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Transformers are considered as a key in the transmission and distribution of electrical 
energy. The increases for electricity have encouraged the manufacturers to produce 
huge numbers of transformers for different sizes and ratings to work on the electric 
grid in order to meet market demands. The electrical power engineering and 
transformer experts seek to achieve the best economic and practical operation of 
electrical power system transformers, which include minimizing losses that are 
generated inside the transformers. The losses in transformers can be significantly 
reduced, especially in the core by improving the performance of the joint design. 
Several factors and parameters contribute to core losses such as shape of joint, gaps 
in between the joint parts, thickness of laminations, overlapping, orientation and 
number of laminations per stack.  
 
 
In this study, an intelligent algorithm was carried out using the particle swarm 
optimization technique (PSO) to propose the optimum design of T-joints for the core 
in three-phase distribution transformers. This technique was applied to design a new 
geometry of joint to get the minimum losses and to reduce the temperature in three-
phase transformers. The smart algorithm proposed in this study presents the 
following advantages: (i) the correlation between the angles of the T-joint and gaps, 
(ii) the core loss profiles with temperature were considered, and (iii) the system was 
examined under different operational conditions.  
 
 
The transformer was simulated on the basis of real dimensions obtained from the 
transformer manufacture’s data. Furthermore, a 3D finite element analysis software 
model for transformer coupling with particle swarm optimization (PSO) technique 
was used and is validated by corresponding experiments. The simulation results have 
been validated with the manufacturer’s data of transformer rated at 1000 KVA. 
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Practically, good agreements were obtained between the simulation results and the 
experimental data. The important parameters in the core joint design were 
emphasized through a comparison of the losses in various types of T-joint designs. 
The core losses, total losses were reduced for the new proposed model.  
 
 
The core and oil temperature underwent a good reduction as compared with the 
conventional T-joint designs. The core losses in the proposed design reduced more 
than 11% and 7% when using material M5 and M4 respectively. While more than 
25% of the core loss reduction occurred when using material M6. The total owing 
cost for energy saving for different materials in the different T-joint designs indicated 
a life cycle, saving of RM 1297 for the M5 material and RM 1971 for the M6 material 
per transformer when compared to a conventional T-joint design of the same rating. 
Moreover, the proposed intelligent algorithm in this work can improve the 
transformer core design as well as can be applied to various power and distribution 
transformers. 
 

  



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah 

 
 

OPTIMISASI PENGUBAH T-JOINT MENGGUNAKAN TEKNIK 
PENGOPTIMUMAN KELOMPOK ZARAH (PSO) DAN REKA BENTUK 

TERAS SEPARA SFERA 
 
 

Oleh 
 
 

OMAR SHARAF AL-DEEN YEHYA 
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Fakulti : Kejuruteraan 
 
 
Pengubah adalah dianggap terpenting dalam penghantaran dan pengagihan tenaga 
elektrik. Peningkatan tenaga elektrik telah menggalakkan pengilang untuk 
menghasilkan pengubah dengan pelbagai saiz dan kadaran untuk beroperasi di grid 
elektrik untuk memenuhi permintaan pasaran. Pada masa ini, kejuruteraan kuasa 
elektrik dan pakar pemindahan berusaha untuk mencapai operasi ekonomi dan 
praktikal yang terbaik untuk pengubah sistem kuasa elektrik, termasuk 
meminimumkan kerugian yang dijana di dalam pengubah. Kerugian-kerugian di 
dalam pengubah tiga-fasa boleh dikurangkan dengan ketara terutamanya di teras 
dengan menambahbaikan prestasi reka bentuk sambungan. Beberapa faktor dan 
parameter menyumbang kepada kerugian teras seperti bentuk sambungan, jurang di 
antara bahagian-bahagian sambungan, ketebalan pelapisan, pertindihan, orientasi 
dan bilangan pelapisan setiap timbunan.   
 
