r ep1&type=pdf#page=409
- Abubakar, Mohammed Shu'aibu, Ahmad, Desa, Othman, Jamarei, & Sulaiman, Shamsudin. (2010). Mechanical properties of paddy soil in relation to high clearance vehicle mobility. *Australian Journal of Basic and Applied Sciences*, 4(5), 906-913.
- Adusumilli Narayana Rao, Suhas P. Wani, Mugalodi Ramesha, and Jagdish K. Ladha. (2015). Weeds and Weed Management of Rice in Karnataka State, India. . *Weed Technology*, 29(1), 1-17.
- Ahmad, Mohd Taufik, "Development of an Automated Mechanical Intra-Row Weeder for Vegetable Crops" (2012). Unpublished Masters Thesis. Graduate Collage, Iowa State University. USA.*Theses and Dissertations*. Paper 12278.
- Ahmad, Mohd Taufik Bin. Iowa.. (2012). Development of An Automated Mechanical Inter-Row Weeder for Vegetable Crop. (M.Sc Graduate), Iowa State University,, Unpublished. (12278)
- Ahmet, A & Ali, S (2015, 25th January, 2015). Android Mobile Devices Based Automation System Paper presented at the Eigth TheHER-Science Plus International Conference Dubai, UAE.

- Aimrun, Wayayok; Umar Mohammed; Usman Bashar Zubairu and Mohd Amin Mohd Soom (2015). *Comparative Study on Seedling Performance raised by New Single Seedling Nursery Tray and Conventional System*. Paper presented at the SEA Regional Conference on the SRI 2015, Alos Setar, Malaysia.
- Alam, M.A; Tipu M.M.H, M.M.I. Chowdhury, M.H. Rubel, M. A. Razzak (2015). Effect of Weeding Regime and Row Direction on Growth and Yield of Rice in Bangladesh. *Research & Reviews: Journal of Crop Science and Technology.*, 4(2), 1-11.
- Alfred, G; Narasimba, R; Venkatanarayana, M and Barbara, H. (2016). System of Rice Intensification provides environmental and economic ggains but at the expence of social sustainability- A multidisciplinary analysis in India. *Agricultural Systems*, 143, 159-168.
- Alias, Emmy Farha, Mohamed Arshad, Fatimah, Mohd Noh, Kusairi, & Tasrif, Muhammad. (2011). Food security: Self sufficiency of rice in Malaysia.
- Alizadeh, Mohammad Reza. (2011a). Field performance evaluation of mechanical weeders in the paddy fields. *Sci. Res. And Essay*, 6(25), 427-434.
- Alizadeh, Mohammad Reza. (2011b). Field performance evaluation of mechanical weeders in the paddy fields. *Sci. Res. And Essay*, 6(25), 427-434.
- Ana, Firmino (2010). New Challenges for the Organic Farmers in India Tourism, Spices and Herbs *Journal for Geography*, 5(1), 101-113.
- Andrade, F.S; Bomfim, G.G; Torres, M; Milian.F.M; Pires,T (2011). General Purpose Bluetooth Control. . Latin America Transaction, IEEE (Revista IEEE America Latina), 9(6), 926-932.
- Ankitesh, Shrivastava and Ajay, Verma. (2014). Implementation of Improved Jigs and Fixtures in the Production of Non-Active Rotary Paddy Weeder. *Science, Technology and Arts Research Journal* 3(4), 152-157. doi: http://dx.doi.org/10.4314/star.v3i4.22
- Anon, A. (2012). Turkey organic agriculture Strategic Plan (2012-2016) (pp. 86). Istanbul, Turkey: Ministry of food, agriculture and livestock. General Directorate of crop production.
- Anyawu, A. C., Anyawu, B. O., & Anyawu, A. A. (1976). Agriculture for school certificate Africana Education Publication (Nig.) in association with FEP Int. Ltd.
- Arthur, L. Fajardo; Delfin, C. Suministrado; Engelbert, K. Peralta; Pepito, M. Bato and Eduardo, P. Paningbatan Jr. (2014). Force and puddling characteristics of the tilling wheel of float-assisted tillers at different lug angle and shaft speed. Soil & Tillage Research 140, 118-125.

- American Society of Agricultural Engineers (ASAE), (1998). Soil Cone Penetrometer. ASAE Standard: ASAE S1313.1
- ASAE standards. (2004). Terminology and Definitions for Agricultural Tillage Implements. (Vol. ASAE S414.1 FEB04). USA: ASABE.
- Awadhwal, N.K., & Singh, C.P (1985). Dynamic Behaviour of Wet Soil and Tillage and Traction in Wet Land Agricultural Mechanization in Asia, Africa and Latin America, 16(2), 11-20.
- Bainer, R., Barger, E. L. , & Kepner, R. A (1978). Principles of Farm Machinery (3 ed.). Westport, Connecticus: Avi publication Co. Inc. .
- Barberi, Poal (2003). Weed Management for Developing Countries. *Plant Production and Protection* (Vol. 1): FAO.
- Barison, Joeli, & Uphoff, Norman. (2010). Rice yield and its relation to root growth and nutrient-use efficiency under SRI and conventional cultivation: an evaluation in Madagascar. *Paddy and Water Environment*, 9(1), 65-78. doi: 10.1007/s10333-010-0229-z
- Begum, M; Juraimi, A.S;, Azmi, M; RAJAN, A.1 and Syed-Omar, S.R. (2005). Weed diversity OF Rice Fields In Four Districts of Muda RICE Granary Area, North-West PENINSULAR Malaysia. *Malays. Appl. Biol.*, 34(2), 31-41.
- Bennedsen, B.S and Rasmussen, P. (2001). *Plant spectra classification by neutral networks*. Paper presented at the 3rd European PA conference, Montpellier, France.
- Benson, Anneke Fermont; Todd. (2011). Estimating Yield of Food Crops Grown by Smallholder Farmers (D. S. a. G. Division, Trans.) *IFPRI Discussion Paper* (pp. 1-68): International Food Policy Research Institute (IFPRI).
- Bhatt, K.N. (2015). System of Rice Intensification for Increased Productivity and Ecological Security: A Report. *Rice Research*, *3*(4), 147. doi: :10.4172/2375-4338.1000147
- Bini, Sam. (2015). Ergonomic Evaluation of Cono Weeder for Wet Land Paddy *International Journal of Science and Research*, 6(4).
- Blackmore, B. S., Have, H., and Fountas, S (2001, 11-14 September 2001). *A* specification of behavioural requirements for an autonomous tractor. Paper presented at the 6th International Symposium on Fruit, Nut and Vegetable Production Engineering conference, Potsdam Bornim, Germany.
- Bond, W, & Grundy, A.C (2001). Non-chemical weed management in organic farming systems. . *Weed research*, 41(5), 383-405.

