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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

FORMULATION OF HYBRID FINITE-DIFFERENCE TIME-DOMAIN 
DIPOLE METHOD FOR LIGHTNING INDUCED VOLTAGE DUE TO 

LIGHTNING STRIKES TO TALL STRUCTURE 

By 

NORHIDAYU RAMELI 

July 2017 

Chairman : Mohd. Zainal Abidin Ab.Kadir, PhD PEng CEng 

Faculty : Engineering  

Lightning cloud delivers a certain amount of charge from the cloud to the earth and may 

affects power lines either directly or indirectly. In this case of an indirect strike, the 

coupling between the lightning electromagnetic field and nearby power lines causes a 

voltage to be induced on the power line. As far as the structure height is concerned, the 

higher the tower, the greater the chances of it being struck by lightning, which will result 

in higher induced voltage on the power line compared to the case of a strike to the ground. 

Consequently, such induced voltage outages and electromagnetic field may cause 

damage to any equipment exceed as its withstanding capability. Therefore, a proper study 

needs to be carried out to calculate the lightning electromagnetic field due to the lightning 

strike to a tall structure in which lightning induced voltages on distribution power line 

are created due to the lightning electromagnetic field coupling. In this study, the IEEE 

1410-2010 guideline was followed to implement the stages of calculating induced 

voltage, namely, return stroke current, calculating the lightning electromagnetic field and 

evaluating the interaction of lightning electromagnetic field with the conductor line. For 

the stages of return stroke current, a model of DU current function as well as the 

engineering model which based on a distributed source representation were selected. The 

return stroke current was investigated based on effect of ground reflection factor, in 

which the effect of soil resistivity and grounding electrode arrangement were included. 

A new formulation of Hybrid FDTD-Dipole were proposed to calculate the lightning 

electromagnetic field. This method provide a straightforward formulation which is 

applicable to any current calculation and able to couple with the line conductor in 

evaluating the induced voltage. The proposed method was compared with the lightning 

electromagnetic field measurements at Peissenberg tower, German. Then, the Agrawal 

model was adopted to evaluate the induced voltage on the power line due to the lightning 

strike to a tall structure, in which Fukui thermal tower, Japan was used for the validation. 

The determination of the critical distance between the stricken tall structure and the 

overhead distribution line at Tanjung Rompin, Pahang, Malaysia was obtained where the 

results indicated that at least more than 10% reduction of the return stroke current was 

affected by the changes of ground reflection factor based on the relationship between the 
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soil resistivity and grounding electrode arrangement. Consequently, it also affected the 

lightning electromagnetic field evaluation, as well as reducing the lightning induced 

voltage peak by at least 20%. Besides that, the proposed method showed a good 

agreement with measured values. Lastly, the critical distance obtained showed that the 

higher the magnitude of lightning current, the longer the distance from a tall tower to the 

line will be exposed to the induced voltage flashover. Thus, the outcomes of these results 

may provide very useful information and enhance judgement skills for an electrical 

power engineer when considering the protection scheme of distribution systems where 

the lightning induced voltage is the major cause of line outages and affected the overall 

performance of the system.  
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Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

FORMULASI KAEDAH HIBRID PERBEZAAN TERHINGGA DOMAIN 
MASA DIPOLE BAGI VOLTAN TERARUH KILAT DISEBABKAN OLEH 

PANAHAN KILAT PADA STRUKTUR TINGGI 

Oleh 

NORHIDAYU RAMELI 

Julai 2017 

Pengerusi : Mohd. Zainal Abidin Ab.Kadir, PhD PEng CEng 

Fakulti : Kejuruteraan  

Kilat boleh menyampaikan sejumlah caj dari awan ke bumi dan memberi kesan pada 

talian kuasa samaada secara langsung atau tidak langsung. Dalam kes kilat secara tidak 

langsung, gandingan antara medan elektromagnet kilat dan talian kuasa berhampiran 

menyebabkan voltan teraruh pada talian kuasa. Dengan ketinggian struktur berkenaan, 

didapati lebih tinggi struktur atau menara, lebih besar peluang untuk disambar kilat, yang 

