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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

 

DESIGN AND MODELING OF POWER TRANSISTOR-ASSISTED  

SEN TRANSFORMERS FOR TRANSMISSION GRID  

POWER FLOW CONTROL 

 

By 

 

SALAH ELDEEN GASIM MOHAMED HASSAN 

 

July 2017 

 

 

Chair: Associate Professor Jasronita Jasni, PhD 

Faculty: Engineering 

 

Many arising factors endanger the secure and stable operation of transmission grids. 

Those are deregulation that opens transmission grid, increasing dynamics in 

consequence of wide integration of variable renewable energy sources, 

unwillingness to install new transmission lines, electric power demand increase, 

resulting stress that causes frequent components outage, uneven distribution of 

power in transmission lines, and resulting low utilization of existing transmission 

grid infrastructure. In consequence, the need to widely use transmission grid power 

flow controllers is escalating. However, these power flow controllers need to be 

reasonably costing as well as technically competent. Three main families of existing 

power flow controllers are conventional power flow controllers, flexible AC 

transmission systems controllers, and hybrid power flow controllers, which all have 

their pros and cons. Conventional power flow controllers are cost-effective, 

however, have technical shortcomings. Flexible AC transmission systems controllers 

are technically competent but their cost is high. Hybrid power flow controllers 

combine some advantages of the other two families, however, have their own 

limitations, and their cost is still high. Combination of most technical advantages of 

existing power flow controllers in a single power flow controller at a reasonable cost 

is promising. Based on a comprehensive review, a family of power transistor-

assisted Sen Transformers that bridges the gap between unified power flow 

controller and Sen Transformer is proposed. Power transistor-assisted Sen 

Transformers are designed and their comprehensive Simulink model is developed 

and tested in MATLAB/SIMULINK. Ratings of components of a power transistor-

assisted Sen Transformer are determined and its cost is analyzed and compared to 

that of a similar unified power flow controller. Operation principle of power 

transistor-assisted Sen Transformers, operational characteristics, and control 

strategies are revealed. Also, a simplified Simulink model and a comprehensive 

Newton-Raphson model of power transistor-assisted Sen Transformers are 

developed and validated. Performance of power transistor-assisted Sen Transformers 

for enhancement of optimal power flow and also for maintaining grid security is 

assessed and compared to that of Sen Transformer and unified power flow controller. 
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Methods used include simulation using MATLAB/SIMULINK, analytical Newton-

Raphson based load flow analysis, optimal power flow, and simple power flow 

equations, besides voltage vector analysis. Among the significant findings, 

operational characteristics of power transistor-assisted Sen Transformers are found 

closely comparable to those of the unified power flow controller. Power transistor-

assisted Sen Transformers operate continuously and provide repeatable control 

action, error-free, and ensure precise control action. They have non-limited operating 

points within their control area and ensures increased flexibility, improved response-

rate that enables mitigating transient stability problems, extended control range, and 

far lower cost as compared to an analogous unified power flow controller. As 

compared to an analogous conventional Sen Transformer, performance of power 

transistor-assisted Sen Transformer in enhancement of optimal power flow is found 

to be techno-economically feasible. Also, as compared to an analogous unified 

power flow controller, power transistor-assisted Sen Transformer is able to maintain 

grid security and found closely similar with a far lower installation cost. In 

conclusion, power transistor-assisted Sen Transformers are timely proposed 

competent and cost-effective power flow controllers those provide tremendous 

technical and economic benefits to the current days' and the future's smart grids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

iii 
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memenuhi keperluan untuk ijazah Doktor Falsafah 

 

REKA BENTUK DAN PERMODELAN KUASA-TRANSISTOR 

 DIBANTU ALATUBAH SEN UNTUK KAWALAN  

PENGHANTARAN ALIRAN KUASA GRID 

 

Oleh 

 

SALAH ELDEEN GASIM MOHAMED HASSAN 

 

Julai 2017 

 

