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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the Degree of Doctor of Philosophy  

EFFECT OF BIAXIAL FABRIC PRESTRESSING ON THE MECHANICAL 
PROPERTIES OF PLAIN–WEAVE E–GLASS/POLYESTER 

COMPOSITES

By

NAWRAS HAIDAR MOSTAFA 

May 2017

Chairman : Associate Professor Nur Ismarrubie Bt Zahari, PhD 
Faculty : Engineering 

It is of interest whether induced residual stresses would affect the mechanical 

properties of fibre–reinforced composites. One of the methods that can be used for 

altering the induced residual stresses within the matrix is the method of fibre 

prestressing. Although this method was previously used for developing the 

mechanical properties of unidirectional composites, its application to the woven 

composites was very rare. There are many applications of composite materials where 

woven fabric has been used instead of unidirectional fibre such as for helmets, 

armours, boats, and the automotive components. The mechanical properties of 

woven composite may be improved without increasing its volume and/or weight. 

Therefore, this study emphasizes on improving the mechanical properties and fatigue 

behaviour of the plain–weave composite by applying biaxial fabric prestressing. 

Firstly, the induced residual stresses within the composite’s constituents due to fibre 
prestress was calculated theoretically by developing the macro-mechanics theory. 

Secondly, numerical modelling of the prestressed composites was implemented 

using ANSYS® software for validating the theoretical results and estimating the full 

distribution of the residual stresses within the composite’s constituents. The biaxial 

prestressing frame was used for providing biaxial fabric pretension load. Prestressed 

composites were manufactured with different levels of prestressing ranging from 25 

to 100 MPa and prepared at different fibre orientation angles such as 0, 15, 30 and 

45o. Lastly, experimental tests such as tensile, flexural and fatigue were conducted 

on the E–glass plain–weave/polyester resin composite in order to assess the 

advantages that might result from applying biaxial fabric prestressing.  
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Theoretical results showed that the level of the induced residual stresses within the 

composite’s constituents depends on fibre prestress level, fibre volume fraction, and 
the elastic properties of the composite’s constituents. Residual stresses calculated by 

the developed macro–mechanics theory were in agreement with those obtained by 

the numerical modelling and previous studies of no less than 1.53%. Numerical 

simulation of the prestressed composite showed that the maximum induced residual 

stresses due to fibre prestressing were located at the fibre–matrix interface. 

Increasing the fibre prestress level increases both the induced compressive residual 

stresses within the matrix and the fibre–matrix interfacial shearing stress. 

Experimental results showed that prestressing level of 50 MPa offered the highest 

improvement in the quasi–static properties and fatigue life behaviour. Enhancements 

in the tensile and flexural properties were about 20% (from 3.74 to 4.4 GPa of tensile 

modulus and from 35 to 42 MPa of critical stress) and 15% (from 2.54 to 2.96 GPa 

of flexural modulus and from 87.11 to 99.88 MPa of flexural strength), respectively. 

Fatigue cycles to failure were prolonged up to 43% (from 19949 to 28594 cycles) at 

0.4 normalised peak stress in comparison with non–prestressed counterparts. The 

levels of improvement were reduced with increasing the fibre orientation to 45o.

Empirical functions were estimated to include the prestress effect in the tensile, 

flexural and fatigue behaviours. Prestressed composite specimens with 50 MPa 

showed a decline in the improved tensile strength, flexural strength and fatigue 

cycles to failure which were about 3.56 % (from 42.07 to 40.56 MPa), 1.96% (from 

99.88 to 97.92 MPa) and 14.55% (from 28594 to 24432 cycles) after six months 

since they were manufactured, respectively. These declines resulted from the stress 

relaxation effect within the matrix. 

Considering all findings, it was concluded that the proposed prestressing method 

enhanced the mechanical properties of the plain–weave composite. This 

improvement resulted from increasing the composite resistance against quasi–static 

and fatigue loadings by reducing both fibre waviness and the tensile residual stresses 

induced within the matrix. The fibre prestress method enhanced the mechanical 

properties of the plain–weave composite in both on–axis and off–axis directions.

