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Chairman :  Assoc. Prof. Ir. Raizal Saifulnaz Muhammad Rashid, PhD 
Faculty :  Engineering 

Precast Foamed Concrete Sandwich Panel (PFCSP) has the ability to act as a wall 

bearing and flooring element that complies with the requirements of structural 

efficiency and thermal insulation of building components. It has the potential for use 

as an industrialised building system component for low-rise residential buildings.

The development of housing remains a major worldwide challenge for construction 

industries in many countries due to financial constraints and lack of appropriate 

technologies. The problem is further compounded by rapid increase of population. 

Also, the existing precast concrete sandwich panels act in a semi-composite behavior 

due to several factors related to shear connectors used. Therefore, a study to improve 

on the structural composite performance is extremely required, as most of the current 

precast concrete structures are deemed as heavy systems. Hence, the reduction on the 

self-weight of PCSP becomes highly imperative, particularly for use at construction 

sites with low load-bearing capacity grounds.  

This study has the objectives to determine the parameters related to structural 

behavior of PFCSP served as load-bearing wall and floor systems. The study also 

determines the properties of foamed concrete for use in the production of PFCSP. In 

order to evaluate the performance of the developed PFCSP elements, PFCSPs were 

subjected to loads in various directions, including axial, in-plane and out-of-plane 

loads. An analytical study and experimental tests were conducted to evaluate the 

structural performance of the PFCSPs subjected to loads in various directions. An 

experimental study comprising thirty (30) PFCSPs and three (3) PCSPs with one 

panel was set as control, as each test was conducted under three different full-scale 

loadings (12 PFCSPs under axial load, 6 PFCSPs under in-plane shear load, and 12 

PFCSPs under out-of-plane load). Foamed concrete with 24.83 MPa and 25.73 MPa 

was obtained as the potentially viable grades to produce the structural concrete 

wythes of the PFCSPs as load-bearing wall and slab elements, respectively. Foamed 

concrete wythes act as structural rigid elements. Important parameters, such as 

slenderness (H/t) and aspect ratios (L/d) were investigated using different variables. 
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The composite action under different imposed load conditions was studied and 

revealed a high structural composite performance. Further, a FEA parametric study 

was carried out to study similar parameters conducted via experimental tests to study 

the performance. Also, the theoretical investigations are conducted using design 

codes and theoretical expressions of previous researchers. Comparisons are made 

between the results obtained from experimental tests and non-linear FEA models 

studies for the purpose of validation. 

Analysis of results found that the ultimate bearing strength was decreased by 

approximately 26.3% and 111% for an increase of H/t from 14 to 24 and 13.33 to 

28.57, respectively, as obtained from experimental works. However, using the 2-D

FEA simulation models, the bearing capacity was decreased by almost 9.9% and 

89%. Under in-plane shear load, the reduction in ultimate in-plane strength was 

approximately 36.14% and 28.07% for an increase of H/t from 14 to 24, as obtained 

from tests and the 2-D FEA models, respectively. The ultimate bearing capacity of 

the developed PFCSP walls was obtained to be at least 9 times larger than the 

required, to resist typical two-storey ultimate design loads. Furthermore, it has been 

found that the ultimate flexural strength capacity was decreased by around 50% and 

52.3% with an L/d increase from 18.33 to 26.67 and from 16.18 to 23.53 of the two 

identical PFCSP groups with the depths of 150 and 170 mm, respectively, as 

obtained experimentally. Verification of the result using the 2-D FEA simulation 

models indicated a reduction in ultimate strength capacity of about 69.6% and 

79.2%, respectively. 

Therefore, it is concluded that the developed PFCSP is suitable as a load bearing 

element, and can be applicable and safe for a wall system for two-storey buildings, 

and PFCSP has a practical use as floor slabs. The summary and conclusions of the 

major findings of this study together with the recommendations for further work are 

presented in Chapter VII. 
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MENENTUKAN KELAKUAN STRUKTUR PANEL SANDWIC KONKRIT 
BERBUSA PRATUANG 

Oleh 

MUGAHED YAHYA HUSSEIN AMRAN 

November 2016

Pengerusi :  Prof.Madya Ir. Dr. Raizal Saifulnaz Muhammad Rashid, PhD 
Fakulti :  Kejuruteraan 

Panel Sandwic Konkrit Berbusa Pratuang (PFCSP) mempunyai kemampuan utk 

bertindak sebagai dinding penahan dan elemen lantai yang memenuhi keperluan 

kecekapan struktur dan penebat haba untuk komponen bangunan. Panel ini 

mempunyai potensi untuk digunakan sebagai komponen sistem pembinaan industri 

untuk bangunan bertingkat.  