Pengerusi: Profesor Madya Jasronita Jasni, PhD 

Fakulti: Kejuruteraan 

 

Terdapat pelbagai faktor yang timbul memberi ancaman khususnya pada operasi 

penghantaran grid yang selamat dan stabil. Antara faktor yang membahayakan 

operasi penghantaran grid termasuklah penyahkawalseliaan yang membuka 

penyaluran grid, peningkatan dinamik disebabkan oleh integrasi pelbagai sumber 

tenaga yang boleh diperbaharui yang meluas, keengganan untuk memasang talian 

penghantaran baru, permintaan kuasa elektrik yang meningkat, dan pengagihan 

talian kuasa yang tidak sekata, tekanan yang terhasil akibat komponen yang kerap 

terganggu meskipun penggunaan infrastruktur penghantaran grid yang kurang. 

Kesannya, keperluan penggunaan penghantaran aliran kuasa grid yang luas semakin 

meningkat. Namun begitu, untuk membolehkan penggunaan pengawal aliran kuasa 

yang luas, ianya memerlukan kos yang berpatutan dan cekap dari segi teknikal. 

Terdapat tiga kelompok utama pengawal aliran kuasa yang sedia ada iaitu pengawal 

aliran kuasa konvensional, pengawal sistem penghantaran arus ulang alik fleksibel, 

dan pengawal aliran kuasa hybrid, yang  mempunyai kebaikan dan keburukan 

masing-masing. Pengawal aliran kuasa konvensional mempunyai kos yang efektif, 

walaubagaimanapun, ia mempunyai kelemahan dari segi teknikal. Pengawal sistem 

penghantaran arus ulang alik yang fleksibel  pula cekap dari segi teknikal, namun ia 

memerlukan kos yang tinggi. Pengawal aliran kuasa hybrid menggabungkan 

beberapa kelebihan dari dua kelompok yang lain, namun begitu, pengawal aliran 

kuasa hybrid ini mempunyai had dan kos ia tetap tinggi. Gabungan pada kebanyakan 

kelebihan teknikal pengawal aliran kuasa yang sedia ada dalam pengawal aliran 

kuasa tunggal pada kos yang berpatutan adalah menarik. Berdasarkan pada 

keseluruhan kajian, kelompok transistor kuasa dibantu pengubah Sen 

menggabungkan jurang antara pengawal aliran kuasa bersatu dan pengubah Sen 

dicadangkan. Pengubah sen dibantu transistor kuasa direka dan Model SIMULINK 

komprehensif dibina dan diuji menggunakan MATLAB/SIMULINK. Penilaian untuk 

setiap komponen ditentukan dan kos pengubah sen dibantu transistor kuasa dianalisis 
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dan dibandingkan dengan analogi pengawal aliran kuasa bersatu. Prinsip operasi 

pengubah sen dibantu transistor kuasa, ciri-ciri operasi, strategi kawalan turut 

didedahkan. Selain itu, Model SIMULINK yang dipermudahkan dan Model Newton-

Raphson Komprehensif daripada pengubah sen dibantu transistor kuasa turut dibina 

dan disahkan. Prestasi pengubah sen dibantu transistor kuasa dalam merealisasikan 

aliran kuasa optimum dan mengekalkan keselamatan grid telah dinilai dan 

dibandingkan dengan pengubah sen konvensional dan pengawal aliran kuasa bersatu. 

Kaedah yang digunakan juga termasuklah simulasi menggunakan 

MATLAB/SIMULINK, analisis Newton-Raphson berdasarkan aliran beban, aliran 

kuasa optimum dan penggunaan persamaan aliran kuasa yang mudah selain daripada 

analisis vektor voltan. Antara penemuan yang penting, ciri-ciri operasi pengubah sen 

dibantu transistor kuasa ditemui setanding dengan pengawal aliran kuasa bersatu. 