 
Di dalam kajian ini, suatu algoritma pintar telah dijalankan dengan 
menggunakan teknik pengoptimuman sekelompok zarah (PSO) bagi 
mencadangkan reka bentuk optimum sambungan-T untuk teras dalam pengubah 
pengedaran tiga-fasa. Teknik ini telah digunakan untuk mereka bentuk geometri baru 
sambungan untuk mendapatkan kerugian minimum (tanpa-beban dan dengan beban) 
dan untuk mengurangkan suhu minyak di dalam pengubah tiga-fasa. Algoritma 
pintar yang dicadangkan di dalam kajian ini membentangkan kelebihan berikut: (i) 
korelasi antara sudut sambungan-T dan jurang, (ii) profil kerugian teras dengan suhu 
telah dipertimbangkan, dan (iii) sistem itu diperiksa di bawah keadaan operasi 
berbeza (dengan beban dan tanpa-beban).  
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Pengubah itu disimulasi berdasarkan dimensi sebenar yang diperolehi daripada data 
pengilang pengubah. Untuk mencapai sasaran ini, suatu model perisian analisis 
berunsur 3D untuk gandingan pengubah dengan teknik pengoptimuman sekelompok 
zarah (PSO) digunakan dan disahkan oleh eksperimen yang sepadan. Selain itu, tiga 
jenis bahan-bahan teras yang penting telah digunakan untuk model-
model yang dicadangkan. Alat perisian yang telah digunakan di dalam kajian ini 
adalah Ansys Workbench, dan juga untuk pra dan pasca pemprosesan termasuk 
antara muka dengan MATLAB. Keputusan simulasi telah disahkan dengan data 
pengilang bagi pengubah pengedaran tiga-kaki tiga-fasa berkadaran 1000 KVA dan 
persetujuan yang agak baik telah diperolehi antara simulasi dan kerja eksperimen. 
Parameter penting di dalam reka bentuk sambungan teras telah diberi penekanan 
melalui perbandingan antara kerugian dalam pelbagai reka bentuk sambungan-
T. Menurut keputusan simulasi dan eksperimen, kerugian teras dan jumlah kerugian 
telah dikurangkan untuk model baru yang dicadangkan.  
 
 
Teras dan suhu minyak menjalani pengurangan yang baik berbanding dengan reka 
bentuk sambungan-T konvensional.  Keputusan simulasi menunjukkan bahawa 
kerugian teras dalam reka bentuk yang dicadangkan dikurangkan lebih daripada 11% 
dan 7% apabila menggunakan bahan M5 dan M4 masing-masing. Manakala lebih 
daripada 25% daripada pengurangan kerugian teras telah diwujudkan 
oleh penggunaan bahan M6. Jumlah kos terhutang untuk penjimatan tenaga bagi 
bahan-bahan yang berbeza dalam reka bentuk sambungan-T yang berbeza 
menunjukkan penjimatan sepanjang kitaran hidup sebanyak RM 1297 untuk bahan 
M5 dan RM 1971 untuk bahan M6 bagi setiap pengubah berbanding reka bentuk 
sambungan-T konvensional yang sama kadarnya.  Selain itu, algoritma pintar dalam 
kajian ini boleh meningkatkan reka bentuk teras pengubah dan juga boleh 
digunakan untuk pelbagai pengubah kuasa dan pengagihan dengan kadaran yang 
berbeza. 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 

1.1 Background 
 
Three-phase are essential components in electrical power systems which transfer 
electrical energy from the power plants to the loads. Distribution transformers have 
intrinsically high efficiencies in comparison with other electrical equipment, 
especially as they are in constant operation and have a comparatively long lifespan. 
They are utilised in great numbers to enable and provide electricity distribution to 
the customers and end users (Lutchman, 2012). A huge number of distribution 
transformers have been working steadily and continuously in electrical network 
grids. 
 
 
Nevertheless, the efficiency of transformers is not 100% as there are electrical losses 
associated with them. Although transformer efficiency during operation at full load 
is very high, but the losses are always present even with no load. In spite of operating 
with high efficiencies, the loss issue still attracts the attention of researchers. The 
power efficiency in transformers has been often greater than 98 % at its highest level 
(Ilo et al., 2000). The core loss represents about 70 % of the total losses of the 
transformer whereas the operating efficiency is 93.38 %.  
 
 
In twenty five European Union countries (EU-25) and generally around the world, 
there is anxiety about the no-load losses that should be minimized as much as 
possible (Targosz and Topalis 2007).  
 
