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The scarcity of literature addressing transients due to capacitor bank switching is 

obvious. Hence, this study was conducted with three objectives in mind. First, to 

characterize capacitor bank switching transients generated in a low voltage power 

system with selected inductive and resistive load. During the energizing and de-

energizing processes, capacitor banks generate and inject severe transient overvoltage 

and inrush current into the system that will result in several issues. Although there are 

several studies conducted on capacitor bank switching transients in medium voltage 

systems, there are only a few studies done on the same phenomena in low voltage 

systems. Previous literature shows that damage due to capacitor bank switching 

transients is higher in low voltage systems than that in medium and high voltage 

systems. Characterization of transient voltage and current in low voltage systems due 

to switching of capacitor banks is an important process, needed to provide solutions to 

the issues, which has not been done comprehensively so far. Second, to simulate the 

experimental power system to generate capacitor bank switching transients and 

validate the results with experiments.  Also, it was intended to compare the simulation 

results by experiment in real low voltage systems in addition to calculate the specific 

transient energy generated by capacitor bank switching.  Third, to find the response of 

available surge protective device in mitigating capacitor bank switching transient 

effects. 

 

 

Power System Computer Aided Design software package has been used in this study 

to simulate the energization of capacitor bank switching in specific low voltage 

systems, with and without employing mitigation devices. Besides, the study employed 

experimental measurements of quantities such as peak transient over voltages, inrush 

currents, and transient duration for each case in five step shunt capacitor banks. 

Analysis of voltage and current waves has been carried out to extract acceptable 

capacitor switching times by observing the transient voltage and current. 
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The findings showed that there is a severe current for the given loads due to switching 

of capacitor banks which tends to propagate in the system which may damage the 

capacitor bank itself and affect the end users. There are increases of transient peak 

values of current and voltage waveform due to the capacitor size and short rise time. 

In this case, long duration of transient may lead to high loss of energy in the system. 

The transients that were generated by both simulation and experimental technique 

were compared, and found to be slightly different owing to the environmental effects 

and level of accuracy of the measuring devices. Surge Protective Device meant for 

lightning transient protection are not efficient in their present form in mitigating 

transients generated by capacitor switching. It was shown that typical levels of the 

transient’s impulse current magnitude range from 116.9A to 163.1A, and from 113.4 

A to 165.5A for simulation and measurement results, respectively when connected to 

the single phase measurement. It was also shown that the transient current for the three 

phase connected measurement is ranged from 116.2 A to 166.6A and from 117.7 A to 

180.3 A for simulation and experimental results, respectively. Hence, curtailing of the 

specific energy and the energy dissipation of transients by means of filtering or 

attenuating devices has been strongly recommended. The comparison of the outcomes 

clearly shows that there are only minor differences between the simulation results and 

the experimental results in real low voltage systems. 

 

 

Severe currents that are produced during capacitor operations in power systems could 

be harmful to insulation, and capacitor bank control and equipment. The time of 

occurrence of the transient in the nominal 50Hz voltage waveform due to capacitor 

switching is a deciding factor for the safe operation of the system and equipment. The 

application of Surge Protective Devices, in their present form, will be insufficient, as 

they could not significantly reduce transient inrush current and voltage in low voltage 

system. This is proven by both experimental and simulation results. Depending on the 

time position of the transient in nominal voltage waveform and the transient polarity, 

its effects may vary. The worst scenario is the transient occurring at the peaks of the 

nominal voltage with the polarity as same as that of the nominal voltage waveform. 

Furthermore, there is a need to look for electronic switching to reduce the duration of 

the transient, which indirectly will reduce the effect of transients to the systems. The 

results can serve as a guidance for manufacturing technologists as well as electrical 

and electronic engineers in addressing and developing capacitor banks, thus solving 

transient switching issues for low voltage systems. 
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Kekurangan kesusasteraan yang berkaitan transien disebabkan oleh pertukaran bank 

kapasitor adalah jelas. Kajian ini dijalankan dengan tiga objektif dalam fikiran: 