These improvements still existed after complete redistribution of the induced 

residual stresses within the matrix.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

KESAN PRATEGASAN FABRIK DWIPAKSI KE ATAS SIFAT-SIFAT 
MEKANIKAL KOMPOSIT E-KACA/POLIESTER TENUNAN-BIASA 

Oleh 

NAWRAS HAIDAR MOSTAFA 

Mei 2017 

Pengerusi : Profesor Madya Nur Ismarrubie Bt Zahari, PhD 
Fakulti : Kejuruteraan

Adalah sesuatu yang diminati sama ada tegasan baki akan memberi kesan kepada 

sifat mekanikal bahan komposit bertetulang-gentian. Salah satu kaedah yang boleh 

digunakan untuk mengubah tegasan baki yang diaruhi di dalam matriks ialah kaedah 

prategasan gentian. Walaupun kaedah tersebut sebelum ini digunakan untuk 

membangunkan sifat-sifat mekanikal komposit satu-arah, penggunaanya bagi 

komposit tenunan sangat jarang berlaku. Terdapat banyak penggunaan bahan 

komposit di mana fabrik tenun telah digunakan dan bukan gentian satu-arah 

seperti untuk topi keledar, perisai, bot, dan komponen automotif.  Sifat mekanikal 

komposit tenunan boleh ditambah baik tanpa meningkatkan isipadu dan/atau 

beratnya. Oleh itu, kajian ini memberi penekanan kepada peningkatan sifat 

mekanikal dan tingkah laku lesu komposit tenunan biasa dengan menggunakan 

prategasan fabrik dwipaksa. 

Pertama, tegasan baki teraruh di dalam juzuk komposit akibat prategasan gentian 

dikira secara teori dengan membangunkan teori makro-mekanik. Kedua, pemodelan 

berangka bagi komposit prategasan telah dilaksanakan menggunakan perisian 

ANSYS® untuk mengesahkan hasil teori dan menganggarkan agihan sepenuhnya 

tegasan baki di dalam juzuk komposit ini. Bingkai prategasan dwipaksi digunakan 

untuk menyediakan beban prategangan fabrik dwipaksa. Komposit prategasan telah 

dibuat dengan tahap prategasan yang berbeza berjulat antara 25 hingga 100 MPa dan 

disediakan dengan sudut orientasi gentian yang berbeza seperti 0, 15, 30 dan 45o.

Keputusan ujikaji seperti tegangan, lenturan dan lesu telah dijalankan ke atas 

komposit tenunan-biasa sistem E-kaca/poliester untuk menilai kelebihan yang 

mungkin timbul daripada penggunaan prategasan dwipaksa fabrik.  
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Keputusan teori menunjukkan bahawa tahap tegasan baki yang teraruh di dalam 

juzuk komposit bergantung pada tahap prategasan gentian, pecahan isipadu gentian, 

dan sifat elastik juzuk komposit. Tegasan baki yang dikira dengan teori makro-

mekanik yang dibangunkan adalah sepadan dengan yang diperoleh oleh pemodelan 

berangka dan kajian terdahulu dengan nilai kurang daripada 1.53%. Simulasi 

berangka komposit prategasan menunjukkan bahawa tegasan baki teraruh 

maksimum disebabkan oleh prategasan gentian terletak pada antara muka gentian-

matriks. Meningkatkan tahap prategasan gentian boleh meningkatkan kedua-dua 

tegasan sisa mampatan teraruh di dalam matriks dan tegasan ricih antara muka serat-

matriks. Keputusan ujikaji menunjukkan bahawa paras prategasan 50 MPa boleh 

memberikan peningkatan tertinggi bagi sifat-sifat kuasi-statik dan tingkah laku

jangka hidup lesu. Tambahan pada sifat tegangan dan lenturan adalah lebih kurang 

20% (daripada 3.74 hingga 4.4 GPa modulus tegangan dan 35 hingga 42 MPa 

tegasan kritikal) dan 15% (daripada 2.54 hingga 2.96 GPa modulus lenturan dan dari 

87.11 hingga 99.88 MPa kekuatan lenturan) masing-masing. Kitaran sehingga 

kegagalan lesu telah dipanjangkan hingga 43% (daripada 19949 hingga 28594 

kitaran) pada tekanan puncak normal 0.4 berbanding dengan yang tanpa-

prategasan. Tahap peningkatan telah dikurangkan dengan meningkatkan orientasi 

gentian ke arah pincang. Fungsi empirikal dianggarkan termasuk kesan prategasan 

ke atas tingkah laku tegangan, kelenturan dan lesu.  Spesimen komposit prategasan 

dengan 50 MPa menunjukkan penurunan dalam kekuatan tegangan, kekuatan 

lenturan dan kitaran lesu yang lebih baik hingga kegagalan yang kira-kira 3.56% 

(daripada 42.07 hingga 40.56 MPa), 1.96% (daripada 99.88 hingga 97.92 MPa ) dan 

14.55% (daripada 28594 hingga 24432 kitaran )selepas enam bulan  dibuat, masing-

masing. Penurunan ini adalah hasil daripada kesan tekanan santaian di dalam 

matriks. 