Pembangunan rumah kediaman sememangnya menjadi satu cabaran utama bagi 

industri pembinaan di kebanyakan negara disebabkan oleh kekangan kewangan dan 

teknologi yang sesuai. Masalah ini semakin meruncing dengan pertambahan 

penduduk. Panel sandwic konkrit bertetulang pratuang yang sedia ada mempuyai 

sifat komposit separa disebabkan beberapa faktor yang berkait dengan penyambung 

ricih. Oleh itu, suatu kajian untuk menambahbaik prestasi struktur komposit sangat 

diperlukan kerana konkrit pratuang konvensional menghasilkan struktur yang sangat 

berat. Dengan itu, (PFCSP) berpotensi untuk mengurangkan berat-siri struktur, yang 

sangat penting bagi kawasan tapak pembinaan yang mempunyai keupayaan galas 

yang rendah.  

Kajian ini mempuyai objektif untuk menentukan parameter yang berkaitan dengan 

kelakuan struktur PFCSP untuk digunakan sebagai sistem dinding penahan dan 

lantai.  Kajian ini juga menentukan sifat konkrit berbusa bagi kegunaan penghasilan 

PFCSP. Untuk menilai prestasi aplikasi komposit yang telah dihasilkan ini, panel 

PFCSP telah dikenakan beban dalam pelbagai arah, termasuklah beban paksian, 

dalam-satah and luar-satah. Kajian berbentuk analitik dan ujikaji telah dilaksanakan 

untuk menilai prestasi PFCSP yang dikenai beban pelbagai arah. Ujikaji yang 

melibatkan tiga puluh (30) panel PFCSP dan tiga (3) panel PCSP, dengan sekeping  

sebagai panel kawalan, dilakukan di bawah  tiga bebanan skala-penuh yang berbeza 

(12 panel PFCSP dikenai beban paksian, 6 panel PFCSP dikenai beban ricih dalam-

satah dan 12 panel PFCSP dikenai beban luar-satah). Konkrit berbusa dengan gred 

kekuatan 24.83 MPa and 25.73 MPa telah dihasilkan untuk menyamai struktur wythe 
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konkrit PFCSP yang masing-masing sesuai sebagai elemen tembok penahan dan 

papak. 

  

Wythes konkrit berbusa bertindak sebagai element struktur tegar. Parameter utama 

seperti nisbah kelangsingan (H/t) dan nisbah bentuk (L/d) telah diteliti menerusi 

beberapa pembolehubah. Tindakan komposit di bawah pelbagai keadaan beban 

kenaan yang diselidik telah menemukan struktur komposit berprestasi tinggi. 

Selanjutnya,  kajian parametrik menerusi Analisis Unsur Terhingga (FEA) telah 

dilakukan untuk mengesahkan prestasi tersebut menerusi ujikaji.  Kajian secara teori 

dilaksanakan menerusi kod reka bentuk dan ungkapan teori daripada penyelidik 

terdahulu. Suatu perbandingan dilakukan antara keputusan ujikaji dengan model tak-

linear FEA untuk tujuan validasi.   

Analysis keputusan menunjukkan kekuatan galas muktamad dikurangi sebanyak 

lebih kurang 26.3% dan 111% dengan peningkatan nisbah H/t masing-masing dari 

14 ke 24 dan dari 13.33  ke 28.57 daripada hasil ujikaji. Walau bagaimana pun 

dengan menggunakan model simulasi 2-D FEA, kekuatan galas telah berkurangan 

hampir 9.9% dan 89%. Di bawah bebanan ricih dalam-satah, pengurangan kekuatan 

dalam-satah muktamad ialah 36.14 dan 28.07% untuk peningkatan nisbah H/t dari 14 

ke 24, seperti yang dihasilkan masing-masing daripada ujikaji dan model 2-D FEA. 