- Bond, W, Turner, RJ, & Grundy, AC. (2003). A review of non-chemical weed management. HDRA, the Organic Organisation, Ryton Organic Gardens, Coventry, UK.
- Brain, G.G (2000). In Starkey P and Simalinga (Eds) 2000. Animal Power for Weed Control. A Resource Book for Animal Traction Network for Eeaster and Southern Africa (ATNESA).
- Chamhuri Siwar, Nor Diana Mohd Idris, Muhammad Yasar and Golam Morshed. (2014). Issues and Challenges Facing Rice Production and Food Security in the Granary Areas in the East Coast Economic Region (ECER), Malaysia. *Research Journal of Applied Sciences, Engineering and Technology* 7(4), 711-722.
- Chan, C., & Cho, M (2012). Malaysia Worksop on Food Security: *Country Report*: Asia Pacific Economic Cooperation (APEC).
- Chancellor, William J (1981). Substituting information for energy in agriculture Transactions of the ASAE [American Society of Agricultural Engineers], 24.
- Chandler, JM, & Cooke, FT. . (1992). Economics of cotton losses caused by weeds. *Weeds of Cotton: Characterization and Control* (pp. 85-116). Memphis: The Cotton Foundation.
- Cheong, Ah Wah. (1998). Direct Seeded Rice in Malaysia: A Sucess Story. (Vol. 1, pp. 1-37). FAO Regional Office for Asia Pacific, Bangkok: Asia-Pacific Association of Agricultural Research Institutions.
- Cherati, Fazlollah Eskandari, Kamyab, Soheila, & Shekofteh, Mohammad. (2012). The Evaluation and the Comparison of the Effect of Mechanical Weeding Systems on Rice Weed. *Research Journal of Applied Sciences*, 4.

CIIFAD. (2014a). SRI in Malaysia. USA: Connel University.

- Cloutier, D.C; van der Weide, R.Y; Peruzzi, A & Leblanc, M.L (2007). Mechanical Weed Management. *Non-chemical Weed Management*, 11(1).
- Cooke, R. J (1988). Biological control and holistic plant-health care in agriculture. *American Journal of Alternative Agriculture 3 (2/3), 51-62., 3(2/3), 51-62.*
- Cordill, C; Grift, T.E. . (2011). Using and Testing of an intra-row Mechanical Weeding Machine for Corn. *Biosystems Engineering*, 110, 247-252.
- Dale, L. Shaner; Hugh, J. Beckie. (2014). The future for weed control and technology. *Pest Management Science*, 70(9), 1329–1339. doi: 10.1002/ps.3706
- Datta, P and Ojha, T.P. . (1972). Design of Wheel Parameters for Puddle Soils. J. *Agril. Engg.*, 7(3).

- DAO (2007) Standard Malaysian Organic Scheme (SOM). ISBN 978-983-047-1266
- DOA. (2002). Rice Check and Manual Teknologi Tanaman Padi. Malaysia: DOA, Malaysia.
- Dorian, Q.F; Yo-Ichiro Sato; Cristina Castillo; Ling Qin; Alison R. Weisskopf; Eleanor J. Kingwell-Banham; Jixiang Song; Sung-Mo Ahn & Jacob van Etten. (2010). Consilience of genetics and archaeobotany in the entangledhistory of rice. *Archaeol Anthropol Sci* doi: 10.1007/s12520-010-0035-y
- Durfee, W, & Sun, Z. (2009b). *Fluid Power System Dynamics* A National Science Foundation Engineering Research Center.,
- Durfee, W, & Sun, Z... (2009a). Fluid power system dynamics.
- Dwyer M.J., Evernden, D.W and McAllister, M. (1976). Handbook of Agricultural Tyres Performance, *Report No. 18 National Institute of Agricultural Engineering, Silsoe, UK.*
- Ergönül, B and Ergönül P.G. (2015). Consumer motivation for organic food consumption. *Emirates Journal of Food and Agriculture.*, 27(5), 416-422. doi: 10.9755/ejfa.2015.04.034
- Ernesto, O. Brown; Beatriz del Rosario; Clarita P. Aganon. (2015). The role of market intermediaries in promoting organic rice production (pp. 1-20). Nueva Ecija, Philippines: FAO.
- FAO. (1995). World Rice Information (Vol. 1). Rome, Italy: FAO.
- FAO. (2014). The Multiple Goods and Services of Asian Rice Production Systems. In C. Campanhola (Ed.), *Plant Production and Protection Division* (pp. 45). Rome: Food and Agriultural Organisation of the United Nations.
- FAO. (2015). Rice Market Monitor (Vol. VXIII). New York: Food and Agricultural Organisation Available at :http://www.fao.org/economic/est/publications/ric publications/rice-market-monitor-rmm/en/
- Farooq, M; Basra, S.M.A; Lafeez, K. (2006). Seed Invigoration by Osmo Hardning in fine and coarse rice. *Seed Science Technology*, *34*, 395-410.
- Fletcher, W.W (1983). *Recent Advances in Weed Science*. Surrey UK: The Gresham Press.
- Francisco, G.M; Julio, G; Alejandro, C; Antonio, Z-S; Felipe, M; José, L. D; Francisco, M-A. (2013). A monitoring system for intensive agriculture based on mesh networks and the android system. *Computers and Electronics in Agriculture*, 99 14-20.

