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Critical technologies such as fiber lasers, optical filters and optical amplifiers are 

particularly important for the implementation of wavelength division multiplexing 

(WDM) systems. In order to select specific multiple lasing wavelengths in fiber laser 

design, a wavelength-selective comb filter is usually included in the laser cavity. In 

recent times, Mach-Zehnder interferometer (MZI)-based on tapered-fiber structure 

has received notable attention due to its benefits such as simple and low-cost 

fabrication, easy tuning method and relatively wide tuning range. An in-line MZI 

that is formed by concatenating two identical abrupt fiber tapers enhances the side 

mode suppression ratio (SMSR) compared to the one achieved by a single taper. In 

addition, the two-taper MZI structure provides a simple method to obtain optical 

filter with narrow linewidth. The tunability by bending and stretching mechanism are 

also demonstrated and discussed. It is shown that by bending the fiber, a better 

tuning resolution was achieved (73.0 pm/µm) compared to stretching (93.0 pm/µm) 

and the process was reversible for the entire range. In most cases, MZI structure is 

made using conventional optical fibers, which works separately from the amplifying 

medium. However, these two elements can be integrated together in the laser cavity 

by forming the MZI using the active gain medium itself. In this thesis, the author 

proposed a tunable dual-wavelength erbium doped ring fiber laser with tapered-EDF 

as comb filter. It was found that the peak power and SMSR was at the highest value 

when using larger taper waist diameter (33 μm). The dimension of two-taper MZI 

directly affects the channel spacing (free spectral range). For larger channel spacing 

(30.3 nm), the two-taper EDF requires shorter taper waist length (5 mm). To obtain a 

smaller laser linewidth (≤ 1.0 nm), the interferometer length (spacing between two 

tapers) must be longer (>20 mm). Based on the findings, the dual-wavelength laser 

can be designed to suit different applications and needs. The capability of two-taper 

MZI as a wavelength selector in generating multiwavelength laser in hybrid Raman-

Erbium gain medium was also investigated. The ring cavity was utilized in the fiber 

laser setup with 1455 nm pump laser to generate stimulated Raman scattering in the 

range of 1555 – 1565 nm (peak gain) which overlaps with Erbium gain spectrum. 

The lasing efficiency is improved and leads to the generation of longer wavelength 
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lasers. The highest number of channel count of six lasers was recorded when using 

output coupling ratio of 20% with 15 mm taper waist length. The average SMSR 

was excellent with value of 59.5 dB with -1.63 dBm average peak powers. The 

demonstrated multiwavelength laser showed excellent peak power and wavelength 

stability for two hours at room temperature with the smallest variations of less than 

0.08 dB and 0.02 nm respectively. 
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Teknologi kritikal seperti laser gentian, penapis optik dan penguat optik adalah 

sangat penting dalam pelaksanaan sistem pembahagian penggandaan panjang 

gelombang (WDM). Dalam usaha untuk memilih beberapa panjang gelombang 

pelaseran khusus dalam reka bentuk gentian laser, turas sisir panjang gelombang 

terpilih biasanya termasuk dalam rongga laser. Sejak kebelakangan ini, meter 

gangguan Mach - Zehnder ( MZI ) berasaskan kepada struktur tirus gentian optik 

telah mendapat perhatian yang ketara kerana manfaatnya seperti struktur yang 

ringkas dan kos fabrikasi yang rendah, kaedah penalaan yang mudah dan jangkauan 

penalaan yang agak luas. MZI dalam satu barisan yang dibentuk oleh dua struktur 

serupa tirus gentian yang curam meningkatkan nisbah penindihan sisi capaian ( 

SMSR ) berbanding dengan yang dicapai oleh tirus tunggal. Di samping itu, dua 

tirus struktur MZI ini menyediakan satu kaedah yang mudah untuk mendapatkan 

penapis optik dengan lebar spektrum yang sempit. Kaedah penalaan dengan 

mekanisme lenturan dan regangan juga ditunjukkan dan dibincangkan. Kajian 

menunjukkan bahawa dengan melenturkan gentian, resolusi penalaan yang lebih 

baik telah dicapai ( 73.0 pm / m ) berbanding regangan ( 93.0 pm / m ) dan proses 

ini adalah boleh diterbalikkan untuk keseluruhan julat. Dalam kebanyakan kes, 

struktur MZI dibuat menggunakan gentian optik konvensional , yang bekerja secara 

berasingan daripada medium penguat itu. Walau bagaimanapun, kedua-dua elemen 

tersebut boleh diintegrasikan bersama-sama dalam rongga laser dengan menubuhkan 

MZI menggunakan medium gandaan aktif itu sendiri. Dalam tesis ini, penulis 

mencadangkan dua panjang gelombang boleh tala erbium terdop laser gentian dalam  

struktur bulatan (EDRFL) dengan tirus - EDF sebagai turas sisir. Kami mendapati 

bahawa puncak kuasa dan SMSR adalah pada nilai yang paling tinggi apabila 

menggunakan diameter garis pusat bahagian tengah tirus gentian yang lebih besar 

(33 µm). Dimensi dua tirus MZI memberi kesan langsung kepada jarak saluran (julat 