Pengubah sen dibantu transistor kuasa beroperasi secara berterusan dan menyediakan 

kawalan aksi yang berulang-ulang, tiada ralat dan memastikan tindakan kawalan 

yang tepat. Ia mempunyai titik operasi yang tidak terhad dalam kawasan kawalan 

serta memastikan peningkatan fleksibiliti, kadar tindakbalas yang bertambah baik 

yang membolehkan pengurangan masalah kestabilan sementara, pelbagai kawalan 

lanjutan dan kos yang jauh lebih rendah berbanding dengan analogi pengawal aliran 

kuasa bersatu. Jika dibandingkan dengan pengubah sen konvensional, pelaksanaan 

pengubah sen dibantu transistor kuasa dalam merealisasikan aliran kuasa optimum 

didapati tekno-ekonomi mampu dilaksanakan, dan jika di bandingkan dengan 

analogi pengawal aliran kuasa bersatu, pengubah sen dibantu transistor kuasa 

mampu mengekalkan grid keselamatan dan didapati hamper sama dengan kos 

pemasangan yang jauh lebih rendah. Kesimpulannya, pengubah sen dibantu 

transistor kuasa ini dicadangkan pada masa yang tepat dan kos efektif pengawal 

aliran kuasa yang menyediakan banyak kelebihan dari segi teknikal dan ekonomi 

pada penghantaran pintar pada masa kini dan akan datang. 
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1

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Many factors adversely affect transmission grid operation and endanger power 

system security and stability. Among these factors is deregulation of the electricity 

sector, heavy penetration of Variable Renewable Energy Sources (VRESs), increase 

of electricity demand, and unwillingness to install new transmission lines. 

Deregulation of the electricity sector makes the grid open access and gives rise to 

many difficulties in its operation and control [1]. Heavy penetration of VRESs, 

especially wind and solar is becoming more and more widespread [2, 3]. These 

VRESs possess an intermittent nature that accordingly increases grid dynamics, and 

are non-dispatch-able energy sources [4]. The steady increase in the demand for 

electrical energy stresses the operation [5]. It consequently increases the chance of 

components outage that may endanger the operation security [6, 7]. On the other 

hand, while some transmission lines are congested, some others are lightly loaded 

[8]. In most cases, utilization of the existing grid infrastructure is low [5, 9, 10]. 

Concurrently, transmission of more bulk active power at reasonable costs has 

become more essential. Suitable means for corrective actions that facilitate 

successful operation of the transmission grids, secure, and stabilize power system 

operation are crucial. Installation of new lines can relieve the stress. However, its 

growth rate is slow and the installation is limited by many factors such as high costs, 

public policies and right of way [5, 11]. Accordingly, there is a relatively small 

investment in the transmission networks [12, 13]. Also, installation of new lines may 

not add the required degree of controllability, flexibility, selectivity, precision, and 

fast control. In such circumstances, a smarter and more dynamically controllable grid 

is of paramount importance [14]. Greater operating flexibility and controllability are 

significant as they enable meeting the needs of modern power systems [15]. To this 

end, implementation of transmission grid Power Flow Controllers (PFCs) and their 

wide use is imperative as they provide economic and effective solutions [5, 16]. The 

continuous control enables smooth moving from a steady-state operating condition 

to another and prevents systems collapse [7]. Besides, the PFCs can realize a self-

healing grid that can flexibly, precisely, and quickly respond to the varying operating 

conditions, and enable harvesting more power from the VRESs. Also, they can 

augment the power transfer capability and delay or even eliminate the need to install 

new lines and to ensure the system is able to operate optimally, securely and stably. 

Nonetheless, both technically and economically attractive PFCs should be used. 