- Fumitaka, Shiotsu.; Nobuo Sakagami.; Naomi Asagi.; Dewa Ngurah Suprapta.; Nurwulan Agustiani.; Youji Nitta.; and Masakazu Komatsuzaki (2015). Initiation and Dissemination of Organic Rice Cultivation in Bali, Indonesia Sustainability 7, 5171-5181. doi: 10.3390 Rajendran.K and Ganesa R.V. (2015). Effect of system of rice intensification on microbial population, nutrient status, growth and yield of rice. International Journal of Agricultural Sciences. 2(1).24-29
- Griepentrog, H.W., Norremark, M and Nielsen, J. 2006. Autonomous intra-row rotor weeding based on GPS. Proceedings: CIGR World Congress Agricultural Engineering for a Better World, Bonn, Germany, 3-4 September
- Gill, W.R. and G.E. Vanden Berg (1967). Soil Dynamics in tillage and traction Washington D.C., US GPO.
- Glover, D. (2011). A System Designed for Rice? Materiality and the Invention/Discovery of the System of Rice Intensification. *East Asian Science, Technology and Society, 5*(2), 217-237. doi: 10.1215/18752160-1273080
- Gosh.R.K; Sentharagai.S and Shamurailahtpam.D (2014). SRI-A methodology for substantially raising rice productivity by using farmers' improved thinking and practice with farmers' available resources. *Journal of Crop and Weed* 10(2). 4-9
- Goldsmith, Andrea. (2004). Wireless Communications
- Greg, Brown. (2002). Steel in the Field, a Famers Guide to Weed Management Tools. USA: USDA.
- Gupta, C P (1981). *Report on weeders* Manila, Philippines.: Regional Network for Agricultural Machinery.
- Hakim, M.A, Juraimi, Abdul Shukor, Hanafi, MMtern Selamat, Ahmad, Ismail, Mohd Razi, & Anwar, M.P (2011a). Journal of Food, Agriculture & Environment. Weed flora in rice field of Tanjong Karang coastal area in Malaysia., 9(1), 694-699.
- Hakim, M.A, Juraimi, Abdul Shukor, Hanafi, MMtern Selamat, Ahmad, Ismail, Mohd Razi, & Anwar, M.P (2011b). Weed flora in rice field of Tanjong Karang coastal area in Malaysia. *Journal of Food, Agriculture & Environment.*, 9(1), 694-699.
- Hameed, K. A, & Jaber, F. A. (2007). System of Rice Intensification in IRAQ during 2007.: Al-Mishkhab Rice Research Station (MRRS) Najaf-Iraq.
- Harijono, D; A, Desa. (2014). Opportunities and Challenges for Climate-Smart Agriculture. *Advances in Energy and Environmental Science and Engineering*, 166-177.

- Hassan, D and Upasani, R. R. (2015). Effect of crop establishment and weed control methods on productivity of rice (Oryza sativa L.) *Journal Crop and Weed*, *11*, 228-230.
- Heap, I. (2011). International survey of herbicide resistant weeds. .
- Hegazy, R. A; I. A. Abdelmotaleb; Z. M. Imara; M. H. Okasha. (2014). Development and Evaluation of SmallScale Power Weeder. *Misr J. Ag. Eng*, 31 (3), 703-728.
- Hiroshi Okamoto, Yumiko Suzuki, and Noboru Noguchi (2014). Field Applications of Automated Weed Control: Asia. In Stephen L. Young · Francis J. Pierce. Automation: The Future of Weed Control in Cropping Systems. Springer.189-201
- Hossein, M. (2013). A Technical review on navigation systems of agricultural autonomous off-road vehicles. *Journal of Terramechanics*, 50, 211-232.
- Huddleston, Harold F. (1978). Sampling Techniques for measuring and Forecasting Crop Yields ESCS No. 09, H. F. Huddleston (Ed.) (pp. 1-100). Retrieved from file:///C:/Users/user/Desktop/Sampling%20Techniques%20for%20Measuri ng%20and%20Forecasting%20Crop%20Yields%20(Pages%201-100).pdf
- Hunt, T, & Vaughan. (1996). The hydraulic handbook (9th ed.): Elsevier Science LTD.
- Hunt, T, & Vaughan, N (1995). The hydraulic handbook (9 ed.): Elsevier Science LTD.
- IRRI. (2006). Bringing Hope, Improving Lives-Strategies. Plan 2007–2015 (pp. 61). Los Banos, Philippines: International Rice Research Institute.
- IRRI. (2012). Hand Book of Weed Control. Phillipines: IRRI.
- J.Hellenvang, Kenneth. (1995). Agricultural Extension (905) Revised. In F. North Dakota State University (Ed.), (Vol. 905, pp. 1-8). Fargo: North Dakota State University, Fargo.
- Jacob, D & Syriac, E. K. . (2001). Performance of Transplanted Scented Rice (Oryza Sativa L.) Under Different Spacing and Weed Management Regimes in Southern Kerala. J.Tropical Agric, 43(12), 71-73.
- James, A. Sullivan (Ed.). (1989). *Fluid Power Theory and Applications* (3 ed.). New Jessey: Prentice Hall, Englewood Cliffs.

- Jemma Gornall, Richard Betts, Eleanor Burke, Robin Clark, Joanne Camp, Kate Willett and Andrew Wiltshire. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. *Phil. Trans. R. Soc. B*, 2973–2989. doi: 10.1098/rstb.2010.0158
- Jitendra, Pandey and Ashima, Singh (2012). Opportunities And Constraints in Organic Farming: An Indian Perspective. *Journal of Scientific Research 56* 47-72.
- Jones, Fred. R and Aldred, William. H (1980). (Eds). *Farm Power and Tractors*. Fift Ed. McGrawHill.
- Jones, P.A, Blair, A, M, , & Orson, J (1995). *The effects of different types of physical damage to four weed species*. Paper presented at the 1995 Brighton Crop Protection Conference on Weeds, Brighton, UK.
- Jung, Chung-Gil, Park, Jong-Yoon, Kim, Seong-Joon, & Park, Geun-Ae. (2013). The SRI (system of rice intensification) water management evaluation by SWAPP (SWAT–APEX Program) modeling in an agricultural watershed of South Korea. *Paddy and Water Environment*, 12(1), 251-261. doi: 10.1007/s10333-013-0367-1
- Kaizu, Yutaka, & Imou, Kenji (2008). A dual-spectral camera system for paddy rice seedling row detection *Computers and Electronics in Agriculture*, 63(1), 49-56.
- Karhale, S. S; Lambe, S.P; Neharkar, P. S. (2015). Mechanical Weed Control by Conoweeder in SRI Method Of Paddy Cultivation. *International Journal of Advance Research In Science And Engineering*, 4(02), 744-752.
- Karlen, D.L, Varvel, G.E., Bullock, D.G., & Cruse, R.M (1994). Crop rotations for the 21th century. *Advances in Agronomy 53*, 1-45.
- Karma, Lhendup (2008). System of Rice Intensification (SRI) Method of Rice Cultivation: How to Produce More Rice with Less Input.
- Kassam, Amir, Stoop, Willem, & Uphoff, Norman. (2011). Review of SRI modifications in rice crop and water management and research issues for making further improvements in agricultural and water productivity. *Paddy and Water Environment*, 9(1), 163-180.
- Kouwenhoven, J. K (1997). Intra-row mechanical weed control possibilities and problems. *Soil & Tillage Research 41*(1), 87-104.
- Kurma, R.S and Gupta, J.K, (2005). A Text Book of Machine Design. Eurasia Publishing House (PVT) LTD. Ram Nagar, New Delhi-110-055

