BIOCHEMICAL EVALUATIONS OF Zingiberaceae sp. AND TRANSCRIPTOMICS PROFILING OF UV-IRRADIATED NORMAL HUMAN ADULT DERMAL FIBROBLAST CELLS FOR ANTI-AGING

ALAFIATAYO AKINOLA ADEKOYA

FBSB 2017 11
BIOCHEMICAL EVALUATIONS OF Zingiberaceae sp. AND TRANSCRIPTOMICS PROFILING OF UV-IRRADIATED NORMAL HUMAN ADULT DERMAL FIBROBLAST CELLS FOR ANTI-AGING

By

ALAFIATAYO AKINOLA ADEKOYA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To my late Parents

Mr. Gabriel Babatunde Alafiatayo

And

Mrs. Ebunlomo Alice Alafiatayo

May your gently Souls continue to Rest in bosom of the Lord

“Education is the most powerful weapon which you can use to change the world”
-Nelson Mandela
Skin aging is the gradual building up of molecular damages as a result of production of reactive oxygen species (ROS) due to the vulnerability of the skin to external damaging factors such as solar ultraviolet (UV) radiation. The desire to look youthful is increasingly growing among men and women in today’s world and this has resulted to people willing to spend fortune on anti-aging cosmetic products. However, one major set-back in fighting premature skin aging is that, the numerous anti-aging products currently flooding the markets lack proven efficacy and they have also been reported to be toxic to the human skin. Hence, there is a need to develop an anti-aging cosmetics product from a natural product source with scientifically proven efficacy without any negative side effects. Therapeutic approach to the management of skin aging is to induce the proliferation of dermal fibroblast cells for the production of procollagen and subsequent inhibition of extracellular degrading enzymes (ECM). Plants are source of precursors of many natural products and secondary metabolites with pharmacological and therapeutic potentials. Zingiberaceae family is plants species endowed with great antioxidative properties and are widely distributed in the tropics especially Southeast Asia. The main objective of this study is to evaluate 10 selected indigenous Zingiberaceae plants for their anti-wrinkle potentials via the proliferation of UV irradiated normal human adult fibroblast cells. The selected Zingiberaceae rhizomes were screened by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) methods for total antioxidant capacity and with high performance liquid chromatography (HPLC) for flavonoid identification and quantification. Biochemical profile was investigated with total protein, lipid, total hydrolysable and reducing sugar, beta carotene and ascorbic acids assays. The profiling of fatty acid was performed using GC-FID fatty acids methyl esters method. Based on the preliminary screening, C. xanthorrhiza and C. longa showed the most potent extracts and were selected for further evaluation. The proliferating capacity of extract on normal human adult dermal fibroblast cells was
determined using 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay and anti-wrinkle potentials was assessed by the ability of extracts to inhibit the degrading enzymes, while in vivo toxicity assessment was evaluated with embryos and larval of Zebrafish. Detail molecular profiling was carried out using RNA sequencing technology for the determination of differential expressed genes (DEG). Results obtained from bioinformatics analysis were subjected to Real-Time qPCR. The results revealed high antioxidant capacity in methanol extract of C. xanthorrhiza and C. longa of 245.40±0.5 mg TE/g FW and 270.40±1.6 mg TE/g FW, respectively and were significant at (p<0.05) than other solvents. Although there were variations in different biochemical compounds, C. xanthorrhiza was found to be the topmost of all with 0.52 mg/g FW, 0.1 mg/g FW, 716.73 μg β-carotene/mg FW, 8.7% and 67.05 μg ascorbic/mg FW, respectively. GC-FID fatty acid methyl ester profile revealed the presence of both saturated and unsaturated in most of the samples while C. xanthorrhiza was found to contain more linoleic fatty acid in its oil hence conferred as an excellent candidate for anti-aging cream formulation. C. xanthorrhiza was found to be the best inhibitor of collagenase and hyaluronidase activity with 71.33% and 49.78%, respectively while Z. zerumbet displayed the highest elastase inhibition with 87.24% inhibition. Furthermore, extracts from both C. longa and C. xanthorrhiza promoted the proliferations of UV irradiated fibroblast cells at post extract treatment with percentage cell proliferation of 117.4% and 136.1%, respectively, relative to the control. The toxicity assessment of both extracts were found to be embryotoxic with similar teratogenic effects on the Zebrafish embryos and larvae at concentration above 62.5 μg/mL exposed for five days. Based on the therapeutic index (TI) calculated for five days (1.02, 1.00, 1.01, 1.12 and 1.14). C. xanthorrhiza extract was discovered less toxic, therefore was selected for molecular study. The RNA-Sequencing produced about 80 million reads in both UV irradiated and UV irradiated treated samples and 2007 genes were found to be up-regulated and 2791 genes down regulated in UV-irradiated human dermal fibroblast (HDF) cells (Sample U1). In the same manner, extract of C. xanthorrhiza treated UV- irradiated HDF cells (Sample T2) yielded 2284 up-regulated genes and 2968 down regulated genes while the comparison of the two results generated 19 genes up regulated and 19 genes down regulated these set of genes were the target genes in this study. About 19000 transcripts were reported as novel and gene ontology (GO) functional annotations have categorized the genes into various functions. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis implicated cancer and cytokine-cytokine receptor interaction in UV-irradiated HDF cells leading to induction of cells apoptosis as reported in the cell proliferation results in this study. The Real-Time qPCR gene expression profiling confirmed the expression of eight significantly differential expressed genes that were selected from the list of target genes to be in the same trend as obtained in the RNA-Seq analysis. HIST1H2AG, ELOVL3, OSR2 and TNFSF10 were up-regulated in sample U1 but down regulated in sample T2 while FAM111B, IVL, MFSD2A and CCNE2 were down-regulated in sample U1 but Up-regulated in sample T2. Thus, these set of confirmed genes were concluded to be potential candidates’ for biomarkers development for diagnostic, personalize and precise treatment of UV-induced premature aging. Therefore, C. xanthorrhiza could be potential lead to address the problems and issues of toxicity and efficacy associated with most available anti-aging cream.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENILAIAN BIOKIMIA Zingiberaceae sp. dan PROFIL TRANSKRIPTOMIK SEL FIBROBLAS DERMAL MANUSIA DEWASA NORMAL TERADIASI-UV UNTUK KESAN ANTI-PENUAAN