Keupayaan galas bagi dinding PFCSP yang dibangunkan ini didapati melebihi 9 kali 

kekuatan yang diperlukan,  untuk merintangi beban reka bentuk bagi bangunan dua-

tingkat. Keupayaan kekuatan lenturan muktamad juda didapati berkurangan 

sebanyak masing-masing 50% dan 52.3% dengan peningkatan nisbah L/d dari 18.33 

ke 26.67 dan dari 16.18 ke 23.53 daripada dua kumpulan PFCSP yang serupa, 

dengan kedalaman masing-masing 150 mm and 170 mm, menerusi ujikaji. 

Keputusan telah diverifikasi menggunakan model simulasi 2-D FEA yang 

menunjukkan pengurangan keupayaan kekuatan muktamad masing-masing sebanyak 

lebih kurang 69.6% and 79.2%.  

Oleh itu, lanya dapat disimpulkan bahawa PFCSP yang telah dibangunkan ini sesuai 

sebagai elemen penahan daya, dan selamat digunakan untuk sistem dinding bagi 

bangunan dua-tingkat, dan PFCSP mempunyai kegunaan praktikal sebagai elemen 

lantai. Ringkasan dan kesimpulan hasil dapatan utama dalam kajian ini, berserta 

saranan untuk kerja lanjutan kajian ini ada dinyatakan dalam Bab VII. 
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CHAPTER I 

1 INTRODUCTION

1.1 Industrialised building system 

The global construction industry has undergone obvious transitional change from 

being an industry that employs conventional technology to one that uses a highly 

systematic and efficient system. The new system is known as the Industrialised 

Building System (IBS) (Nawi et al. 2014). The IBS is widely used in the Malaysian 

construction industry to obtain factory-produced structural elements, such as precast 

frames, roofs, and walls. The industry itself is well developed with some enterprises 

owning facilities for producing any precast structural element. In the Malaysian 

context, the Construction Industry Development Board (CIDB) defines the IBS as a 

system that comprises components that are generally prefabricated in-site or off-site 

at a factory by pouring concrete in a prepared formwork and leaving the concrete to 

cure in ambient conditions. The prefab components are then transported to the site 

for installation in designated positions in a structure with minimum additional 

manpower and site work. Nevertheless, the combination of precast IBS components 

still requires a minimum in situ to integrate their interactions with other elements, 

such as connection joints (Garrido et al. 2016). Recently, the production of precast 

concrete wall panels has become a specialization in the development of concrete 

products. For example, manufacturers remain on the lookout for new viable product 

lines. Architects and engineers appreciate the energy performance and general 

aesthetics of such panels. Contractors have also found that the use of sandwich 

panels allows quick drying, which in turn allows other trades to work in a clean and 

comfortable environment. The total population in Malaysia has rapidly increased. 

Meanwhile, the demand for improved quality of life has risen. For instance, the 

demand for residential buildings alone, as cited in the 1995–2020 Malaysia Plan, is 

estimated to be approximately 8,850,554 units, including 4,964,560 new housing 

units. This projection is based on the population increase (Yoke et al. 2003, Nawi et 
al. 2014). According to the 9

th
 Malaysia Plan, 709,400 new residential units were 

projected to be built by 2009; of this number, 270,000 units (38.2%) were intended 

for low- and low/medium-cost houses, whereas the remaining 438,000 units (61.8%) 

were intended for medium and high residential building types (Nawi et al. 2011). 

However, Malaysia has been struggling to find a fast-track solution for building 

affordable quality housing units within the framework of sustainable development 

strategies and using technological means. As a result, the CIDB of Malaysia 

continues to encourage the construction industry to produce IBS components and 

thereby bridge the gap between population demands and industry supply. The IBS 

comprises two main components, namely, load bearing panels and flooring system 

elements (Figure 1.1). The two components are designed according to the principle 

of carrying the major loads transmitted from various parts of a completed building 

structure. Therefore, precast concrete panels fabricated for wall systems may be non- 

or load-bearing panels. Current applications are focused on ensuring the durability of 

external walls, quality performance, and low maintenance requirements. 
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Figure 1.1: Industrial building system (IBS) (PCI Industry Handbook 6th