- Kumar, A and Baruah, D.C. (2013). Wetland traction research: Present status and future need. . *International Journal of Agricultural Engineering*, 6(1), 216-220. .
- Kumar, A and Baruah, D.C. (2013). Wetland traction research: Present status and future need. *International Journal of Agricultural Engineering*, 6(1), 216-220.
- Kumar, P & Bhatia, J.S (2013). Design and Development of Android Application based Wireless Toy car International Journal of Computer Applications, 73(19), 32-35.
- Kwesi, A.N, & De Datti, S.K. (1991). A Handbook of weed control in rice. Phillipines: IRRI.
- Lampkin, N. (1994). Organic Farming (1 Ed.). pswick: Farming Press.
- Lampkin, N (1990). Organic Farming. Ipswich, UK.: Farming Press Books.
- Lee, T.S; Haque, M.A and Najim, .M.M.M. (2004). Scheduling the Cropping Calender in Wet-seeded Rice Schemes in Malayasia. Agric. Water Manage, 71(1), 71-84.
- Lichiardopo, S. (2007). A Survey on Teleoperation. Eindhoven: Technische Universiteit Eindhoven, Department Mechanical Engineering, Dynamics and Control Group.
- Liquid flow (2016). GearPump Basics. Available http://www.liquiflo.com/v2/files/pdf/Gear Pump Basics.pdf.
- Macmillan, R.H (2002). The Mechanics of tractor-implement performance, theory and worked examples. Available: http://www.eprints.unimelb.edu.au
- M.A. Alam, M.M.H. Tipu, M.M.I. Chowdhury, M.H. Rubel, M. A. Razzak (2015).
 Effect of Weeding Regime and Row Direction on Growth and Yield of Rice in Bangladesh. *Research & Reviews: Journal of Crop Science and Technology.*, 4(2), 1-11.
- Madusanka, H.K.S. (2011). Design and Development of Paddy Transplanting Mechanism. (Bachelor of Science), University of Peradeniya Sri Lanka
- Mahdi, M.A, Dadari, S.A, Mahmud, M, & Babaji, B.A. (2005). Effects of Preemergence herbicides on yield components of rice. *Journal of Food*, *Agriculture & Environment*, 4(2), 164-167.

- Majid Rashidi, Iman Najjarzadeh, Babak Jaberinasab, Seyyed Mohammad Emadi and Mahmood Fayyazi. (2013). Effect of Soil Moisture Content, Tillage Depth and Operation Speed on Draft Force of Moldboard Plow. *Middle-East Journal of Scientific Research 16*(2), 245-249. doi: 10.5829/idosi.mejsr.2013.16.02.11675
- Man, N and Sami, I.S. (2009). Off-farm Employment Participation Among Paddy Farmers in the MUDA Agricultural Development Authorithy and Kemasin Semerak Granary Areas of Malaysia. Asia-Pacific Development Journal, 16, 141-153.
- Marenya, Moses Okoth. (2009). Performance characteristics of a deep tilling rotavator. (PhD), University of Pretoria., Sauth Africa.
- Melander, B. (1997). Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. *Journal of agricultural engineering research*, 68(1), 39-50.
- Melander, B (2000). *Mechanical weed control in transplanted sugar beet*. Paper presented at the Proc. of the 4th Workshop of the EWRS Working Group on Physical and Cultural Weed Control,, Elspeet The Netherlands.
- Melati, Mohd Ariff (2012). Hybrid Rice An Effort To Reduce Imports. Malaysia: Malaysia Agricultural Research and Development Institute (MARDI).
- Merry, Antralinaa; Ida Nur Istinab, YuyunYuwariahc, Tualar Simarmatac. (2015). Effect of Difference Weed Control Methods to Yield of Lowland Rice in the SOBARI. *Procedia Food Science*, *3*, 323–329.
- Metha, Wanapata; Anusorn Cherdthonga, Kampanat Phesatchaa, Sungchhang Kangb. (2015). Dietary sources and their effects on animal production and environmental sustainability. *Animal Nutrition*, 1(3), 96-103.
- Michael, Ryals Fleming. (2003). *Teleoperated Control of Hydraulic Equipment for Hazardous Material Handling* (Masters of Science), Virginia Polytechnic Institute and State University, Virginia.
- Mohammed, Umar; Aimrun Wayayoka; Mohd Amin ;Mohd Soom and Khalina Abdan. (2015). Performance Of UMAR-SRIMAT on Soil Water Conservation And Weed Control in System of RICE Intensification. Jurnal Teknologi (Sciences & Engineering) 76:15 (2015) 83–88, 76(15), 83-88.
- Mohd Hudzari Razali, Rizuwan Yahaya, Abdul Ssomad M.Abd Halim and Syazili Roslan. (2013). Study of usefulness of rotary tiller in agricultural practice. *Angewandten Biologie Forschung*. 1 (2): 40-45
- Monika, Phogat and Anshul, Anand. (2014). An Introduction to Wireless Communication. International Journal of Engineering Trends and Technology (IJETT) 12(1).