spektrum bebas). Untuk jarak saluran yang lebih besar, dua tirus EDF memerlukan 

panjang tirus bahagian tengah yang pendek. Untuk mendapatkan laser yang 
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mempunyai lebar spektrum yang lebih kecil , panjang interferometer itu ( jarak 

antara dua tirus ) mestilah lebih panjang. Berdasarkan dapatan kajian, laser dua 

panjang gelombang boleh direka untuk disesuaikan dengan aplikasi dan keperluan 

yang berbeza. Keupayaan dua tirus MZI sebagai pemilih panjang gelombang dalam 

menjana panjang gelombang pelbagai laser medium gandaan hibrid Raman-Erbium 

juga dikaji. Struktur bulatan telah digunakan dalam persediaan laser gentian dengan 

pam laser 1455 nm untuk menjana serakan Raman dirangsang (SRS) dalam 

lingkungan 1555-1565 nm (puncak gandaan) yang bertindih dengan spektrum 

gandaan Erbium. Kecekapan laser bertambah baik dan membawa kepada penjanaan 

panjang gelombang laser yang lebih panjang. Bilangan tertinggi kiraan saluran 

sebanyak enam laser telah dicatat apabila menggunakan nisbah gandingan kelauaran 

sebanyak 20% dengan menggunakan panjang tirus bahagian tengah 15 mm. Purata 

SMSR adalah sangat baik dengan nilai 59.5 dB dan -1.63 dBm purata kuasa puncak. 

Laser panjang gelombang pelbagai menunjukkan kestabilan puncak kuasa dan 

panjang gelombang yang sangat baik selama dua jam pada suhu bilik dengan variasi 

yang sangat kecil masing-masing kurang daripada 0.08 dB dan 0.02 nm. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Fiber optic communication is attractive due to its extraordinary capability to carry 

information in capacity far greater than its competitors such as coaxial cables and 

microwave links. The primary reason that optical fibers have very much larger 

information-carrying capacity than other media is because they carry light. Light in a 

glass medium can carry more information over longer distances than electrical signals 

can carry in a copper or coaxial medium or radio frequencies through a wireless 

medium. In addition, optical fibers are inexpensive to produce, do not conduct 

electricity which makes them immune to disturbance by lightning storms, and other 

electromagnetic signals (except nuclear radiation), do not corrode, and are of small 

size. The research on fiber optic began as early as 1960s. However, it is not until 1970s 

that the breakthrough came in when scientists in Corning Incorporated Dr. Robert 

Maurer, Donald Keck, and Peter Schultz created a fiber with a measured attenuation 

of less than 20 dB per km [1]. The three scientists’ work is recognized as the discovery 

that led the way to the commercialization of optical fiber technology. The rapid 

development in fiber optic fabrication technology finally allows for the fiber losses to 

drop to less than 0.2 dB/km [2]. Since then, the technology has advanced tremendously 

in terms of performance, quality, consistency, and applications. 

Within the last twenty years, fiber-based devices have been developed extensively for 

employment in filters, sensors, amplifiers and lasers. This is because the potential 

bandwidth of the optical fiber is only limited by the electronics in the type of 

multiplexing/de-multiplexing scheme employed. The demand for more capacity over 

the last decades has soared due to the amplifying need from the internet users for high 

bandwidth applications such as high definition video, an increase in the number of 

gadgets and devices that use broadband connections, as well as the implementation of 

internet protocol television. Capacity of optical fiber systems increased from 0.1 GB/s 

in 1980 to well over 100 Tb/s presently [3].  

In order to cope with the wavelength demand as the channel for transmitting data 

increases, the wavelength division multiplexing (WDM) and dense wavelength 

division multiplexing (DWDM) was then introduced to increase capacity without 

requiring the deployment of new fiber optic cables [4][5]. This technology soared 

primarily due to the excellent applicability of WDM which is based on the utilization 

of the wide low-loss spectrum region in optical fibers. The low loss region of a single-

mode fiber extends over wavelengths from roughly 1.2 to 1.6 µm, which is an optical 

bandwidth of more than 30 THz. The WDM and DWDM are however, working with 

the same principle by combining multiple signal wavelengths onto a single optical 

fiber. The only difference is their inter channel spacing and number of channel 

involves. The improvement was necessary to transmit large number of relatively 

close-spaced channels along an optical fiber. Instead of 8 channels provided by the 
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conventional WDM systems, the DWDM system would typically provide 40 channels 

with 100 GHz spacing or 80 channels of 50 GHz spacing.  

 

 

Research efforts in DWDM optical device technology have led to the emergence of 

all-optical fiber networks that promise to reduce the maintenance cost and increase 

flexibility. The critical technology particularly important for the implementation of 

WDM systems are fiber lasers, optical filters and optical amplifier. Fiber lasers are of 

particular interest due to its advantages compared to other types of lasers such as 

semiconductor laser or solid state laser. They include fiber compatibility, low intensity 

noise, high output power, high optical quality and narrow linewidth. The underlying 

principle to produce fiber laser is through a special fiber optic arrangement which 

utilizes a doped rare earth material acting as the gain media. The doped fiber is 

arranged together with other optical components to form a ring or linear resonator. 