Edition) 

1.2 Precast concrete sandwich panel  

The Precast Concrete Sandwich Panel (PCSP) is structurally and thermally efficient 

elements used for both walls and floor slab in multi-unit residential, commercial, and 

warehouse buildings throughout the world (Section 2.4). A typical PCSP consists of 

two precast reinforced concrete layers (called wythes) separated by a layer of 

insulation and connected with connectors which penetrate the insulation layer. PCSP 

is majority advanced for use as a wall bearing because of its capacity to withstand 

loads that act from the roof or floor of the building elements and to transfer these 

loads directly to the foundation (Noridah, 2010). The valuable functions of PCSPs 

are highly similar to those of precast solid wall panels, and they di er only in their 

build-ups. An interest in sandwich panels as bearing wall has been recently 

observed, leading manufacturers to search for sufficient viable products. 

Engineers/architects and researchers are pleased with the structural efficacy, 

insulation efficiency, and energy performance of wall/slab sandwich panels 

(Voellinger et al. 2014). Further, PCSP is a fast-track construction technique that 

was introduced to a number of western countries, including the United Kingdom, the 

United States, Germany, and Holland, in the past century (Salmon, 1997, PCI, 2011). 

PCSPs are considered a viable technology product for replacing the conventional 

applications of pure cast in-situ structural concrete with prefabricated building 

applications. A PCSP typically comprises two high-strength wythes that are 

separated by a layer with less weight, low strength, and low density (PCI, 2011).

These wythes come in standard shapes and sizes and may thus include a hollow core 

section, a double tee and a flat slab or any other architectural section connected by a 

series of shear connectors, metal connectors, and concrete ribs. According to the PCI 

Committee (2011), PCSPs are practically prefabricated with heights and widths of 

up to 13.5 m and 3.5 m, respectively. The thickness of each concrete wythe ranges 

from 0.05 m to 0.152 m, and the overall thickness of the panel ranges from 0.127 m 
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to 0.305 m. According to EN BS5427:1976, the minimum thickness of a structural 

wythe is 76 mm for a non-pre-stressed wythe and 50 mm for a pre-stressed wythe. 

PCSPs are structurally classified into three main categories (Noridah, 2010). 

i. Composite section 

This section is analyzed, designed, detailed, and fabricated in a factory to ensure that 

the two concrete wythes that make up a PCSP act integrally to resist applied load. 

The overall thickness of a panel acts as a single unit by providing a full shear 

connector between the wythes to allow sufficient strength capacity to transfer 

longitudinal shear and bending moment. In this way, flexural strain is distributed in 

the cross section of the panel, as shown in Figure 1.2 (a).  

ii. Semi-composite section 

This section is analyzed, designed, detailed, and manufactured as a partial composite 

during stripping, shipping, and assembling. In addition, it functions as a non-

composite system for in-place loads. In practice, a sufficient shear connector is 

recommended to enhance the combination between certain types of materials and the 

transfer of shear forces during handling. Such bond is designed for the short term. 

The flexural strain distribution in the cross section of the panel is depicted in Figure 

1.2 (b). 

iii. Non-composite section 

The non-composite section is analyzed, designed, detailed, and manufactured in a 

factory to ensure that the wythes can act separately even without the ability to 

transfer longitudinal shear forces. In the general design of structural and non-

structural wythes, the latter is thinner than the former. Therefore, almost 50% of 

shear and bending moment can be resisted (Figure 1.2 (c)). 
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Figure 1.2: Strain distribution in the PCSP caused by bending 

1.3 Foamed concrete and relevance 

Foamed Concrete (FC) is widely used, especially in western countries. The United 

States uses FC in an increasing number of applications, such as cast-in-place roof 

insulation, bridge abutment, trench reinstatement, non- and semi-structural wall 

systems, and void filling in geotechnical engineering (Mugahed et al. 2015). The 

performance of FC basically depends on its compressive strength, which is usually 

influenced by several characteristics, including density, moisture content, age, curing 

condition, sand and cement type, and the volume and type of the chemical foam 

agent used (Norlia et al. 2013). Moreover, the tensile strength of FC is controlled by 

curing conditions of up to 25% of its compressive strength and 0.1% of the strain at 

the time of rupture. Yet, its shear strength is close to 10% of its compressive 

strength. The structural density of FC is also limited between 1440 and 1850 kg/m
3