- Muazu, A., Yahya, A., Ishak, W. I. W., & Khairunniza-Bejo, S. (2014). Yield Prediction Modeling Using Data Envelopment Analysis Methodology for Direct Seeding, Wetland Paddy Cultivation. Agriculture and Agricultural Science Procedia, 2(0), 181-190. doi: http://dx.doi.org/10.1016/j.aaspro.2014.11.026
- Muhammad Hameed Siddiqi; Irshad Ahmad and Suziah Bt Sulaiman (2009). Weed Recognition Based on Erosion and Dilation Segmentation Algorithm. International Conference on Education Technology and Computer
- Muazu, Aliyu. (2015). Modeling for Energy Optimization in Wetland Paddy Production in North-West Selangor, Malaysia. (Ph.D), Universiti Putra Malaysia, Malaysia.
- Murad , M.W.; Mustahp, N.H.N and Siwar, C. (2008). Review of Malaysian Agricultural Policies with Regards to Sustainability. *American Journal of Environmental Sciences*, 4, 608-614.
- Mursalin, Md and Mesbah-Ul-Awal, Md. (2014). *Toward Classification of Weeds through Ditigal Imaginng*. Fouth International Conference on Advanced Computing and Communication Technologies.
- Nadeem Akbar, Ehsanullah, Khawar Jabran, Muhammad Amjad Ali. (2011). Weed management improves yield and quality of direct seeded rice. *Australian journal of Crop Science*, 5(6), 688-694.
- Najim, M.M.M., Lee, T.S., Haque, M. A., & Esham, M. . (2007). Sustainability of Rice Production: A Malaysian Perspective.
- Namara, R., Bossio, D., Weligamage, P. and Herath, I. (2008). The practice and effects of the System of Rice Intensification (SRI) in Sri Lanka. . *Quarterly Journal of International Agriculture* 47(1), 2-23.
- Nandwani, D and Nwosisi. (2016). Organic Farming for Sustainable Agricultre. Switzerland: Springer International Publishing.
- Nellemann, C., MacDevette, M., Manders, T., Eickhout, B., Svihus, B., Prins, A. G., Kaltenborn, B. P. . (2009). *The environmental food crisis – The environment's role in averting future food crises* C. N. E. i. chief), M. MacDevette, T. Manders, B. Eickhout, B. Svihus, A. G. Prins & B. P. Kaltenborn (Eds.), *A UNEP Rapid Response Asessment*
- Nguu, V. N In The Near Future–A Summary Report. In V. N. Nguu (2012). Sustainable Intensification Of Rice Production For Food Security In I. R. Commission. (Ed.). FAO.
- NL Agency. (2013). Rice straw and Wheat straw. Potential feedstocks for the Biobased Economy (pp. 1-31). The Netherlands: Wageningen UR, Food & Biobased Research.

- Noorulsadiqin, Azbiya Yaacob; Zakirah, Othman and Fadhilah, Mat Yamin. (2015). SRI Readiness among Rural Farmers. Paper presented at the SEA Regional Conference on the SRI 2015, Alos Setar, Malaysia.
- Nwuba, E.I.U. (1981). *Human Energy Demand of Selected Agricultural Hand Tools*. (M. Eng.), Ahmadu Bello University, Zaria, , Unpublished.
- OECD, Organisation for Economic Co-operation and Development. (1999). Consensus Document on the Biology of Oryza Sativa (Rice) *Harmonization* of Regulatory Oversight in Biotechnology (pp. 1-52).
- Oedekoven, Matt. (2006). Biological weed control. . Rangelands Archives, 21(6), 17-18., 21(5), 17-18.
- Olaiya, Folorunsho and Mariam, Biola Bello. (2013). Development of Tool for Managing Bluetooth Data Transfer Logs in Mobile Platform. International Journal of Advanced Research in Computer Science and Software Engineering, 3(3), 23-28.
- Olaoye, J. O; Samuel, O. D. and Adekanye, T. A. (2012). Performance Evaluation of an Indigenous Rotary Power Weeder. *Energy and Environmental EngineeringJournal*, 1(2).
- Okamoto H, Hamada K, Kataoka T, Terawaki M, Hata S (2002) Automatic guidance system with crop row sensor. In: Proceedings of automation technology for off-road equipment, Chicago, 26–27 July 2002, pp 307–316
- Pandey, G (1994). Development and evaluation of A Manually operated powered weeder. (M.Sc), Indian Agricultural Research Institute, New Delhi., New Delhi.
- Pasquin, E; Lafarge, T; Tubana, B. (2008). Transplanting young seedlings in irrigated rice fields: early and high tillering production enhance grain. *Field Crop Research*, 105, 141-155.
- Pebrian, Darius El. (2001). Design, Development of a Trailed type Transplanter for Oil Palm Seedling. (MSc Unpublished), UniversitI Putra Malaysia, UPM
- Piyush Pradhan , Ajay Verma , Rajesh Naik and Prabhat Guru (2015). Traction and drawbar performance characteristics of power tiller attached cage wheel. BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics. Vol.3. P38-49
- Piyush, Mudgal; S. Kaushik Ranganathan; Dhruv Rajan Saxena. (2014). Overview of Wireless Communication. Advanced Research in Electrical and Electronic Engineering 1 (2), 56-59.

- Preston, Sullivan. (2014). Organic Rice Production. In P. Williams (Ed.), *NCAT Agriculture Specialist* (Vol. 143): National Center for Appropriate Technology, (NCAT).
- Pullen, D.W.M, & Cowell, PA. . (1997). An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. *Journal of Agricultural Engineering Research*, 67(1), 27-34.
- Rexpower (2016). Pump Catalogue. Available :http://www.rexpower.com/2010-04/rgb.pdf. Accessed 08/09/2016
- Remesan.R, M.S. Roopesh, N. Remya and P.S. Preman. (2007). Wet Land Paddy Weeding - A Comprehensive Comparative Study from South India. *Agricultural Engineering International: the CIGR Ejournal., ix.*
- Rabu, M. R and Shah, M.D.M. (2013). Food and Livelihood Security of the Malaysian Paddy Farmer. *Economic and Technology Management Review*, 8, 59-69.
- Ramachandra C, Shivakumar N, Rajanna MP, Kalyanamurthy KN. (2012b). Effect of age of seedlings and weed management under SRI on yield of rice. *Indian J Weed Sci*, 44(1), 50-52.
- Rangasamy, K; Balasubramanium, M & Swaminathan, K.R. (1993). Evaluation of power weeder performance. Agricultural Mechanisation in Asia, Africa and Latin America, 24 (4), 16-18.
- Reddy, P. Bala, H. S.Sreenivasulu and C.Manohar (2009). Direct Seeding with Drum Seeder – Future Prospects. RASS – Acharya Ranga Krishi Vigyan Kendra, Tirupati, A.P.
- Reiter, Gil. (2014). Wireless connectivity for the Internet of Things *White Paper*. Dalas Texal: Texas Instruments.
- Remesan, R, M.S. Roopesh; N. Remya and P.S. Preman (2007). Wet Land Paddy Weeding a Comprehensive Comparative Study from South India. *Agricultural Engineering International: the CIGR Ejournal., IX*, 1-21.
- Remesan, R.; Roopesh, M.S.; Remya, N.; Preman, P.S. (2007). Wet land paddy weeding-A comprehensive comparative study from south India. *CIGR E-Journal*, 9.