Berdasarkan kepada penemuan, disimpulkan bahawa kaedah prategasan yang 

dicadangkan dapat meningkatkan sifat mekanikal komposit tenunan-

biasa. Peningkatan ini hasil daripada peningkatan rintangan komposit terhadap 

beban kuasi-statik dan lesu dengan mengurangkan kedua-dua sifat berombak gentian 

dan tegasan baki tegangan di dalam matriks. Kaedah prategasan serat dapat 

meningkatkan sifat-sifat mekanik komposit tenunan di kedua-dua arahpaksi dan arah 

nentang-paksi. Peningkatan ini masih wujud selepas pengedaran semula sepenuhnya 

tegasan baki yang diaruh dalam matriks. 
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CHAPTER 1 

INTRODUCTIO�

This study investigates the effect of elastic fibre prestress on the performance of 

fibre– reinforced composites subjected to (i) a quasi–static load (tensile and flexural) 

and (ii) a fatigue load. The endurance aspect of the prestressed composites is 

examined over different periods of time. The present study includes theoretical, 

numerical and experimental investigations. The fibre pretension method has been 

used mainly to minimise the induced tensile residual stress and fibre waviness within 

composites. 

This chapter highlights the problem statement, motivation, research hypotheses, 

main objectives and contributions to knowledge. A brief introduction to composite 

materials and their applications, along with the thesis layout are also presented.

1.1 General 

The development of composite materials has been fast growing in recent times due 

to their influence on human life, whether civilian or military. The mechanical 

behaviour of the final composite product depends mainly on the mechanical 

properties of constituent materials, their fractional volume, their arrangement, and 

the manufacturing technology. Unfortunately, designing and manufacturing of a

composite part with an improved mechanical behaviour are usually accompanied by 

relatively high–cost requirements. Low-cost-design is a very critical parameter that 

should be considered by designers in developing the behaviour of composite 

materials. One method that can be used to improve the structural properties of fibre–
reinforced composites is the method of fibre prestressing. 

The effect of equi–biaxial fabric prestressing on the quasi–static (tensile and 

flexural), fatigue and creep behaviours of a plain–weave fabric–reinforced 

composite has been considered in this study. This chapter briefly introduces the 

applications of composite materials, the problem statement, the scope of the work, 

the aims of the study, the contributions of the present study and finally the 

organisation of the thesis. 

1.2 Composite materials and their applications 

Modern structures that are made from fibre–reinforced based polymer composites 

have many advantages over the structures that are made from conventional materials 

such as high strength and stiffness–to–weight ratios, the ability to form complex 

shapes, high corrosion resistance, durability and low cost of maintenance in 

comparison with most metals (Andersson et al., 2014; Khan et al., 2014). However, 
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the production cost of composites is relatively more expensive than common metals 

(Ashby and Jones, 2012; Lässig et al., 2012).

A composite material is simply defined as a combination of two or more materials,

on a macroscopic scale, with significantly different properties to form a useful third 

material (Jones, 1999). The basic constituents of a composite consist of two phases, 

i.e. the reinforcement and the matrix. The essential role of the reinforcement is to 

absorb the traction force; however, the matrix has the role of transferring the load to 

the reinforcement phase, protecting the reinforcement phase from the environment, 

maintaining the cohesion of the component, providing the lateral support and 

resisting the shear and compression forces and to provide stable shape (Vigo and 

Kinzig, 1992). The usual reinforcing fibres used today are carbon, glass, boron, and 

aramid. While epoxy, polyester, and vinyl–ester are the most common resins used in 

the fabrication of the polymer composites (Murray et al., 2007). 

Over the few last decades, composite structures have become popular in many 

applications where there is exposure to different external loadings and different 

environmental conditions. They are used instead of various conventional metallic 

materials for their relatively good chemical, physical and mechanical properties. 