(Ramamurthy et al. 2009). Recently, construction industries have been inclined to 

apply an economical solution that can produce a viable product, such as FC with 

several unique features. Structural FC is primarily used to reduce the dead load of a 

building and provide the most efficient strength-to-weight ratio in structural 

elements (Noridah, 2010). Weight reduction results in easy construction and less 

used equipment such as crane and other facilities, thus, overall costs are reduced and 

construction quality is maintained (Yavuz et al. 2013). 

1.4 Precast foamed concrete sandwich panel 

The Precast Foamed Concrete Sandwich Panel (PFCSP) is a structure with an 

insulated and layered system. PFCSP is composed of external structural FC wythes 

that is sandwiched with a polystyrene as an insulation layer with a high thermal 

insulation of 0.07 K/m.w and a low density of 16.5 kg/m
3
. The three layers act 

integrally via a proper connection established through continuous steel truss-shaped 

shear connectors. PFCSP is an alternative system developed to replace the 
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conventional reinforced concrete components for both load bearing wall and floor 

slab elements. FC is used as a main lightweight material chosen to cast PFCSP. 

Structural FC achieved the desired strength and reducing the total dead load relative 

to traditional concrete. It also exhibited ideal strength–weight characteristic. The 

reduced total dead load encourages a decrease in foundation size and facilitates 

transportation and operation. The use of cranes in assembling is also minimized.

Hence, the overall construction cost can be reduced (Yavuz et al. 2013). In this 

regard, PFCSP is considered as one of the valuable contributions of structural 

researchers to the resolution of the problem faced by foundation engineers in 

providing enough bearing capacity foundation that can carry the overall dead load of 

building superstructures in grounds made unstable by peat soil. Recently, the 

development of lightweight concrete sandwich panels has increased in construction 

industries worldwide (Noridah, 2010). PFCSP is effective in certain aspects, such as 

in terms of the weight–strength ratio based on full-scale architectural and structural 

considerations. Many engineers and designers are unlikely to focus on the structural 

applications of FC (Bing, 2011). Therefore, further research on the types of 

lightweight concrete sandwich panels used as outer skins is necessary (Suryani and 

Mohamad 2012). The present study focused on PFCSP in structural engineering, 

including their strength, integrity, and self-weight reduction and enhanced the 

structural composite performance by proposing a sufficient number, arrangement, 

and the orientation of shear connectors used. Also, it reduced the self-weight of 

PFCSP by about 15-20% by using the FC compared to the current sandwich panel 

and at least by 20% through the reduction in the design geometry as a sandwich 

built-up, compared to RC applications. The feasible structural strength 

characteristics of PFCSPs under axial, in-plane shear, and out-of-plane loads with 

structural FC wythes are comprehensively investigated, and the degree of composite 

behavior is measured. The structural behaviors related to PFCSPs and their 

functional aspects in the load-bearing system of a low-rise residential building are 

also investigated. The suitability of employing PFCSPs as a slab element is then 

investigated.

1.4.1 Characteristics, significance, and attributes of PFCSPs 

On the basis of previous studies, PCSP is thermally efficient systems that can reduce 

energy cost for air conditioning systems by nearly 44% as well as 20% in overall 

cost when compared with framed walls (Gleich, 2007). Also, the use of FC in the 

production of PFCSP has further improved thermal insulation performance (Nooraini 

et al. 2009). The FC applications can achieve a high rate of sound absorption, which 

could be 10 times higher than that of dense concrete (Jones and McCarthy, 2003). 

Existing studies indicate that FC exhibits an acceptable fire resistance compared with 

normal concrete because of the presence of closed-cell structures formulated in FC 

mass (Vilches, 2012). The demand for the construction of precast sandwich 

composites has greatly increased because of their easy installation and fast

construction.
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With consideration of the above, the present study has significances as listed below. 

i. To develop a potential structural sandwich panel system by integrating FC 

to produce PFCSPs for bearing wall and flooring system components and 

thereby promote the quality of construction system. 

ii. To predict the structural acceptance of PFCSPs on the basis of an 

experimental investigation, an analytical study, and theory rooted in the 

principle of reinforced concrete solid applications. 

iii. To present the simplicity and practicality of commercially fabricated 

panels with lightweight materials for industrialization and marketing at the 

national and international levels and to consequently reduce the obstacles 

faced by low-income earners in owning affordable and quality housing. 