Reto, Meier. (2012). Professional Android 4 Application Development.

Reza, Tabatabaekoloor Hasan; Yousefnia, pasha; Jafar Hashemi. (2012). Comparison of efficiencies and costs of different weed control methods in paddy production in Iran. *Int J Agric & Biol Eng*, 5(2).

- Rezaul, S.M.K; Azmi B. M and Ismail B. S. (2004). Weed problems and their management in rice fields of Malaysia: An overview. Weed Biology and Management, 4, 177–186
- Roitner-Schobesberger, B., I. Darnhofer, S. Somsook and C. R. Vogl. (2008). Consumer perceptions of organic foods in Bangkok, Thaliand. *Food Policy*, 33, 112-121.
- Saliyah K, Riza S, Mohd Fahmi M. A, Suziyanti M, Anton S.P. (2011). *Utilization of Mobile Technology for Mobile Robot Controller*. Paper presented at the Langkawi, Malaysia, IEEE Conference on Open Systems (ICOS2011).
- Salokhe, V.M; Manzoor, S and Gee-Clough, D. . (1990). Pull and lift forces acting on single cage wheel lugs. *J.Terramechanics* 27(1), 25-39.
- Samarendu, Mohanty. (2013). Trends in Global Rice Consumption *Rice today* (pp. 1-2). Phillipines: Sciences Division IRRI.
- Samy, J; Xaviar, A and Rahman, A.B. (1997). Organic Rice Farming Systems (studies on the effect of organic matter on rice yield, soil properties and environment): Perez-Gverrero Trust Fund (PGTF) for Economic and Technical Cooperation among Developing Countries of the group of 77.
- San-oh, Y; Sugiyama, T; Yoshita,D; Ookawa,T; Hirasawa,T. (2006). The effect of plnting pattern on the rate of photosynthesis and related processes during ripening in rice plants. *Field Crop Research*, 93, 113-124.
- Sang, Tao, & Ge, Song (2007). The puzzle of rice domestication Journal of Integrative Plant Biology, 49(6), 760-768.
- Sang, Tao, & Ge, Song. (2007). The puzzle of rice domestication. Journal of Integrative Plant Biology, 49(6), 760-768.
- Sarnklong, C; Cone, J. W; Pellikaan, W. and Hendriks, W. H. (2010). Utilization of Rice Straw and Different Treatments to Improve Its Feed Value for Ruminants: A Review. *Asian-Aust. J. Anim. Sci.*, 23(5), 680 692.
- Seck, P.A., Diange, A., Mohanty, S. (2012). Crops that feed the world 7: Rice. *Food* Sec. 4(7).
- Senthilkumar, K., Bindraban, P. S., Thiyagarajan, T.M., Ridder, N. and Giller, K. E. (2008). Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance. *Agricultural Systems 98*, 82–94.

Sergerlind, Larry. J. (2010). Structure and Mechines ASABE (Ed.)

- Sharad, Pandey. (2009). Effect of Weed Control Methods On Rice Cultivars Under the System Of Rice Intensification (SRI). (M. Sc), Tribhuvan University Institute of Agriculture and Animal Science Rampur, Chitwan, Nepal, Rampur, Chitwan, Nepal. Retrieved from http://sri.ciifad.cornell.edu/countries/nepal/Nepal_SPandey_MSc_thesisIA AS09.pdf
- Sidik, M. (2012). The Quality Changes of Rice Stored Under Vacuum Conditions. Journal of Agricultural Technology, 1(3), 55-63.
- Singh, S.P; Singh, M.K and Solank, R.C (2016). Design and Development of Four Wheel Weeder for Wide-row Crops. *Indian Journal of Agricultural Sciences*. 86(!): 42-49
- Silas, O. Nkakini and Abu Husseni. (2015). Development and Evaluation of Wheeled Long-Handle Weeder. *The West Indian Journal of Engineering*, 37(2), 37-44.
- Siti Norezam, Othman; Zakirah, Othman; Noorulsadiqin Azbiya Yaacob, and Kamal Ab Hamid. (2015). Exploring Innovative Practices of Sustainable Paddy Farming and Their Impact on the System of Rice Intensification (SRI) Rice Value Chain using Stakeholder Approah. Paper presented at the SEA Regional Conference on the SRI 2015, Alos Ster, Malaysia.
- Slaughter D.C. , M. Pérez, C. Gliever , S.K. Upadhyaya H. Sun. Automatic Weed Control system for Processing Tomatoes. CIGR XVIIth World Congress – Québec City, Canada – June 13-17, 2010
- Slaughter D.C., Giles D.K, Downey D (2008). Autonomous robotic weed control system: A review. Computer and Electronics in Agriculture. Volume 61 Issue1, April, 2008
- Soekarno, S. and Salohke, V. (2003). Soil Reactions on the Cage Wheels with Staggered Echelons of Half-width Lugs and Perfect Chevron Lugs in Wet Clay Soil. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, 03(002), 1-25.
- Subrata Kr, Mandal and Atanu Maity. (2011). Development and Performance Evaluation of a Light Weight Power Tiller. 5th National Conference on Machines and Mechanisms. P. 11-35.
- (SRI), System of Rice Intensification (Ed.) (2006). Weed, A reference compendium. Hyderabad, India: Watershade Support Services and Activity Network.
- Starkey P and Simalenga T eds (2000). Animal Power for Weed Control. A Resource book of the Animal Traction Network for Eeastern and Southern Africa (ATNESA). The Netherlands. ISBN 92-9081-136-6.