Composite materials are widely used in many applications such as the aircraft, 

automotive components, military components, renewable energy, marine and 

offshore structures, and medical devices (Thomas et al., 2012). Components that are 

made from composite materials in aircraft structures can save the weight by up to a

half in comparison with conventional metals (Greszczuk, 1975). The automotive 

industry has followed this with the successful use of composites in the production of 

the light and stiff components (Sapuan et al., 1995). Recently, the requirements for 

safer, faster cars have been achieved using the advanced technologies of composite 

materials (Thomas et al., 2012).

Generally, there are four common types of composite materials (Jones, 1999): 

� Fibrous composites: this type consists of fibres (long or short) embedded in 

a matrix.   

� Laminated composites: this type consists of different layers of materials. 

� Particulate composites: this type is composed of particles in a matrix. 

� Combinations of some or all of the above three types. 

Fibrous composites with long fibres is used in this study as a reinforcement phase. 
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1.3 Motivation 

Improving the composite’s structural behaviour under quasi–static and/or cyclic 

loading, while keeping its mass and volume as low as possible, is one of the most 

significant challenges that designers might face. Fibre prestressing method can offer 

such improvement in the structural behaviour of the unidirectional composites. 

Because composites reinforced by plain–weave fabrics are widely used in most 

composite structures, the biaxial fabric prestressing method is intended to be

investigated in order to see if this method can be exploited using such reinforcement 

form.

1.4 Problem statement   

It is widely agreed that the use of composite structures is increasing, leading to an 

increased demand for the development of new techniques that can improve the 

mechanical behaviour of such advanced materials. In spite of the superior 

mechanical properties of the currently available composites compared with 

conventional metallic materials, research on their improvement is still ongoing.

Moreover, the cost of producing composites that are more reliable is continuing to 

rise because they need either additive materials and/or improved fabrication 

techniques. Residual stresses are generated within the composites during 

manufacturing process (Shokrieh, 2014; Parlevliet et al., 2007b; Motahhari, 1998).

These residual stresses can develop in composite materials due to several reasons 

such as the chemical shrinkage of the polymer matrix, the different thermo–
mechanical properties of the constitutions, moisture absorption, and fibre pretension 

(Krishnamurthy, 2006). Residual stresses within the matrix can arise due to the phase 

change of the resin from liquid to solid state (chemical shrinkage). The mismatch in 

the coefficient of thermal expansion between the fibre and the matrix will produce 

residual stresses in the composite when it is cooled from its curing temperature 

(Shokrieh, 2014; Cao and Cameron, 2007; Krishnamurthy, 2006; Motahhari and 

Cameron, 1999; Motahhari, 1998; Fletcher and Oakeshott, 1994a, 1994b). Whereas 

moisture absorption by the polymeric matrix and the fibre leads to the deformation 

and expansion of the constituents of the composite at different levels depending on 

the swelling permeability (Li, 2000; Motahhari, 1998). Manufacturing processes

such as the filament winding fabrication technique can add another source of 

induced residual stress in the final composite product due to the stretching of the 

fibre during the fabrication processes (Tabuchi et al., 2012; Mertiny and Ellyin, 

2002; Binienda and Wang, 1999; Gabrys and Bakis, 1998; Cohen, 1997; Knight, 

1972).

Residual stresses produced by resin chemical shrinkage and a mismatch in thermal 

expansion between the fibre and the matrix have a negative effect on the final 

mechanical properties of composites as their nature are always tensile 

(Krishnamurthy, 2006; Motahhari, 1998; Motahhari and Cameron, 1997). However, 

moisture absorption by the matrix generally acts to oppose the negative effects of 

both the chemical shrinkage and the thermal strains developed in the composites, but 

at the same time it may attack the fibre in a critical way (Li, 2000; Motahhari, 1998). 
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Fibre pretension could be one of the available options for enhancing the properties 

of polymeric matrix composites (PMCs) without increasing their section dimensions 

or mass (Graczykowski et al., 2016; Fancey, 2010). Up to now, the improvement 

obtained in the mechanical properties of fibre–reinforced composites due to using 

the fibre–prestressing method is not well established. However, some researchers 

have effectively confirmed the advantages of fibre prestressed composites for 

unidirectional composites. Prestressed PMCs were first used by Zhigun (1968) and 

this was followed by other researchers, such as Manders and Chou (1983) and Tuttle 

(1988). 