Oleh

ALAFIATAYO AKINOLA ADEKOYA

Mei 2017

Pengerusi : Noor Azmi Shaharuddin, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

untuk analisis lanjut. Keupayaan ekstrak ini dalam proliferasi sel fibroblas telah ditentukan dengan menggunakan asai MTT dan potensi anti-kedut telah ditentukan oleh keupayaan ekstrak untuk menghalangi fungsi enzim degradasi ECM (elastase, hyaluronidase dan kolagenase), manakala kesan toksisiti in vivo dinilai menggunakan embrio dan larva ikan Zebra (Danio rerio). Profil molekul telah dijalankan dengan menggunakan penjujukan RNA untuk menentukan perbezaan gen terekspressi (DEG). Keputusan yang diperolehi daripada analisis bioinformatik disahkan secara analisis qPCR. Keputusan mendapati kapasiti antioksidasi yang tinggi dalam ekstrak metanol oleh C. xanthorrhiza dan C. longa dengan 245.40 ± 0.5 mg TE/g dan 270.40 ± 1.6 mg TE/g, masing-masing adalah signifikan pada (p <0.05) berbanding pelarut lain. Walaupun terdapat variasi dalam sebatian biokimia, C. xanthorrhiza didapati paling tinggi dalam semua analisis, iaitu 0.52 mg/g FW, 0.1 mg/g FW, 716.73 μg β-karotena/mg FW, 8.7% dan 67.05 μg askorbik/mg FW, masing-masing. Analisis profil asid lemak metil ester menggunakan GC-FID mendedahkan kehadiran kedua-dua asid lemak tepu dan tak tepu dalam kebanyakkan sampel, manakala C. xanthorrhiza didapati mengandungi asid lemak linoleik yang tinggi dalam minyaknya, dan ia sesuai untuk dijadikan formulasi krim anti-penuaan. C. xanthorrhiza didapati menghalangi aktiviti collagenase dan hyaluronidase tertinggi dengan 71.33% dan 49.78% manakala Z. zerumbet merencatkan elastase tertinggi. Tambahana pula, kedua-dua ekstrak C. longa dan C. xanthorrhiza didapati meningkatkan proliferasi sel fibroblas yang di UV radiasi selepas rawatan ekstrak dengan peratusan pertumbuhan sel sebanyak 117.4% dan 136.1%, masing-masing berbanding dengan kawalan. Penilaian ketoksitisan kedua-dua ekstrak didapati embriotoksik dengan kesan teratogenik yang sama pada embrio dan larva Zebrafish di kepekatan melebihi 62.5 μg/mL selepas terdedah selama lima hari. Ekstrak C. xanthorrhiza kurang toksik dan meningkatkan proliferasi sel fibroblas dan dipilih untuk kajian lanjut di peringkat molekul. Penjujukan RNA menghasilkan kira-kira 80 juta bacaan dalam kedua-dua sampel UV dan UV terawat, 2007 gen telah didapati terekspress dan 2791 gen telah direncat dalam sel-sel kulit manusia (HDF) UV-radiasi (Sampel U1). Dengan cara yang sama, ekstrak C. xanthorrhiza sel HDF UV-radiasi terawat (Sampel U2) menghasilkan 2284 gen terekspress dan 2968 gen terekspress dalam sampel UV terawat. 