- Staver, C.P Cambridge. (2001). *Ecological Management of Agricultural Weeds*. Cambridge,: University Press.
- Steve, Y, & George, M (2012). Precision and Automation Weed Control Techology *American Society of Agronomy*, 1-6.
- Styger, Erika, Aboubacrine, Goumar, Attaher, Malick Ag, & Uphoff, Norman. (2011). The system of rice intensification as a sustainable agricultural innovation: introducing, adapting and scaling up a system of rice intensification practices in the Timbuktu region of Mali. *International Journal of Agricultural Sustainability*, 9(1), 67-75. doi: 10.3763/ijas.2010.0549
- Suleiman, S; Wan Ishak.W.I; Muhammad Razif.M and Muhd Saufi.M.K. (2015). An Evaluation of Mechanical Row-weeders and Effects of Wedding Levels on Vegetative Components of Rice under the System of Rice Intensification (SRI). Paper presented at the SEA Regional Conference on the SRI 2015, Alos Setar, Malaysia.
- Sumithra Muthayya, Jonathan D. Sugimoto, Scott Montgomery and Glen F. Maberly. (2014). An overview of global rice production, supply, trade, and consumption. Ann. N.Y. Acad. Sci. New York Academy of Sciences, 1324, 7-14. doi: 10.1111/nyas.12540
- Sumithra, Muthayya; Jonathan D. Sugimoto; Scoth Montgomery and Glen F. Maberly (2014). An Overview of global rice production, suply trade and consumption. *Ann. N.Y. Acad. Sci.*, 1324, 1-7.
- T. Butnaru, F. Gîrbacia, F. Tîrziu, D. Talab (2004). *Mobile Robot System Controlled Through Mobile Communications Product Engineering*
- Tanaka, T. (1984). Operation in paddy fields: state-of-the-art report. J Terramechanics 21(2), 153-179.
- Tek B. Sapkota, M.L. Jat, R.K. Jat, P. Kapoor, and Clare Stirling. (2016). Yield Estimation of Food and Non-food Crops in Smallholder Production Systems. In S. R. M. C. R. n. K. B.-B. E. W. M. R. Todd (Ed.), Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture (pp. 163-174). Switzerland: Springer International Publishing AG Switzerland
- Tiwari, V.K., Datta R.K. and A.S. Murthy A.S (1993). Field performance of weeding blades of a manually operated Push-Pull weeder *J. Agril. Eng. Res* 55(2).
- Tiwari, V.K, Pandey, K.P and Paranav, P.K (2010). A review of traction prediction equations. *J Terramechanics* 47(1), 191-199.

- Thiyagarajan, T.M., & Biksham, G (2012). Transforming Rice Production with Knowledge and Practice SRI (System of Rice Intensification). : NATIONAL CONSORTIUM OF SRI (NCS).
- Thorpe., T. Fong and C. (2001). Vehicle teleoperation interfaces. *Autonomous Robots 11*, 9-18. doi: 10.1023/A:1011295826834
- Thura, S. (2010). Evaluation of weed management practices in the System of Rice Intensification (SRI). (MSc MSc thesis,), Yezin Agricultural University, Yezin, Myanmar.
- Tiara, H; Erik, H.M and Asgar, A. Wa. (2015). Rice Production and Climate Change: A Case Study of Malaysian Rice. *Pertanika J. Trop. Agric. Sci.*, 38(3), 321-328.
- Tic, V and Lovrec, D. (2012). Design of modern Hydraulic Tank using Fluid flow simulation. *International journal of Simulation Modelling*, 11(2), 77-88.
- Tilahun, Mola and Kifle Belachew (2015). Effect of Weeding Time on Rice (Oryza sativa Linn) Yield and Yield Components at Kaffa, Southwest Ethiopia. *Journal of Biology, Agriculture and Healthcare.*, 5(1), 162-167.
- Tony, G, Qin, Z, Naoshi, K, & Ting, K.C. (2008). A review of automation and robotics for the bioindustry. *Journal of Biomechatronics Engineering Vol. 1*, *No. 1*, 37-54.
- Tornado. (2011). Cultivation. Retrieved 01/20/2016, 2016, from www.tornadosprayers.com.au/cultivation.htm
- Tran, D.V. (1997). World rice production: main issues and technical possibilities . In Chataigner J. (ed.).Activités de recherche sur le riz en climat méditerranéen (Vol. 24, pp. 56-69): Montpellier : CIHEAM Cahiers Options Méditerranéennes; .
- Tu, Mandy, Hurd, Callie, & Randall, John M (2001). Weed control methods handbook: tools & techniques for use in natural areas.
- Umar, Mohammed; Aimrun Wayayok and Mohd Amin Mohd Soom. (2015). *Effect* of UMAR-SRImat on Weed Management, Number of Tillers and Plant Height of MR219 Rice in System of Rice Intensification (SRI). Paper presented at the SEA Regional Conference on the SRI 2015, Alos Ster, Malaysia.
- United Nations. (2015). World Population Prospects. The 2015 Revision (D. o. E. a. S. Affairs, Trans.) (Vol. ESA/P/WP.241 pp. 1-66). New York: United Nations.
- Upadhyaya, Mahesh K, & Blackshaw, Robert E (2007). Non-Chemical Weed Managament: Principles, Concepts and Technology: : Cabi.

- Uphoff, N (2011). The System of Rice Intensification (SRI) as a system of agricultural innovation. Jurnal Ilmu Tanah & Lingkungan, 10(1).
- Uphoff N, Fernandes EC, Yuan LP, Peng J, Rafaralahy S and Rabenandrasana J (2002, April 1-4, 2002.). *Assessing the System of Rice Intensification*. Paper presented at the International Conference on SRI, Sanya, China.
- Uphoff, Norman (2006). The system of rice intensification (SRI) as a methodology for reducing water requirements in irrigated rice production. Paper presented at the International Dialogue on Rice and Water: Exploring Options for Food Security and Sustainable Environment.
- USDA, Foreign Agricultural Service. (2015). Commodity Intelligence Report. In M. Shean (Ed.), (pp. 7366). New York: United States Department of Agriculture.
- Vaghefi, N; Nasir, S; Makmom, A; and Bagheri, M. (2011). The Economic Impacts of Climate Change on the Rice Production in Malaysia. *International Journal* of Agricultural Research, 6(1), 67-74.
- Van R. Haden, John M. Duxbury, Antonio DiTommaso & John E. Losey. (2007) Weed Community Dynamics in the System of Rice Intensification (SRI) and the Efficacy of Mechanical Cultivation and Competitive Rice Cultivars for Weed Control in Indonesia, *Journal of Sustainable Agriculture*, 30(4), 5-26.
- Van der Weide, R.Y; Bleeker, P.O; Achten, V.T.J.M; Lotz, L.A.P; Fogelberg, F, & Melander, B.O. (2008). Innovation in mechanical weed control in crop rows. . *Weed Research* 48(3), 215-224
- Vijayakumar.M; Ramesh.S; Prabhakaran.N.K; Subbian.P and Chandrasekan.B. (2006). Influence of system of rice intensification (SRI) on Growth characteristers, Days to flowering, Growth analysis and Labour productivity of Rice. Asian Journal of Plant Sciences. 5(6). 984-989.
- Veeraputhiran. R; Balasubramanian.R and Pandian.B.J. (2014). Effect of mechanical weeding in system of rice intensification and its adoption. *Indian Journal of Weed Science* 46(4): 383–385.
- Viren, M. Victor and Ajay, Verma. . (2003). Design and Development of Poweroperated Rotary Weeder for Wetland Paddy. *Agrcultural Mechanizatin in Asia, Africa and Latin America, 34*(4), 27-29.
- W Bond, W; Turner, R. J; and Grundy, A. C (2003). A review of non-chemical weed management. UK: Henry Doubleday Research Association.
- Wang, Bingbing, Shi, Guanglin, & Yu, Licheng. (2015, 5-7 Aug. 2015). Modeling and analysis of the electro-hydraulic proportional valve controlled motor system supplied by variable pressure accumulator. Paper presented at the Fluid Power and Mechatronics (FPM), 2015 International Conference on, Harbin.