The three attributes involved to validate the IBS for construction are as follows: 

iv. IBS must satisfy all structural engineering requirements, such as strength 

and integrity, under applied loads for multi-storey buildings. 

v. IBS must maintain its economic value in terms of cost and design quality 

relative to traditional systems as well as the speed of construction. 

vi. IBS must reveal superior material properties and thermal performance in 

comparison with traditional systems. 

The present study aims to improve structural efficiency of PFCSPs by reducing self-

weight, and performance enhancement of composite structures through the use of a 

proper orientation of shear connectors with a sufficient number, which leads to 

affordable quality design components for housing construction. 

1.5 Problem statement 

Housing remains a major challenge for construction industries worldwide, 

particularly in developing countries, due to the financial constraints and 

inappropriate technologies (Benayoune, 2003; Noridah, 2010; Nawi et al. 2014). The 

problem is further compounded by the rapid population increase, the lack of access 

to suitable areas or lands worthy of investment for the construction of residential 

buildings, and the demands for improved quality of life (Nawi et al. 2012). 

Responding to this challenge using traditional building construction systems is not 

easy, and hence, requires meeting the demand for affordable housing within a short 

time while preserving construction quality and reduces cost (9th Malaysia Plan, 

Nawi et al. 2011, Samsudin and Mohamad, 2013).  

The current precast concrete panels behaves in a semi-composite manner due to 

factors such as number, spacing, arrangement, size of diameter, material of 

fabrication and orientation of the shear connector provided (Benayoune et al. 2008; 

Noridah et al. 2011; Gara et al. 2012; Noridah et al. 2014). Also, the design 
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geometry of steel truss-shaped shear connector is reported the most effective 

connector used to increase the percentage of composite action (Farah, 2002; 

Benayoune et al. 2008; Noridah, 2010). Therefore, further study to improve the 

composite performance of PCSP by increasing the number of shear connectors via 

reducing spacing and making a proper arrangement and orientation, is highly needed. 

Many researchers conducted comprehensive studies on PCSP under different 

loadings, but no solid conclusions were drawn, thus, further studies with different 

slenderness ratio (H/t) and aspect ratio (L/d), adopting a full-scale experimental 

design sections in order to determine structural performance are required (Noridah et 

al. 2014; Joseph et al. 2015; Ukanwa et al. 2015). 

However, precast concrete structures are commonly fabricated with conventional 

materials and thus result in heavy systems. Hence, the reduction of PCSP self-weight 

becomes highly imperative. Reportedly, the self-weight of a slab contributes to 

40%–60% of the total dead load of a residential building structure (Yavuz et al. 

2013). Therefore, a reduction of nearly 10% in the self-weight of a floor slab may 

lead to a 5% reduction in the self-weight of an entire building (Chopra, 1980). Also, 

many researchers have used lightweight concrete with non-structural grades limited 

to 17 MPa, to develop sandwich panels integrated by designing normal concrete caps 

at both ends in other to reduce early splitting failure (Memon et al. 2007; Sulaiman 

et al. 2009; Noridah, 2010; Noridah et al. 2011; Suryani and Mohamad 2012). Also, 

FC has the potential to be used for structural applications (Mindess, 2014). 

Therefore, further researches are extremely needed to obtain a potential and an 

alternative structural lightweight concrete composite system. Furthermore, the 

composite behavior of PCSP through experimental tests revealed slightly 

discontinued which may be due to inefficiency of the shear connector used (Noridah 

et al. 2014) or slippage of slippage inside the concrete wythes or because of 

debonding between reinforcement bars and shear connectors or less bounding 

between steel and concrete (Benayoune et al. 2008; Noridah, 2010). Though, there 

seems to be inadequate knowledge about nonlinear finite element analysis models 

for a full scale PCSP under different imposed loading conditions to further study 

structural performance (Kabir et al. 2005; Noridah et al. 2011; Gara et al. 2012; 

Ukanwa et al. 2015; Joseph et al. 2015). Thus, extending FEA simulation is required 

for the purpose of verification of the experimental results. 