Pertama, ia menonjolkan transien pertukaran bank kapasitor yang dihasilkan dalam 

sistem kuasa voltan rendah dengan beban yang dipilih. Semasa proses menyalurkan 

tenaga dan proses memutuskan salur tenaga (nyah-tenaga), bank kapasitor menjana 

dan menyuntik voltan berlebihan dan arus masuk ke dalam sistem yang akan 

menghasilkan beberapa isu. Walaupun terdapat beberapa kajian yang dilakukan pada 

transien pertukaran bank kapasitor dalam sistem voltan sederhana, hanya terdapat 

beberapa kajian yang dilakukan pada fenomena yang sama dalam sistem voltan 

rendah. Sastera terdahulu menunjukkan bahawa kerosakan yang disebabkan oleh 

transien pertukaran bank kapasitor lebih tinggi dalam sistem voltan rendah berbanding 

dengan sistem voltan sederhana dan tinggi. Pencirian voltan semasa dan transien 

sementara dalam sistem voltan rendah disebabkan oleh pertukaran bank kapasitor 

merupakan proses penting, yang diperlukan untuk memberikan penyelesaian kepada 

isu-isu, yang belum dilakukan secara komprehensif setakat ini.  

 

 

Kedua, untuk mensimulasikan sistem kuasa uji kaji untuk menghasilkan transien bank 

kapasitor dan membuktikan keputusan dengan data eksperimen. Selain itu, ia bertujuan 

untuk membandingkan hasil simulasi dengan eksperimen dalam sistem voltan rendah 

sebenar selain untuk mengira tenaga sementara tertentu oleh peranti pelindung yang 

tersedia dalam mengurangkan kapasiti penukaran bank kapasitor. Pakej perisian 

Sistem Pembekalan Komputer Kuasa (PSCAD) Kuasa Komputer telah digunakan 

dalam kajian ini untuk mensimulasikan penjanaan pemancaran bank kapasitor dalam 

sistem voltan rendah khusus, dengan dan tanpa menggunakan peranti pelupusan. 

Selain itu, kajian ini menggunakan pengukuran kuantiti eksperimental seperti titik 

tertinggi sementara melebihi voltan,arus masuk, dan tempoh transien bagi setiap kes 

dalam lima langkah kapasitor bank.  
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Analisis voltan dan gelombang semasa telah dijalankan untuk mengekstrak masa 

penukar kapasitor yang boleh diterima dengan memerhatikan voltan semasa. 

Penemuan menunjukkan bahawa terdapat arus yang teruk bagi beban yang diberikan 

disebabkan oleh pertukaran bank kapasitor yang cenderung menyebarkan dalam 

sistem yang boleh merosakkan bank kapasitor itu sendiri dan menjejaskan pengguna 

akhir. Terdapat peningkatan nilai puncak semasa dan voltan disebabkan saiz kapasitor 

dan masa kenaikan pendek. Dalam kes ini, jangka panjang membawa kepada 

kehilangan tenaga yang tinggi dalam sistem. Jangka masa ini dihasilkan oleh teknik 

simulasi dan eksperimen dan dibandingkan. Hasil simulasi dan hasil eksperimen dalam 

sistem voltan rendah sebenar adalah dalam persetujuan yang baik.  

 

 

Peranti  bermaksud perlindungan perlindungan kilat tidak cekap (dalam bentuk 

sekarang) dalam mengurangkan transien yang dijana oleh pertukaran kapasitor. Telah 

ditunjukkan bahawa tahap keganjilan magnitud semasa khas dari 116.9A hingga 

163.1A dan dari 113.4 A hingga 165.5A untuk simulasi dan pengukuran masing-

masing apabila disambungkan kepada ukuran fasa tunggal. Ia juga menunjukkan 

bahawa arus transien untuk pengukuran tiga fasa bersambung adalah dari 116.2 A 

hingga 166.6A bagi hasil simulasi dan dari 117.7 A hingga 180.3 A untuk keputusan 

eksperimen. Oleh itu, mengurangkan tenaga tertentu dan pelesapan tenaga transien 

dengan cara penapisan atau peranti melemahkan telah sangat disyorkan. Keempat; 

Perbandingan hasil jelas menunjukkan bahawa terdapat hanya perbezaan kecil antara 

hasil simulasi dan keputusan eksperimen dalam sistem voltan rendah sebenar. Dari 

penemuan, kesimpulan berikut boleh dibuat. Arus yang teruk dihasilkan semasa 

operasi kapasitor dalam sistem kuasa yang boleh membahayakan kawalan dan 

peralatan kawalan penebat dan kapasitor bank. Semasa berlakunya transient dalam 

bentuk gelombang voltan nominal 50Hz disebabkan penukaran kapasitor adalah faktor 

penentu bagi operasi sistem dan peralatan yang selamat.  