Existing transmission grid PFCs can be divided mainly into Conventional PFCs 

(CPFCs), Flexible AC Transmission Systems (FACTS) controllers, and Hybrid PFCs 

(HPFCs). CPFCs include mechanically switched capacitors and reactors, transformer 

and On-Load Tap-Changing (OLTC)-based PFCs such as the Voltage Regulating 

Transformer (VRT), Phase Shifting Transformer (PST), and recently, Sen 
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Transformer (ST) and Limited Angle STs (LA-STs) [17, 18]. They also include 

rotational PFCs, which are the Variable Frequency Transformer (VFT) and Rotary 

PFC (RPFC). Most dominant FACTS controllers are the Static Var Compensator 

(SVC), Thyristor Controlled Series Capacitor (TCSC), Static Synchronous 

Compensator (STATCOM), Static Series Synchronous Compensator (SSSC), 

Thyristor Controlled Phase Shifter (TCPS), Unified Power Flow Controller (UPFC), 

and Interline Power Flow Controller (IPFC) [19]. Finally, HPFCs are the Improved 

ST (IST), Hybrid Phase Shifter (HPS), Hybrid Flow Controller (HFC), Controllable 

Network Transformer (CNT), Fractionally Rated Back-to-Back converter-based 

Power Router (FR-BTB-PR), and Compact Dynamic Phase Angle Regulator (CD-

PAR). 

Advantages of the CPFCs include providing compensation voltage with system 

frequency without any harmonics, high efficiency, and for most of them, simple 

construction and simple control [17, 20, 21]. They are also based on technologically 

proven components and are generally less expensive. Challenges of the CPFCs 

include their step-wise operation [18], limited operating points and thus, less 

flexibility, control-error for the transformer and OLTC-based PFCs [20, 22, 23]. 

They also include the complexity, and rating limitations for the rotational PFCs, as 

well as the relatively slow response for the rotational PFCs, and slower response in 

the range of 2 seconds to switch between adjacent taps for OLTC-based CPFCs [18, 

24]. It is often not possible to maintain the reliability by conventional mechanical 

means alone [7]. 

Advantages of FACTS controllers include their continuous operation mode, high 

flexibility, precise and tight transmission control action, and fast acting capability [7, 

18]. Challenges of FACTS controllers include their high installation costs [21] and 

thus limited use [25-27], and relatively high operational losses [17, 21]. They also 

include production of harmonics that necessitate more costly converter topologies or 

extra components for neutralization, complex construction [28] and complex and 

expensive control [20]. 

Advantages of HPFCs include integration of fractionally-rated components that are 

low-costing and add advantageous characteristics such as the continuous operation 

mode, high flexibility, precise and error-free control action, and fast response [22]. 

Challenges of HPFCs differ for the different types with different components and 

operation principles. They include level of complexity of construction and control, 

the cost which, is generally less compared to that of the FACTS, but, is still high 

[29] and the low order harmonics that some of them produce [30, 31]. They also 

include the power flow control range that they cover as some of them only control 

active power [32]; some are optimized for active power flow control [30] and some 

for reactive power flow control [31]. Also, some operate in step-wise mode [33], and 

some combine energy storage components [23, 34] that may reduce their reliability. 
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1.2 Problem Statement 

In present and future circumestances of power transmission grids, there is an 

increasing flexibility and controllability requirement [35, 36] owing to existence of 

many challenging factors [37]. Also, extensive use of FACTS controllers is the main 

goal ever since their first development [19, 38] as they present key remedies to the 

power grids arising problems. However, PFCs that are technically competent to 

realize the transmission grid control goals, and economically effective to enable the 

wide use, are essential. Nonthless, installation and operating costs of the FACTS 

controllers, in particular the Unified Power Flow Controller (UPFC), are high [19, 

21, 39, 40]. As a result, there are only three practically installed UPFCs currently 

[25-27]. Conversely, the comparable conventional Sen Transformer (ST) is relatively 

cheap [17, 18, 41-43], but, has some technical drawbacks. The step-wise operation, 

limited operating points, less flexibility, control-error [23], and the relatively slow 

response of the conventional ST cannot always ensure the exact precision, and 

desired degree of flexibility and response-rate [15]. While there is an increasing 

flexibility and controllability requirement in transmission grid operation and control, 

the high cost of the UPFC negates its wide use, and the technical drawbacks of the 

ST result in limitations in degree of flexibility, controllability, and preciseness. 