 
Moreover, there are three important solutions to reduction the losses in transformer. 
One of them is to use better material. Another way is to improve the cooling medium 
and methods. The third one is to improve the distribution of flux by changing the 
geometry of the core design. For the first one, the economic factor is present here 
which means, can get a good performance for transformer if used high quality core 
materials but the cost is very high. In the recent years, cost of cold-rolled grain-
oriented steel (CRGO) increase. Silicon iron for cores of transformers is supplied by 
a few factories which are quite renowned for this material. Major manufacturers are 
Posco of Korea, Nippon and Kawasaki of Japan, and manufacturers from East 
Europe, Russia and American continental nations.  
 
 
The most prevalent CRGO electrical steel utilised is M5 which was at RM5.60 per/kg 
in January 2004; the cost in December 2005 was about RM17.04 per/kg, a price 
upsurge of 304 %. Figure 1.1 shows the average cold-rolled grain-orientated 
(CRGO) steel price graph which reveals that the highest price level was from 
February 2005 to December 2005 for each of the CRGO grades (Daut and Uthman 
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2006). For the second solution which can be used to reduction the losses in 
transformer is related to the cooling technique, but for this solution, the economic 
factor is very high because should be known about the heat distribution inside the 
core, windings and oil.  
 
 
Furthermore, more information about oil properties and which type of oil should be 
used in the different rated of transformers. Therefore, as a result, any saving or minor 
increase in efficacy can amount to considerable savings over the lifetime of the 
transformer (Leonardo, 2010).  
 
 

 
 

Figure 1.1 : Price of CRGO material (Daut and Uthman 2006) 
 
 
For the third solution (related to the geometry of joints) which effect to the losses 
profiles because any change of the core design has effect to the performance of the 
core. The central limb is linked to the base yoke and the top yoke and this joint is 
known as a T-joint. The T-joint is regarded as the spine of the transformer core since 
it affords a mechanical support for the core and a large amount of the magnetic flux 
is routed through the T-joint connection. Efficiency of any type of transformer 
depends on numerous factors, one of these factors is the joint design of the core 
(corner and T-joints). The relationship between the losses profiles with different 
geometries of the core T-joint is very complex. The core of a transformer is built 
from assembled numerous packages which have different thicknesses. The semi-
circular yokes tend to be joint with circular limbs so the features of a core joint are 
considered to be a complex 3D system. In a transformer, core losses and the 
behaviour of the magnetic flux are crucial for its design (Høidalen et al., 2016; Lotfi 
and Rahimpour 2013). As a very rough guide, increasing the flux density by 1 % 
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causes an increase in losses by about 2 % (Pfützner et al., 2014). On the other word, 
most of the losses inside the transformers followed by a rise of temperature which 
means any reduce of losses, the temperature reduces and vice versa. Hence there is 
an urgent need to find a suitable way in the design of the transformer core to reduce 
the losses. 
 
 
1.2 Problem Statement 
 
The majority of these researches have focused on flux behaviour and localize losses 
in the T-joint area. However, there are many subjects in this matter has not been 
addressed in the previous studies. Currently, power transformer core joints generally 
use 45° mitred overlap joints (Bengtsson et al., 1989). Moreover, for laboratory 
studies, most of researcher have used few laminations to build the core of transformer 
to measure the localize losses and flux but this method does not give a real 
impression of the behaviour of core. From all the investigation in the literature, it is 
obvious that the main problem in the core design, it is coming from the joints. 
Although the above has been researched, so far there have been very few studies 
suggesting a new shape of T-joint design to reduce core loss and to achieve efficient 
flux behaviour in the core transformer. Thus, it is essential to find the optimum 
design of T-joint for core in three-phase transformer. There are many significant 
points which can be highlighted from previous studies and the research gaps brought 
to light as follows: 
 

1. There is a lack of technique and justification to evaluate the T-joint parts and 
most studies are based on trial and error methods, whereas the angle should 
be evaluated based on the transformer conditions by considering other 
parameters at the same time.  

2. No significant available concerning the correlation between T-joint angles, 
length of flux path (L) and the gaps in the joint area. 

3. Lack of consideration on the T-joint design and the gaps between the joints 
under different load conditions as most studies consider only the no load 
condition whereas by increasing I, then B increased and losses increased. 