 

 

Penerapan SPD, dalam bentuknya sekarang, tidak mencukupi, kerana mereka tidak 

dapat mengurangkan aliran semasa dan voltan sementara dalam sistem voltan rendah. 

Ini terbukti dengan keputusan eksperimen dan simulasi. Bergantung pada kedudukan 

masa transien dalam bentuk gelombang voltan nominal dan kekutuban sementara, 

kesannya mungkin berbeza-beza. Senario terburuk adalah berlaku pada puncak voltan 

nominal dengan nilai kekutuban  sama dengan bentuk voltan nominal nominal. Selain 

itu, terdapat keperluan untuk mencari pertukaran elektronik supaya dapat 

mengurangkan tempoh sementara.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

 

 

There is a widespread discussion of transient disruption phenomena in the literature 

on the power system, which is generally conceptualised as abnormal or sudden change 

at a short period of time in the power system [1]. The said attention of literature is 

related to the fact that transient disruption phenomena in power systems may harm the 

vital equipment and lead to an enormous influence on system reliability and constancy. 

It is well established that the introduction of transients may be carried out when normal 

switching is operating, short circuits cause an interruption, lightning strikes, or when 

equipment fails. For that reason, the phasor analysis or other simplified analysis 

procedures become commonly insufficient because of system frequency dependencies 

and nonlinearities. In this respect, time-domain computer models according to Rufer 

et al. [2] are characteristically developed to predict the extent of the transient event 

levels.  

 

 

Switching transients are transients initiated by the operation of breakers and switches 

in a power scheme [3], and divided into three main categories, energization, de-

energization, and re-closure. The energization phenomena involve the elements of the 

system such as transmission lines or cables, transformers, reactors and CBs (CB). 

However with, re-closure, the lines may end up with a trapped charge after the opening 

of the Initial breaker. As such, the overvoltage of transients can reach the highest value, 

and de-energization, including clearing faults and rejecting loads. To date, a 

considerable number of studies on transient have focused on the High Voltage (HV) 

and Extra High Voltage (EHV) transients. Previous studies have identified switching 

transients are one of the most problematic disadvantages related to CBs. Very few 

studies have been focused and investigated the effects of shunt CBs in Low Voltage 

(LV) systems [4, 5]. CBs in LV systems may generate dangerous voltage and current 

transients during switching operations.  Such observation had vital implications for the 

development of this study which meant to investigate the switching transients created 

during the switching of the three-phase shunt CBs.  

 
 

Transients which are generated by CB switching in LV distribution system is the main 

interest of this study. CBs are extensively employed for both transmission and 

distribution grids. The advantages include the ability to compensate reactive power, 

enhance network capacity, support voltage, and minimize power losses. Central to the 

CB operation is the use of shunt CBs which in addition to the stated advantages they 

have low cost and are flexible in the fitting and process   [6-9]. In practice, the shunt 

capacitors are used to perform in the power grid in order to control system voltage, 

boost power transfer capacity, diminish equipment loading, and ease energy cost by 

improving the power factor (PF) of the system [10]. The utilization of shunt CBs and 

circuit breakers in the low voltage system could be the main source of equipment 

failure due to the high voltage and current transients occurrence. The majority of 
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previous studies reported in the literature address shunt CBs connected to HV 

transmission lines and MV distribution lines. Previous studies have identified 

switching transients are one of the most problematic disadvantages related to CBs. to 

date very few studies were focused on the effects of shunt CBs in LV systems. CBs in 

LV systems may generate dangerous voltage and current transients during switching 

operations [11]. 