- Watyotha, C and Salokhe, V.M. . (2001). Pull, lift and side force characteristics of cage wheels with opposing circumferential lugs. *Soil & Tillage Research*, 60, 123-134.
- Wawan, Hermawa; Minoru, Yamazaki, & Akira, Oida. (2000). Theoretical analysis of soil reaction on a lug of the movable lug cage whell. *Journal of Terramechanics*, 37(1), 65-86.
- Wawan, Hermawana; Minoru Yamazakib and Akira, Oidab. (1998). Experimental analysis of soil reaction on a lug of a movable lug wheel. *Journal of Terramechanics 35 (1998) 119±135, 35*(1), 119-135.
- Wayayok, Aimrun, Soom, Mohd Amin Mohd, Abdan, Khalina, & Mohammed, Umar. (2014). Impact of Mulch on Weed Infestation in System of Rice Intensification (SRI) Farming. Agriculture and Agricultural Science Procedia, 2(0), 353-360. doi: http://dx.doi.org/10.1016/j.aaspro.2014.11.049
- Wayne.E. Coates. (2012). Agricultural Machinery Management. The University of Arizona Cooperative Extension. Collage of Agriculture and Life Science. Available: http://cals.arizona.edu/crop/equipment/agmachinerymgt.html. Accessed 25/12/2016.
- Willer, H., Kilcher, L. (2011). The World of Organic Agriculture. Statistics and Emerging Trends 2011 (pp. 1-292). Bonn, Germany: International Federation of Organic Agriculture Movements (IFOAM).
- William, Durfee; Zongxuan, Sun and James, Van de Ven. (2015). Fluid Power System Dynamics (pp. 1-50). Retrieved from http://www.me.umn.edu/~wkdurfee/projects/ccefp/fp-chapter/fluid-pwr.pdf
- Williem. A. Sptoop. (2011). The scientific case for system of rice intensification and its relevance for sustainable crop intensification. *International Journal of Agricultural Sustainability*, 9(3), 443-455.
- Xia, Jicheng, & Durfee, William K. (2013). Analysis of Small-Scale Hydraulic Systems. *Journal of Mechanical Design, Transactions of the ASME, 9*(135). doi: http://dx.doi.org/10.1115/1.4024730
- Xue, Jinlin, Zhang, Lei, & Grift, Tony E (2012). Variable field-of-view machine vision based row guidance of an agricultural robot. . *Computers and Electronics in Agriculture*, 84(85-91).
- Yahaya, S. (2013). Implication of SRI-inspired Innovation on the Rice Industry in Malaysia. Paper presented at the System of Rice Intensification (SRI) Workshop, Universiti Putra Malaysia.
- Yatsuk, E.P; Panov, I.M; Efimov, D.N; Marchenko, O.S; Chernenkov, A.D. . (1981). *Rotary Soil Working Machines. Construction, Calculation and Design*. New Delhi: Amerind Publishing Co. Pvt. Ltd.

- Yepes, J; Yepes, C; Juan, J; Martinez, Jose. R May.04, 3013. (2013). Implementation of an Android Based Teleoperation Application for controlling a KUKA-KR6 Robot by using Sensor Fusion. Paper presented at the 8th Pan American Health Care Conference (PAHCE). , Medelin, Colombia.
- Yin, Xiang, Noguchi, Noboru, & Choi, Jongmin (2013). Development of a target recognition and following system for a field robot. *Computers and Electronics in Agriculture*, 98(1), 17-24.
- Young, S. L and Pierce, F. J. (2014). Automation: The Future of Weed Control in Cropping Systems.Retrievedfrom: <u>http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1080&context=</u> westcentr esext doi:10.1007/978-94-007-7512-1_1
- Yu-Chuan, Chang; Norman, T. Uphoff; Eiji, Yamaji. (2015). A conceptual framework for eco-friendly paddy farming in Taiwan, based on experimentation with System of Rice Intensification (SRI) methodology. *Paddy Water Environ*, 1-15. doi: 10.1007/s10333-015-0488-9
- Zhao, L., Wu, L., Li, Y. S., Lu,X.H., Zhu,D. F. and Uphoff, N. (2009). Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different application rates. . *Experimental Agriculture 45*, 275–286.
- Zheng, X. Z., Liu, C. H., Chen, Z. Y., Ding, N. Y., & Jin, C. J (2011). Effect of drying conditions on the texture and taste characteristics of rough rice. . Drying Technology, 29(1), 1297-1305.
- Zhang, Q., Reid, J., and Noguchi, N., "Automated Guidance Control for Agricultural Tractor Using Redundant Sensors," SAE Technical Paper 1999-01-1874, 1999, doi:10.4271/1999-01-1874.
- Zuraida, A.R; Zulkifli, A.S; Habibuddin, H and Naziah, B (2012). Regeneration of Malaysian rice variety MR 219 via somatic embryogenesis. J. Trop. Agric. and Fd. Sc. 39(2)(2012):A.R. Zu, 39(2), 167–177.

http://www.bdjinternational.net/power-tiller.html

http://www.liquiflo.com/v2/files/pdf/Gear_Pump_Basics.pdf