Fibre pretension (prestressing) during matrix cure has in general a positive effect on 

the composite mechanical behaviour as it generates compressive residual stresses in 

the matrix. It is important to mention that fibre pretension has this beneficial effect 

only if it is applied to a limited level or range (Krishnamurthy, 2006; Jevons, 2004; 

Motahhari and Cameron, 1999; Motahhari, 1998). In particular, the existence of 

tensile residual stresses in composites can reduce the resistance to matrix micro–
cracking. The presence of undesirable residual stresses and the waviness of the fibre 

may have a detrimental effect on the mechanical properties of composite structures 

and this may decrease the service life of a composite structure (Parlevliet et al., 

2007a). Therefore, it is of importance to minimise the magnitude of the unfavourable 

residual stresses and the waviness of the fibre. It was previously proven that fibre 

pretension in simple laminates (unidirectional fibre) during curing process can 

generate compressive stresses in the matrix and thus help to support damage 

initiation and propagation (Krishnamurthy, 2006; Motahhari, 1998).

In case of using 2D woven fabrics as a reinforcement, the effect of fibre pretension 

on the mechanical properties of the composites is more complicated than those 

fabricated with unidirectional fibres. As the yarns of 2D woven fabric are crimped 

and interlaced between each other, pretensioning these yarns may affect the 

structural behaviour of composites in different kind.  The main problems associated 

without having the fabric prestressing to plain–weave composite are directly related 

to fibre defects such as fibre waviness, wrinkling and high crimping. On the other 

hand, tensile residual stresses are induced during the fabrication process within the 

matrix at both the warp and fill yarn directions. The presence of tensile residual 

stresses within the matrix of the composite and fibre waviness have negative effects 

on the structural behaviour of the plain–weave composites.

The method of fibre pretension had confirmed its positive effects regarding the 

structural behaviour of the unidirectional fibre–reinforced composites under quasi-

static and fatigue loadings (Sadiq, 2007; Krishnamurthy, 2006; Cao and Cameron, 

2006a; Hadi and Ashton, 1998). However, from the author’s knowledge this method 

is not assessed yet for a composite reinforced with a biaxially prestressed plain–
weave fabric under these loadings. Therefore, investigating the effect of biaxial fibre 

pretension during the matrix cure process theoretically, numerically and 

experimentally on the behaviour of a composite reinforced by a plain–weave fabric 

needs to be considered. 
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1.5 Scope and limitation of the study  

This work deals with the study of the quasi–static (tensile and flexural), fatigue and 

endurance aspect of the elastically prestressed composite behaviour fabricated from 

a plain–weave E–glass fabric (EWR600)/unsaturated polyester (Reversol P9509) 

system. The presence of the induced tensile residual stresses within the matrix has a 

detrimental effect on the mechanical properties of the composite; therefore, the 

tensile residual stresses within the matrix should be reduced, released or if possible 

reversed to compressive stresses. Therefore, prestressed composite samples are 

fabricated with different fibre pretension levels applied in biaxial directions (warp 

and weft yarn directions). The fibre prestress levels are within the linear elastic limit 

of the fibre materials. Specimens are then tested under quasi–static (tensile and 

flexural) and fatigue loadings at different orientation angles of the fabric (0, 15, 30 

and 45o). Theoretical analyses of the fibre pretension method for both unidirectional 

and bidirectional composite lamina are achieved. A numerical modelling and 

analysis of prestressed composites is performed to validate the theoretical analyses 

and to estimate the distribution and development of residual stresses within the 

composite’s constituents. Reducing the tensile residual stresses within the matrix can 

improve the composite strength by preventing the cracks to develop easily. Several 

factors that can directly affect the tensile residual stress magnitude within the matrix 

are studied such as the elastic moduli of composite’s constituents and fibre 

pretension level. The prospective practical applications of unidirectional fibre 

prestressed composites include filament winding to fabricate pressure pipes, vessels, 
wind turbine blades and cylindrical shells. However, fibre pretension can be 

performed for composites reinforced with 2D woven fabric such as helmets, 

armours, boats, bistable morphing structures, and automotive industry. The current 

study is limited to using composite samples fabricated with only a single layer of 

fabric at ambient conditions.   