 

 

Commonly, CBs can be divided into two groups, shunt, and series based on the way 

in which they are linked to the system. Between these two groups, the shunt 

capacitors are very commonly used in the power grids of all voltage levels. Shunt 

capacitor draws almost fixed amount of leading current which is superimposed on the 

load current and therefore reduces reactive components of the load and thereafter 

increases the power factor of the system. Series capacitor, on the other hand, has no 

control over the flow of current. As these are linked in series with the load, the load 

current continuously passes through the series CB. Essentially, the capacitive 

reactance of series capacitor neutralizes the inductive reactance of the line henceforth, 

decreases, the effective reactance of the line. Thus, voltage regulation of the system is 

enhanced. However, series CB has a main disadvantage as during a failure condition, 

the voltage across the capacitor may be extremely higher than its rated value. This 

series capacitor must have sophisticated and intricate protective equipment. Due to  

this reason, the utilization of series CB is limited only in the EHV system. Devices 

being applied to the power system are more susceptible to power quality variations 

than equipment applied in the past. The increasing emphasis on overall power system 

efficiency is causing a continued growth in the request for shunt CBs. This may happen 

within consumer services, as well as on the power system. Magnification of capacitor 

switching transients may be the most important concern due to the fact that the 

transient overvoltages can be very high and the energy levels associated with these 

transients can cause equipment failure [12-14]. 

 

 

 Generally, CBs are located in distribution and transmissions systems so that they can 

significantly reduce losses and minimize voltage drop. For that reason, Consumer may 

be in a position to utilize them in order to increase the performance of the scheme.  

However, switching of shunt CBs under normal conditions tend to create problems. It 

has been documented that switching shunt CBs in the presence of nonlinear loads 

result into intense frequency transients [1, 10]. This means that switching of shunt CBs 

causes changes to the properties of voltage and current waveforms in power systems, 

which are different from pure sinusoidal amplitude signals. In such situations, there is 

a need for advanced processing approaches to attain accuracy and devolving solutions 

for electrical power transients occur due to Surge Protection Device (SPD), Metal-

Oxide Varistor (MOV), power filter, and insert resistance and inductor. Therefore, it 

is essential to consider the influences of connected CBs in the presence of nonlinear 

loads, and the increase of extended installation in electrical grids.  

 

 

Consistent to the CBs disadvantages, researchers have suggested several techniques as 

solutions. It is argued that applied techniques to solve transient issues caused by shunt 

capacitor switching should have been based on ways to reduce transient voltages and 

the removal of transient magnification at LV bus [15, 16]. That understanding has 

https://www.electrical4u.com/shunt-capacitor-capacitor-bank/
https://www.electrical4u.com/shunt-capacitor-capacitor-bank/
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opportune to have numerous approaches to limit transient overvoltage during CB 

switching at the point of application. Moreover, the current devices are used for 

transient overvoltage control brand as an effort to reduce the transient overvoltage or 

overcurrent at the producing time or to limit the overvoltage at local and remote sites. 

This could be the reason behind the recommendations by the previous research that 

the efficiency of control procedures of transient mitigation device should depend on 

the system [17]. Based on this, one could ask what made the study on transients due to 

CBs and development of addressing issues important at the first place. This study was 

important as a way to closely analyse the system in order to choose the ideal control 

protection device. This was important because analysis of distribution network of 

capacitor applications is not often adequately done. For that reason, CBs are fitted with 

no control of transient overvoltage leading to consideration for cost requirements on 

installation, operational maintenance and reliability [18]. Therefore, this study was 

important as an attempt to address appropriate solutions needed to mitigate transient 

switching due to CB in LV to the acceptable level.  

 

 

1.2 Problem Statement  

 

 

Currently, due to the extended electric grid and development of industries, CBs are 

widely used in power systems at all voltage levels. The CBs are utilized to increase 

power transmission capability, compensate a reactive power, and improve the power 

factor and voltage profile. Moreover, they are used to control system voltage in the 

grid, reduce equipment loading and decrease electrical consumption charge. During 

the energizing and de-energizing processes, CBs generate and inject severe transient 

overvoltage and inrush current into the system that will result in several issues.  Many 

insulation failures have been reported caused by switching transients [19, 20]. The 

manifestation of the Vacuum Circuit Breaker (VCB) brings a switching appliance with 

outstanding interruption, and dielectric recaptures characteristics [21]. Despite the 

advantages of VCB, it has been reported worldwide that numerous transformer 

insulation failures have occurred probably due to switching operations of VCBs [22, 

23]. Although, these transformers have been formerly passed all the standard 

examinations, and complied with all superiority requirements. The utilization of CBs  

and circuit breakers in the LV system could be the main source of equipment failure 

due to the high voltage and current transient’s occurrence  [24]. 

 

 

Although there are several studies conducted on CB switching transients in MV 

systems, there are only a few studies done on the same phenomena in LV systems. 