mana, ianya akan menghasilkan voltan teraruh yang lebih tinggi pada talian kuasa 

berbanding dengan kes panahan kilat ke tanah. Oleh itu, gangguan voltan teraruh dan 

medan elektromagnet kilat boleh menyebabkan kerosakan pada peralatan di mana 

melebihi keupayaan ketahanan peralatan ini. Oleh itu, kajian yang sewajarnya perlu 

dijalankan untuk mengira medan electromagnet kilat yang disebabkan oleh panahan kilat 

pada struktur tinggi di mana voltan teraruh pada talian kuasa pembahagian terhasil 

disebabkan oleh gandingan medan electromagnet kilat. Dalam kajian ini, garis panduan 

IEEE 1410-2010 diikuti untuk melaksanakan peringkat pengiraan voltan teraruh, iaitu 

arus sambaran kembali, mengira medan elektromagnet kilat dan menilai interaksi medan 

elektromagnet kilat dengan garis konduktor. Bagi peringkat arus sambaran kembali, 

fungsi arus DU model dan juga kejuruteraan model berdasarkan perwakilan 

pembahagian sumber dipilih. Arus sambaran kembali disiasat berdasarkan  faktor 

refleksi tanah di mana kesan kerintangan tanah dan susun asas elektrod pembumian telah 

diperkenalkan. Satu formulasi baru iaitu kaedah Hibrid Perbezaan Terhingga Domain 

Masa-Dipole dicadangkan untuk mengira electromagnet kilat. Kaedah in menyediakan 

formulasi yang mudah, bersesuaian untuk digunakai dengan mana-mana arus pengiraan 

dan dapat berinteraksi dengan garis konduktor untuk menilai voltan teraruh. Kaedah 

yang dicadangkan telah dibandingkan dengan pengukuran medan electromagnet kilat di 

menara Peissenberg, Jerman. Kemudian, model Agrawal digunapakai untuk menilai 

voltan teraruh pada talian kuasa disebabkan oleh panahan kilat pada struktur tinggi di 

mana menara haba Fukui, Jepun digunakan untuk kesahihan. Penentuan jarak kritikal 

antara struktur tinggi dan talian kuasa diperolehi di Tanjung Rompin, Pahang, Malaysia. 

Hasilnya menunjukkan bahawa pengurangan sekurang-kurangnya lebih daripada 10% 

arus sambaran kembali terjejas oleh perubahan faktor refleksi tanah berdasarkan 
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hubungan antara kerintangan tanah dan susunan asas elektrod pembumian. Oleh itu, ia 

juga memberi kesan pada penilaian medan electromagnet kilat, dan juga pengurangan 

voltan teraruh kilat puncak sekurang-kurangnya 20%. Selain itu, formulasi baru yang 

dicadangkan menunjukkan hasil pengesahan yang tepat dengan hasil nilai ukuran. Akhir 

sekali, jarak kritikal yang diperolehi menunjukkan bahawa semakin tinggi magnitud arus 

kilat, semakin jauh jarak dari menara yang tinggi ke talian kuasa akan terdedah kepada 

voltan teraruh lampau. Oleh itu, hasil keputusan ini memberi maklumat yang berguna 

dan meningkatkan kemahiran penghakiman bagi jurutera elektrik kuasa apabila 

mempertimbangkan skim perlindungan bagi sistem talian pembahagian kuasa di mana 

voltan teraruh adalah punca utama gangguan talian yang memberi kesan kepada prestasi 

keseluruhan system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Lightning circumstance leads to disturbance or damage to objects on the earth. The 

possibilities lightning strike are either a direct strike to the object or an indirect strike to 

the surrounding ground surface area in the vicinity of the object. The lightning strike 

leads to the phenomenon of lightning induced voltage (LIV) or lightning induced 

overvoltage (LIOV) on an object which is located near the point of a lightning strike.  

Today, the level of the lightning phenomenon has increased probably due to climate 

change. This situation causes lightning to represent a major contribution in the damage 

and disturbance that occurs to an object when it suffers from either a direct or indirect 

lightning strike. This may require the utility companies to pay great attention since such 

incidents can cause interruptions to systems, as well as have destructive effects on 

electrical equipment. It also causes economic loss when it becomes necessary to repair 

and replace equipment. There is also the possibility of having to pay compensation, 

penalties and fines to customers and/or regulatory authorities for damages incurred. 