The hypotheses of the study are; 1) the use of FC in the production of PFCSP is a

potential material in maintaining strength-to-weight characteristic and could further 

possibly reduce the self-weight of PFCSP components, 2) the development of a load-

bearing PFCSP wall is applicable and safe in the construction of a low-rise 

residential building, 3) the assessment in the use of PFCSP as a slab has the 

possibility to replace the conventional reinforced concrete solid slab, and 4), a semi-

empirical equation can be proposed on the basis of reinforced concrete solid wall 

principle, in order to predict the ultimate bearing strength capacity of the developed 

PFCSPs. 
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1.6 Objectives of the study 

The objectives of this study are briefly listed as follows: 

1. To develop a PFCSP that can serve as a load-bearing wall and a flooring 

element. Further, to determine the properties of FC for use in the production 

of PFCSP. 

2. To study the structural behavior of a PFCSP wall under axial and in-plane 

shear load tests. 

3. To determine the structural behavior of a PFCSP slab on the basis of 

experimental tests and theoretical analysis includes the extremes of fully 

composite and non-composite actions. 

4. To analyse the structural behavior of PFCSPs using linear and non-linear 

FEA models and to compare the results with the experimental test results and 

reinforced concrete solid application principles. 

1.7 Scope, relevance and limitations of the study 

This research covers experimental work on load bearing PFCSP walls and PFCSP 

slabs produced from foamed concrete of average compressive strength of 24.83 and 

25.73 MPa at 28 days, respectively, in order to develop a lightweight structural 

element. The experimental includes trial mix to determine the basic properties of the 

FC and determine the sufficient density for the required compressive strength. The 

mix design of FC was in line with the British Cement Association. The desired FC 

with a sufficient strength and density was obtained through a first trial mixing of FC 

and shown to fulfill the structural requirements for use in the production of PFCSP. 

However, the foamed concrete was developed from fine natural sand with maximum 

aggregate size of 2 mm. A protein based foam solution was used in the foaming 

process using a portable high-expansion foam generator.

Further, welded-wire mesh size of 6 mm-diameter deformed bars with 100 mm ×

100 mm openings was used as reinforcement in each wythe in line with the provision 

of ACI 318. More so, research has shown that reinforcement size does not have 

significant effect of the strength of the wall or slab, particularly, transverse 

reinforcements. Hence, the most economical size of 6 mm-diameter was chosen. The 

spacing was chosen on the basis of not more than twice the thickness of the wythes 

as specify in ACI 318-89. Five steel truss-shaped shear connector of 6 mm-diameter 

round bars were installed running along the span of the panel, tying both concrete 

wythes together to achieve a full composite action. Polystyrene thickness of 25 to 65 

mm was used as insulator in the sandwich system. The thickness was chosen based 

on the recommendation of PCI standard that the thickness of insulator should not be 

less than 20 mm. 
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The wall specimen size between 1750 to 3000 mm was investigated for height 

variation. The height of 3000 mm was chosen based on the existing height of 

buildings around Asia and other parts of the world; in addition, the thicknesses of the 

panels were selected based on the recommendation of PCI standard. Hence, the need 

to carry out to full scale slabs and wall with full composite behavior. This is 

achieved by increasing the number of shear connectors with proper orientation in 

one direction because it can also facilitate in inserting the insulation material 

between shear connectors during the practical production. Also, thickness variation 

between 105 to 225 mm in the wall specimens was undertaken on the same wall 

heights aforementioned. Axial and in-plane shear load test were carried out the wall 

produced and in cases, height and thickness variations were investigated. This 

experiment is unlike the previous works that are mostly in small sizes while 

generalizing results for all elements sizes. 

Slabs of 2750, 3000, 3250, 3500, 3750, and 4000 mm span were produced and tested 

under out-of-plane load. Two sets of thicknesses of 150 and 170 mm were fabricated 

at constant width of 1200 mm. The results were compared with the theoretical 

analysis includes the extremes of fully composite and non-composite actions, the 

FEA models data and the classical elastic theory calculation values. 