There is technology gap between the ST and the UPFC that is beneficial to bridge. 

Bridging such gap enables wide use of effective PFCs to meet the increasing 

flexibility and controllability requirements. 

1.3 Aim and Objectives of Thesis 

Difficulty of maintaining secure, stable, and optimized operation of power grids is 

increasing [44-46]. This situation augments the needs for flexible and self healing 

grids. In response to that, this thesis aims to bridge the technology gap between the 

ST and the UPFC to contribute towards meeting the increasing needs to use PFCs in 

transmission grids, by proposing Power Transistor Assisted ST (TAST) and Limited 

Angle TASTs (LA-TASTs) as technically competent and economically attractive 

PFCs. The thesis also aims to techno-economically assess performance of TASTs in 

significant applications in different power grid test systems. 

The objectives, which are set to meet these aims, are: 

i. To design the TASTs, determine ratings of their components, and develop their

Comprehensive SIMULINK Model (CSM).

ii. To demonstrate the operational characteristics and control strategies of TAST,

test its action, and compare it to that of conventional ST and UPFC, and to

investigate the installation costs of a TAST, and compare it to that of a similar

UPFC.

iii. To develop the mathematical Comprehensive Newton-Raphson (NR) Model

(CNRM) and the Simplified SIMULINK Model (SSM) of the TAST and

compare them.
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iv. To assess performance of a TAST in enhancement of the OPF and also in 

maintaining transmission grid security, and comparing it to similar 

conventional ST and/or UPFC. 

 

1.4 Scope of Research 

 

Scope of this research covers device level and power system level. In the device 

level, following a comprehensive review of existing PFCs, a set of new PFCs is 

proposed. It is the family of TASTs that consists of a basic ST and a fractionally 

rated Transistorized ST (TST). The TAST is designed and then modeled in 

MATLAB/SIMULINK including the power circuits and the IGBT′s driving circuits. 

The work includes determination of ratings of the components and selection of a 

suitable AC-AC voltage regulator, the AC-AC chopper, that fits the operation 

principle of the TAST, and selection of a suitable switching technique. Different 

control strategies of the TAST are presented. Besides, a TAST′s and equivalent ST′s 

and UPFC′s operating areas are compared. The work also included demonstration of 

the improved response rate of TAST as compared to that of conventional ST, and 

performing harmonics analysis. TAST′s cost analysis and comparison with that of a 

similar UPFC is presented. Additionally, to cover a narrower operating area at a 

lesser cost, the LA-TASTs are proposed, designed and modeled. In power system 

level that is related to steady-state power system analysis, performance of TAST is 

assessed and compared to that of conventional ST and/or UPFC. For that purpose, 

firstly, power grids including a TAST are modeled in environment of 

MATLAB/SIMULINK. Then, the mathematical CNRM of the TASTs is developed 

for use in the steady-state Load Flow (LF) analysis. Finally, performance of the 

TAST is assessed in two significant applications; enhancement of the OPF to reduce 

the generation cost, and enhancement of transmission grid security. 

 

The research facilitates meeting the increasing requirement of grid controllability 

and flexibility [47-49] through use of competent and cost effective novel PFCs. The 

research rectifies the economic demerits of the UPFC and the technical drawbacks of 

the conventional ST. Possessing most advantages of the UPFC and conventional ST, 

the TASTs bridge the technology gap. The TASTs provide closely comparable 

characteristics to the UPFC at far lower cost and thus can be widely used. In the 

current circumstances of grid operation and the continuing trends, the TASTs 

represent timely proposed valuable tools that can aid the security and stability, and 

optimize operation of power systems. TASTs can help open up transmission lines′ 

bottlenecks to push huge amounts of active power, and better utilize the existing grid 