1.6 Research hypotheses 

This research is carried out with three main hypotheses. They are as follows: 

1. Fibre prestressing during the matrix cure process can change the state of the 

internal residual stresses of the fibre–reinforced composites. Upon releasing 

the fibre pretension, compressive residual stresses are imparted from the 

pretensioned fibres into the matrix. Therefore, it is expected that the new state 

of residual stresses within the matrix could prevent the initiation and 

development of micro–cracks.

2. The presence of the fibre pretension can increase its straightness. Thereby, it 

can provide the instantaneous load transfer from the matrix to the fibre. The 

architecture of the reinforced phase can improve significantly when 

pretensioned. Fibre waviness and crimping are decreased significantly, 

thereby leading to the enhancement of the structural behaviour of the 

composite as a whole.   
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3. Prestress have a significant effect on the total flexural stiffness of the 

composite structure. The remaining tension force in the fibre after releasing 

the pretension load in the fibre can reduce the deflection of the prestressed 

composite when subjected to transverse and/or bending load.

1.7 Research objectives 

The objectives of this study are: 

1. To develop material model for the fibre prestressed composites theoretically 

by deriving new equations and developing the macro–mechanical analysis of 

a laminated composite to include the term of biaxial fabric prestressing in the 

modelling of plain–weave composites. 

2. To develop the model for the fibre prestressing method numerically using a 

commercial finite element software on the meso–scale in order to explore 

how fibre prestressing affects the state of internal stresses within the 

composite’s constituents and verify the numerical results with those obtained 

from the developed theoretical equations.   

3. To investigate the effect of applying different levels of biaxial fabric 

prestressing on the quasi–static (tensile and flexural) properties and fatigue 

behaviour of plain–weave composites tested at different fibre orientation 

angles. The same tests are performed at different timescales in order to 

include the effect of residual stress relaxation within the polymeric matrix on 

the mechanical behaviour of fibre prestressed composites.   

1.8 Contributions of the study 

The contributions of this study are: 

1. Focusing on the prediction of the quasi–static, fatigue life and stress 

relaxation behaviour of such improved composite materials. Thereby, giving 

a good indication of the behaviour of the prestressed composite under the 

different loading conditions that it may be exposed to in practical 

applications.  

2. The mechanical properties are improved without adding new material to the 

composite’s constituent and neither increasing the volume nor the mass of

the composite when employing the fibre pretension method. This could 

reduce the overall cost of composite production. 

3. In most practical applications, composite structures are subjected to multi–
directional or complex loadings that require improvements in the mechanical 

properties of the composite structures in each direction. The equi–biaxial 

fabric pretension method of a plain–weave fabric could offer this advantage 

efficiently. 
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1.9 Thesis layout  

This study has been broken down into five chapters. 

Chapter 1 presents a short background of the composite materials applications, the 

research motivation, the problem statement, the scope of the study, the hypotheses 

and objectives of the research, the contributions of the study and the layout of this 

thesis. 

Chapter 2 presents a literature review on residual stresses accompanied with 

composite material manufacturing and their effects on the mechanical behaviour of 

the composite products. The failure modes in the polymeric matrix composite are 

reviewed briefly. This is followed by the description of mechanisms related to the 

fibre pretension method. The types of fibre prestressing methods and the associated 

application techniques are also reviewed in this chapter. The effects of the fibre 

pretension method on the structural behaviours of the composite under tensile, 

flexural and fatigue loading are reported. The final part discusses the assessment of 

the prestressing methodologies and their potential applications.  

Chapter 3 presents the methodology used in the current study. The research 

methodology is explained and the prestressing philosophy has been described. This 

is followed by the derivation of new theoretical equations and development of the 

macro–mechanical theory to calculate and include the effect of the residual stresses 

induced in the composite due to prestressing the fibre before and during the matrix 

cure process. The finite element method is used to model the fibre prestressing 

method numerically and to validate the theoretical analysis results. The final section 

explains the experimental part such as raw material selection and manufacturing a 

suitable prestressing frame. Experimental tests such as tensile, flexural, fatigue, 

stress relaxation, percentage crimping and endurance aspect of the plain–weave E–
glass fabric/polyester composites are described in detail. 

Chapter 4 presents and discusses the results obtained using the theoretical, numerical 

and experimental procedures. 

Chapter 5 provides the overall conclusions obtained in this study are given and 

directions for future research studies are presented. 
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