A total of eighty (18) number of walls and twelve (12) slabs were produced making a 

total of thirty (30) PFCSP walls and slabs, plus three (3) PCSPs with one panel was 

set as control for each typical test conducted. Finite Element software (FEA) was 

used to study the structural behavior of the PFCSPs under different applied loads that 

are similar to the experimental test conditions. Full-scale laboratory tests under 

purely axial, in-plane shear, and out-of-plane loads were robustly verified all the 

walls and slabs produced with the ACI 318-89 design equation for reinforced 

concrete solid applications and other empirical formulas developed by previous 

researchers. A semi-empirical equation for load bearing wall was proposed under 

principle of reinforced concrete solid wall, in order to predict the ultimate bearing 

strength capacity of the developed PFCSPs. 

The limitations of the study are to improve structural composite performance and 

reduce the self-weight of the PFCSP. In the conclusion, the study mainly aimed to 

obtain a lightweight PFCSP system component to use in the construction of a low-

rise residential building worldwide. 
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1.8 Thesis layout 

This thesis comprises seven chapters, including Chapter I. The contents of Chapters 

II to VII are described below. 

Chapter II 

This chapter introduces the relevant literature review focused on the IBS and the 

structural performance of PCSPs. It briefly presents the theoretical studies on solid 

RC wall system components and the experimental investigations that were carried 

out using laboratory testing and analytical and numerical approaches with the goal of 

validating the potential use of such materials in actual construction. The uses, 

properties, and applications of FC in PFCSP production are also concisely reviewed. 

Furthermore, the lightweight applications of sandwich panels as well as existing 

FEA studies are included in the thesis. 

Chapter III 

This chapter presents the methodology used to perform the experimental 

investigations, the theoretical computations, and the analytical study aimed at 

achieving the objectives stated. The material, specimen fabrication, and test setup 

and procedures are explained in detail. The classical study approach, theoretical 

calculation expressions, and FEA models of the PFCSP are also discussed. 

Chapter IV 

This chapter covers the discussion of structural FC properties and the observations 

made on the data obtained from the experimental tests under axial load and those 

from the adopted FEA models. The related parameters are the PFCSP wall bearing 

capacity, load–deflection profiles, load–strain relationships, influence of slenderness 

ratio, composite behavior, failure modalities, cracking patterns, and propagations. 

The experiment data also validate the structural performance of sandwich wall 

panels by associating their characteristics with those of the FEA models under axial 

load application, including their buckling behavior. Furthermore, the theoretical 

study is conducted with the aid of the theoretical expressions obtained from existing 

research and design codes. The theoretical results are then compared with the 

experimental results and the FEA model data. 

Chapter V 

This chapter presents the data obtained from the experimental investigations under 

in-plane shear loads, including those from the analytical study using the FEA 

models. The associated studies include the PFCSP in-plane wall strength, load–
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deflection profiles, load–strain relationships, influence of slenderness ratio, failure 

modalities, shear cracking patterns, and propagations. The applicability of the 

adopted FEA model data is also presented to verify the experiment results obtained.

The ultimate values obtained via the ACI design codes and expressions of previous 

researchers are compared with the test results and FEA model data. The comparison 

reveals a substantial agreement between the results. 

Chapter VI 

This chapter provides the results obtained from the experiment and the data obtained 

from the 2D FEA models, which functioned as one-way slabs under out-of-plane 

loads. The structural performance of PFCSPs is also studied to investigate the 

suitability of PFCSP slabs in residential housing. The observations cover the PFCSP 

ultimate strength capacity, load–deflection profiles, strain distribution, load–strain 

relationships, influence of aspect ratios, calculation of composite and non-composite 

extremes, degree of composite actions, load of failure, and flexural cracking. In 

addition, a parametric study is conducted to identify the number of composite actions 

achieved. The theoretical analyses of the axial shear forces on the truss connector 

legs were determined. The results obtained from the experimental tests are compared 

with the 2D FEA model data, and a significant agreement between the two sets of 

results is determined. 

Chapter VII 

This chapter presents the summary and conclusions of the major findings of this 

study. Some recommendations for future research are also provided. 
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