infrastructure. They can aid integration of more VRESs, and ease harnessing much 

more of their power. The continuous and smooth control action of the TASTs is 

advantageous as such characteristics provide repeatable option for power system 

control [50-52]. The error-free control of the TASTs ensures that it is able to provide 

the desired precise control action similar to that achieved by a UPFC conversely to 

the conventional ST [41]. The non-limited operating points of the TASTs, within 

their control range, provide increased flexibility to grid operations and a 

performance that is closely similar to that of UPFC. Nonetheless, besides the 

advantageous technical features, cost of the TAST is far lower compared to that of 
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the UPFC. Moreover, the extended control range of the TAST reveals that it can 

operate in some cases beyond the limits of a UPFC that costs more. Also, the 

improved response of the TAST (in the range of milliseconds) within the operating 

circles of the TST enables the TAST to mitigate transient stability problems, and 

control the VRESs to harness more of their power [50]. 

 

i.   A novel TAST is proposed for use in dynamic power flow control of 

transmission grids and enhancement of utilization of existing grid 

infrastructure. TAST proved to be versatile and closely comparable to UPFC 

with a far lower installation cost. It can replace UPFC for many utility 

applications. 

ii.   Novel LA-TASTs are proposed for dynamic power flow control of 

transmission grids and enhancement of utilization of existing grid 

infrastructure. A LA-TAST has less components count as compared to TAST 

and thus costs less. It covers a limited-angle control-area that is satisfactory for 

a specific purpose. 

iii.  An accurate model of TAST: CSM is developed for the use in the device level, 

and its results are validated. 

iv.  Two accurate models of TASTs: SIMULINK-based, and mathematical 

comprehensive Newton-Raphson based, are developed, and their results are 

validated. They are significant tools for steady-state analysis of power systems 

that incorporate a single TAST or more. 

 

1.5 Outlines of Thesis 

 

Chapter 1 highlights current state of power transmission grids, and existing 

transmission grid PFCs. It states the problem, introduces aim and objectives of the 

thesis, and finally presents scope of the research. Chapter 2 of this thesis displays the 

literature review. The challenges that face transmission grids and the mitigation 

measures are introduced. Among the mitigation measures, power flow control is 

emphasized. Benefits of power flow control are emphasized, its fundamental 

principle is presented, existing PFCs are compared, and based on that, a technology 

gap between most versatile existing PFCs is emphasized and family of proposed 

TASTs is introduced. 

 

Chapter 3 of the thesis introduces methodology. Methods of simulation, analytical, 

and vector analysis are used. Simulation is performed using SIMULINK of MATLAB. 

Analytical methods include Newton-Raphson based LF analysis and simple power 

flow equations. Vector analysis is performed utilizing Microsoft Visio. Optimal 

power flow is performed using MATPOWER. TASTs are designed, and modeled and 

the models are validated. Ratings of its components are determined, and operation 

principle is introduced. More than a method is used in each single study for purpose 

of validation. 
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Chapter 4 presents results and discussion. The CSM of TAST is utilized to test its 

action in regulating voltage and power flow. Control strategies and operational 

characteristics of TAST are revealed and advantages are presented. TAST′s 

operational characteristics are compared to those of a similar ST. Also, installation 

cost of a TAST is analyzed and compared to that of a similar UPFC. Validity of the 

SSM and CNRM is demonstrated prior to their use in power system level. Finally, 

performance of the TASTs is assessed in two different applications, which are 

enhancement of the OPF and transmission grid security. In the first application, 

TAST is techno-economically compared to a similar conventional ST. In the second, 

TAST is compared to a similar UPFC bearing in mind regulating voltage of shunt 

bus of the UPFC. 

 

Chapter 5 concludes the thesis. It highlights significance of the research, stresses the 

findings in line with the objectives, and states key contributions of the thesis. It then 

acknowledges the limitations, and gives recommendations for future research. 

Finally, list of the publications that are accompanied by the thesis is provided. 
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