The doped fibers commonly used are erbium, ytterbium, thulium or neodymium [6]–

[11]. Other type of fiber laser which gain popularity is Raman fiber laser (RFL) [12]–

[14], which utilizes stimulated Raman scattering (SRS) effects to shift the wavelength 

of light from an input pump laser to another desired wavelength, 13.2 THz or 100 nm 

wavelength separation between pump light and laser output. The first continuous wave 

(CW) Raman laser using an optical fiber as the gain medium has been demonstrated 

in 1976 [15]. By properly selecting the pump wavelength and by cascading the pumps 

through several Raman stoke shifts; devices at almost any wavelength can be made. 

The details on RFL will be further discussed in Chapter 2. 

 

 

The most important device for the generation of multiwavelength fiber laser is 

wavelength selective element. In order to select specific multiple lasing wavelengths, 

a wavelength-selective comb filter is usually included in the laser cavity [16]–[18]. 

Up to now, there are many methods reported for all-fiber comb filters, such as twincore 

fiber [19]–[21], Fabry Perot filter [22], Lyot filter [23], fiber grating [24], Sagnac loop 

interferometer [25], and Mach–Zehnder interferometer (MZI) [26]. Among these, 

MZI has exhibited remarkable advantages such as broad wavelength operation range , 

insensitivity to environmental changes, ease of fabrication at relatively low cost as 

well as high reliability and stability [27][28]. In recent times, MZI-based on tapered-

fiber structure has received notable attention due to its benefits such as simple and 

low-cost fabrication, easy tuning method, relatively wide tuning range as well as high 

stability [28], [29].  

 

 

1.2 Problem statement 

 

The ability of tapered fiber application as comb filter is favourable. With proper 

fabrication technique, tapered fiber possesses low insertion loss and the parameters 

can be tailored simply by changing the length of tapered waist. Furthermore the 

fabrication of tapered fiber is very simple and low cost.  

 

 

Typically, MZI structure is made using conventional optical fibers, which works 

separately from the amplifying medium in a fiber laser configuration. Such 

arrangement increases the complexity and size of the laser system, in addition to the 
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supplementary cost required to prepare the two individual components. Integration of 

MZI, tapered fiber with gain medium could prove to be a grand idea, however, no 

research has been done to prove that multiwavelength laser is possible with this 

integrated device and whether it is possible to illicit any other features from such a 

simple structure. 

These two elements can be integrated together in the laser cavity by forming the MZI 

using the active gain medium itself. In other words, gain medium such as erbium 

doped fiber (EDF) or any doped fiber can be tapered and used as wavelength selective 

element as well as gain medium for laser generation. This will lead to a compact and 

cost-effective fiber laser design. In this thesis, we propose a dual-wavelength erbium-

doped fiber laser using tapered EDF as comb filter. A study is performed to evaluate 

other feature of the laser such as wavelength tunability. We also investigated the 

generation of multiwavelength laser using tapered fiber using Hybrid Raman-Erbium 

as gain media. 

1.3 Objectives 

The overall objective of this thesis is to investigate the feasibility of tapered fiber as a 

comb filter for the generation of multiwavelength fiber lasers. The specific objectives 

are listed as follows: 

1. To design and develop a Mach-Zehnder interferometer filter based on tapered

fiber

2. To design and develop a dual wavelength tunable Erbium-doped fiber laser

using tapered-EDF as comb filter.

3. To design and develop multiwavelength fiber laser utilizing hybrid Raman-

Erbium gain medium.

1.4 Scope of work 

Figure 1.1 describes the work involve in this study on fiber laser. Both dual and 

multiwavelength fiber laser are presented in this work. In dual-wavelength fiber laser, 

Erbium doped fiber is used as the gain medium. The wavelength selective element 

proposed in this work is tapered-EDF. In generation of multiwavelength fiber laser, 

we presented by using hybrid Raman-EDF as gain medium utilizing tapered single 

mode fiber (SMF) as wavelength selective element. 
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Figure 1.1 : Scope of work 

 

 

1.5 Thesis outline 

 

This thesis comprises of six chapters. Chapter 1 includes the introduction, problem 

statement, objectives and scope of work involved in this research. Chapter 2 presents 

the theoretical background and review on the previous reported research findings in 

this area. The fabrication of tapered fiber and its characterization will be discussed in 

Chapter 3. Chapter 4 presents the work on Erbium doped fiber laser utilizing tapered 

fiber as comb filter in generation of tunable dual-wavelength laser. In Chapter 5, the 

work on Hybrid Raman-Erbium on multiwavelength fiber laser is discussed in details. 

Finally, Chapter 6 summarizes the conclusions, research contributions and future 

recommendations for this research. 
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