Moreover, most researchers appear to agree that the performance of overhead 

distribution power lines will be affected by the influence of LIV [1]. As reported by 

Busrah [2], at least 35% of distribution power lines in Malaysia have been damaged by 

the effect of lightning and at least 32% of electronic devices have been damaged due to 

surge overvoltage. Also, in Malaysia, the breakdown statistics for medium voltage 

distribution power lines show at least 27% of faults were due to lightning events. In [3], 

it is reported that lightning was striked to the Telecom Malaysia towers, in which lead to 

the breakdown of the power line in residential houses, damage of wiring system and 

disruption of communication systems.  

Furthermore, LIV on a distribution power lines can be expected to produce higher values 

of voltage due to the effect of a lightning strike on a nearby tall tower. Previous 

reseachers agree that the LIV created by the LEMF interaction with the conductor line is 

estimated to increase by at least 50% to 80% [4, 5]. In addition, with the presence of a 

tall tower at a flat ground surface and a tower height of more than 100 m, the tall tower 

has a higher chance of being struck by lightning [6-8]. This is due to the height of the 

tower itself that produces a large electric field at the top, so that upward connecting 

leaders from the tower will start earlier than the surrounding ground, and thus an 

attachment with the stepped leader of the lightning could be easily appeared [9, 10]. 

Thus, with the higher voltages that are created at the line and the frequency at which it 

is struck by lightning, the distribution power line is vulnerable to this lightning event. 

Consequently, users may be inconvenienced by such lightning-induced voltage outages. 

Also, it may cause damage to the equipment’s due to the voltage exceeding from 

equipment withstanding capability. Therefore, the study of the interaction of lightning 

with tall towers on nearby distribution power lines becomes very important in order to 

avoid the possibility of damage to the lines. Also, it would be beneficial to the utility 
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companies to build a new distribution line when faced with the presence of a tall tower 

in the surrounding area.  

 

1.2 Problem Statement 

 

Various studies have been undertaken to evaluate the LIV on objects caused by a direct 

lightning strike to a tall tower, either through measurement or simulation work. 

Measurement work was started by Yokohama et al. [11-13] and later on by Michishita 

et al. [14], in which, the LIV is characteristically measured based on the termination 

point along the power line. It has been found that, the LIV has a positive waveform for 

the closest distance and a negative waveform for far distances of the termination point. 

On the other hand, for the simulation work, various studies have mostly focused on the 

method of LEMF calculation, LIV, as well as investigating the parameter influence of 

LIV at the power line. It should be noted that, the simulation work in LIV determination 

requires several stages. It includes the stages of lightning return stroke current, the 

calculating of LEMF at several points of power lines as well as the calculation of LIV 

through the implementation of field-to-transmission line coupling model as documented 

in [15-20].  

 

Furthermore, in order to calculate the LIV with the presence of a tall tower in the vicinity, 

the field-to-transmission line coupling models are proposed [10, 21-23]. The extended 

Rusck model which takes into account the presence of the tall tower is introduced [21-

22]. The result indicates that the simulated works are in good agreement with the measure 

one in [14]. In addition, the parameters of the tower height and the current front time 

influence the LIVs on the distribution power line. It indicates that the LIVs have an 

increasing trend for the increases of tower height at the current front time reduction. 

However, they do not consider the reflection tower.  

 

Moreover, the method of the 3D-FDTD was used to evaluate the LIV [10]. The simulated 

result showed good agreement with the measured ones and also, they found that LIVs 

were increased at the closest distance from the tall tower and according to the tower 

height [14]. Also, the LIVs experienced with the increasing trend at the highest and lesser 

value of reflection factors and lightning current front time, respectively. The study also 

indicated that the LIV with respect to the presence of the tall tower is able to produce the 

higher voltages compared to the LIV that strikes to the ground. However, the 3D-FDTD 

methods may consume memory storage, in which case, the grid meshes and 

discretization simulation are considered.  