4. No significant study focused on both aspects of the design of the core 
parameters in the presence of oil and considered the thermal profiles at the 
same time as the losses. This is significant because the gaps in the joints 
inside the transformer are filled using oil and the thermal behaviour of the oil 
is therefore very significant, especially in the ageing of a newly designed 
transformer. 

5. The correlation between the joint design with the gaps and temperature 
profiles has not been addressed in previous studies.  

 
 

1.3 Research Objectives 
 
The main aim of this study is to propose a new model of the T-joint in a distribution 
transformer in order to improve the behaviour of the core and reduction the losses 
within the transformer. To attain this objective, it is essential to conduct several tasks 
in the area of transformer core prototyping, materials, measurement, and analysing 
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the correlation among them. Furthermore, the model must have the ability to be 
applied using finite element methods by using ANSYS Software. Distribution 
transformers have complex three-dimensional geometry with nonlinear materials in 
the core. This makes it necessary to use powerful and accurate numerical methods 
like the finite element method to analyse and understand its behaviour. The overall 
gains from this study will have significance both for the end users and for the 
producers of transformers and related materials.  
 
 
The key objectives and expected tasks and accomplishments of the current study 
were achieved under the below specific goals: 
 

1. To present a new T- joint design of transformer core using proposed PSO 
base intelligent algorithm by considering on the power loss reduction under 
different load conditions. 

2. To develop a new T-joint design called (hemisphere) for the transformer 
core. 

3. To evaluate the proposed designs under different core materials and loads 
and also comparison between the electrical and economical indices of 
proposed designs and conventional ones from industry. 

 
 
1.4 Scope and Limitations  
 
In this study, the influence of redesign the form of T-joint to the losses and thermal 
profiles in three-phase transformer was studied in the different operation conditions. 
To achieve this target, the current study involved many points but the main ones can 
be summarized as follows: 
 

1. Studying the effect of changing the design of T-joint shape to the 
performance of the core for three phase transformer via using different core 
materials. 

2. In this study, intelligent algorithm proposed to find the optimum dimensions 
of T-joint parameters.  

3. Using the commercial ANSYS Software to build all the 3D proposed models 
for transformer core. 

4. Proposed a new T-joint model which called hemisphere that gives a good 
performance as compare with the conventional models.  

 
 
1.5 Research Contributions 
 
The contributions of this study can be brief as follows: 
 

1- New information of the core design of three phase transformer under different 
types of materials and geometries. 

2- Using an intelligent algorithm to determine the optimum design T-joint 
geometers by considering the important parameters which effect to the 
design. 
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3- The current proposed model (hemisphere) T-joint design is different from 
previous models in the literature in terms of form and content. 

4- The relationship between the power loss and the oil temperature was 
considered. 

5- The effect of changing the form of the T-joint design for a core transformer 
was presented to demonstration the relationship between the shapes of the 
design with the losses. 

1.6 Organization of the Thesis 

In order to accomplish the targeted objectives mentioned earlier, the thesis consists 
of five chapters and each is elaborated with further details below:  

Chapter One provides an overview of this thesis and this chapter also discusses a 
briefly the research problem, objectives, scope and limitations of the study, research 
contributions and also discussed. 

Chapter Two presents a literature review is given concerning the losses in 
transformers as well as a concise theory of transformers and their structures. There 
are different transformer variants and designs. In this chapter emphasis on the core-
type of power transformers. All the selected past research and references were 
discussed briefly in this chapter. 

Chapter Three discusses the details of methodology for the new algorithm, 
transformer parameters and graphs. A brief explanation is given of the algorithm 
which is proposed in this project. In addition, this chapter includes a description of 
the configuration of the transformer core design which is incorporated into this work 
that allows the study of losses and thermal profile of the transformer. Further, the 
modelling of a power transformer is discussed, including models of the transformer 
core and the windings. A discussion is also given concerning the finite element 
method (FEM) with a description of the Ansys software model for a three-phase 
transformer.  

Chapter Four presents the simulation results of the three-phase transformer and an 
analysis of the developed model is discussed. It covers the new design modelling of 
the T-joint design in the different core materials. 

Chapter Five concludes with emphasis on the final discussion and a summary of the 
conclusions. Possible future works are discussed in brief in this research area.  
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