Previous literature shows that damage due to CB switching transients is higher in LV 

systems than that in MV/HV systems. Characterization of transient inrush current and 

transient voltage in LV systems due to switching of CBs is an important process, 

needed and solutions to the issues are needed, which has not been done 

comprehensively so far. A validated model simulation of LV systems with CBs under 

switching operations could provide a significant data bank on transient characteristics, 

with no previous studies have attempted in such direction. Few studies have discussed 

the possibility of applying SPD to suppress lightning transients, again, no attempts 

were made so far in investigating such possibility. The challenges, which exist due to 
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switching transient of CBs, have not been addressed at all or not been addressed 

thoroughly such related to, 

 

a. characterization of transients due to capacitors banks in LV power system .  

b. mitigation of transient overvoltages and inrush currents due to CB switching 

operations 

c. techniques of reducing peak, duration, and energy of transients. 

 

 

1.3 Objectives of the Research  

 

 

For this study, these specific objectives are considered: 

a.  To characterize shunt CB switching transients generated in an LV power 

system with selected load.  

b. To simulate the experimental power system to generated shunt CB 

switching transient. 

c.  To find the response of available SPDs in mitigating shunt CB switching 

transient effects. 

   

 

1.4 Scope of the Study  
 

 

The power plants schemes are resulting in the need to reinforce our transmission and 

distribution systems. One of the measures methods being accepted that is to install 

extra reactive power in the form of shunt CBs which required details of transient 

overvoltage simulation studies to promise a successful design. Consequently, shunt 

CBs are connected in power systems to offer the reactive power compensation, 

reducing costs and optimizing power distribution systems. The analysis of the 

effectiveness of the distribution CBs includes measurements and simulation to study 

the application of the shunt CBs transient overvoltage switching and harmonics. The 

CBs energizing transient is significant because it is one of the most common utility 

switching operations. In addition, it produced high phase-to-phase system 

overvoltages, excite circuit resonances, mechanical and dielectric stresses in the other 

substation equipment or cause problems with sensitive customer equipment. 

Therefore, the investigation of the CBs energizing transient is needed to cover the 

operations switching issues that may arise in the system.  Furthermore, it offered and 

suggested corrective economic measures whenever deemed necessary. The major 

significance of the study are:  
 

a. identify the nature of transient duties that could happen for any realistic 

switching operation including the determining magnitude, duration, and 

frequency of the oscillations. 

b. determine if abnormal transient functions are possible to be imposed on 

equipment. 

c.  recommend remedial measures to mitigate transient overvoltages and 

overcurrent including solutions such as resistor preinsertion .pre-insertion 

inductors, synchronous closing control, high pass damping filter. 
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There are alternative operating techniques that have been proposed to minimize 

transient duties if applicable. Moreover, evaluation of transient overvoltage 

magnitudes for conventional CB energizing operations, including the effects of other 

CBs and system loads. Evaluation of inrush currents for normal and back-to-back 

switching operations, and capacitor switching transients on lower voltage systems. 

With that in mind, this research was focused on investigation on transients due to shunt 

CBs energization and de- energization in LV side. For that reason, the following 

limitations were addressed: 
 

a. only five steps shunt CB is applied.  

b. variables load and worst cos   are applied 

c. constant frequency 50Hz.is applied  

d. results are validated by comparing between the  simulations and experimental 

results. 

 

 

1.5 Thesis Outline  

 

 

In general, the thesis is organized into five main chapters. The first chapter gives the 

introduction on the CBs in low voltage systems. The importance and demands of CBs 

in the distribution network are discussed. This chapter also includes the transient’s 

problem and the available techniques for a solution. The problem statement, the 

objectives, the scope of the study, the significance of the research, and the organization 

of the thesis are presented. 

 

 

The second chapter introduces the basic concept of shunt CB design, insulation, failure 

modes, and protection, where the switching transient problem and mitigation devices 

are also intensely discussed.  

 

 

Chapter 3 provides a detailed representation of the methodology used, where model 

and equivalent circuit diagram used in the design and simulation were presented. Also, 

proposed techniques used in developing and improving the mitigation of transients 

generated by shunt CB switching in LV systems are introduced. 

 

 

Chapter 4 provides discussions on comparing between simulation and experimental 

results. While, Chapter 5 concludes the works and recommendations for the future 

works. 
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