 

Later, the Hybrid Electromagnetic Circuit (HECM) model was proposed to evaluate the 

LIV [23]. The HECM method was developed by the current source among the 

Resistance, Inductance and Capacitance (RLC) components, with each one of them 

presented by a source of transversal and longitudinal currents [24]. They found that their 

approach was in good agreement with the measured one. However, their model was 

strictly in frequency domain and the inverse Laplace transform solution was used to 

transform it into the time domain.  
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In addition, in order to calculate the LIV with the presence of a tall tower, the LEMF 

approach and the field-to-transmission line coupling model was adopted [14-15, 25]. As 

shown by Michishita et al. [14], the LEMF approach was expressed through the Norton 

approximation and the LIVs described by the Agrawal model. They found that the LIVs 

were influenced by the finite ground conductivity at the farther end of the tall tower. 

Then, the 2D-FDTD method employed for determination of LEMF and the Agrawal 

model to generate the LIV [15]. The results indicated that the LIV depended on the 

ground conductivity, influenced to a certain extent by the return stroke speed and 

independent of the return stroke model. Finally, the simulated works were expended to 

evaluate the other parameter influence on the LIV such as the frequency dependent soil 

[25]. They concluded that the frequency dependent soil parameter was able to reduce the 

peak of the LIV. From the previous studies, most of the results were computed for the 

close distance range, which took into account the impact of ground conductivity [14-15, 

25]. However, the ground conductivity can be neglected for distances of less than 2 km  

[26-27]. Although many studies have been undertaken in this area to date, more studies 

need to be conducted in terms of:  

1. the reflected current due to the effect of ground reflection factor. 

2. the computational method that needs to be accurate. 

3. availability of the standard to determine the critical distance due to the lightning 

strike to a tall structure.  

Therefore, these limitation are addressed in this work. It is identified as being of 

importance to electrical power engineers when considering a protection scheme for an 

electrical system since the LIV is recognised as a major cause of line outage which 

severely affects the overall performance of a system.  

 

1.3 Objectives  

 

The aim of this work is to formulate the lightning induced voltage due to lightning strikes 

to a tall structure. As such, in order to achieve this aim, a few objectives are set as: 

1. To investigate the effect of ground reflection factor on the relationship of soil 

resistivity and the grounding arrangement of the tall tower on the lightning currents, 

LEMF and LIV. 

2. To propose a hybrid formulation of FDTD and a dipole method for solving 

lightning electromagnetic field due to a tall tower, taking into account the charge 

position along the channel.   

3. To evaluate the lightning induced voltage at distribution power line due to lightning 

strikes of a nearby tall tower. 

4. To obtain the critical distance on lightning induced voltage flashover between a tall 

tower and distribution power line. 
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1.4 Scope of Work 

 

This work has some limitations in order to achieve the following objectives: 

1. It is assumed that the single lightning channel without branches strikes the tower 

vertically with the constancy of the return stroke velocity and disregarding any 

upward connecting leader. 

2. The tower is assumed to be a uniform tower where the propagation speed along the 

tower is the speed of light and the tower reflection coefficient is frequency-

independent.  

3. The surface of the ground is assumed to be flat with perfect ground conductivity. 

 

1.5 Thesis Organisation 

 

This thesis comprises five chapters. Chapter 1 as an introduction to the thesis includes 

an overview, followed by the problem statement regarding the gap in the literature on 

this subject area. It includes also the objectives and the scope of the work. 

 

A review of the available literature is presented in Chapter 2. This covers the procedures 

for determining the induced voltage as an effect of a direct lightning strike on a tall tower. 

 

Chapter 3 is devoted to an explanation of the methodology adopted to conduct the work 

and meet its objectives. The chapter explains the development of an algorithm for the 

calculation of the lightning induced voltage (LIV) resulting from a direct lightning strike 

on a tall tower. Also, attention is paid to the validation work of the algorithm with 

measured work.  

 

In Chapter 4, results are analysed and discussed with a consideration of limitation from 

previous works. Finally, Chapter 5 concludes this thesis and gives recommendations for 

future work. 
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