2768 gen terekspress pada sampel UV dan UV terawat, 19 gen terekspress dan 19 gen terencat tersebut adalah gen sasaran dalam kajian ini. Kira-kira 19000 transkrip dilaporkan sebagai novel dan analisis ontologi gen telah mengklasifikasikan gen-gen kepada pelbagai fungsi. Analisis KEGG telah mencadangkan pembabitan kanser dan interaksi reseptor sitokin-sitokin dalam sel-sel HDF UV-radiasi yang membawa kepada induksi sel apoptosis seperti yang dilaporkan dalam hasil proliferasi sel dalam kajian ini. Profil gen ekspresi secara qPCR mengesahkan lapan gen terekspress secara ketara yang telah dipilih dari senarai gen sasaran untuk berada dalam turutan yang sama seperti yang diperolehi dalam analisis NGS. HIST1H2AG, ELOVL3, OSR2 dan TNFSF10 telah terekspress dalam sampel U1 dan terencat dalam sampel T2 manakala FAM111B, IVL, MFSD2A dan CCNE2 terekspress dalam sampel U1 dan terencat dalam sampel T2. Oleh itu, set gen-gen ini disahkan sesuai untuk menjadi calon yang baik dalam pembangunan penanda biologi bagi tujuan diagnostic dan rawatan personalisasi yang disebabkan oleh penuaan pra-matang akibat induksi UV. Oleh itu, C. xanthorrhiza berpotensi untuk menangkan masalah dan isu ketoksikan dan keberkesanan yang berkaitan dengan krim anti-penuaan.
ACKNOWLEDGEMENTS

I would hereby acknowledge greatly the indispensable role played by everyone who had contributed in the accomplishment of my PhD program. I wish to thank Dr. Noor Azmi Shaharuddin for giving me the great privilege to learn under his tutelage. Many thanks also goes to Prof. Dr. Maziah Mahmood for her support and training me to be a scientist, always available through my postgraduate journey. Many thanks also go to Dr. Syahida Ahmad and Dr. Lai Kok Song who also contributed immensely in my supervisory committee. Their technical and academics advice throughout my research project will always be remembered and appreciated.

To all my laboratory members I will like say a big thank you for all your supports throughout the years we journeyed together. Also all the Faculty of Biotechnology laboratory assistance for their technical support. Also I will like to appreciate Agro-Biotechnology Institute (ABI), Malaysia chromatography laboratory staff for their support and Arraygen Technology Pune, India for their bioinformatics support, Sengenics Company for their collaborative support in the complete transcriptomics sequencing. Also will like to thank all the friends I met along my PhD journey most especially Khales Manokra for her support and encouragement through these years and I will like to deeply appreciate my family member for their prayers and support and especially my brother Segun Alafiatayo for his financial support. This course would never have been possible without many people, institutions and software tools, to whom we truly appreciate their support, help and generosity. Thank you!
I certify that a Thesis Examination Committee has met on 18 May 2017 to conduct the final examination of Alafiatayo Akinola Adekoya on his thesis entitled "Biochemical Evaluations of Zingiberaceae sp. and Transcriptomics Profiling of UV-Irradiated Normal Human Adult Dermal Fibroblast Cells for Anti-Aging" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Janna Ong binti Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Muhajir bin Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Siti Aqlima binti Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ramakrishna Wusiriki, PhD
Professor
Central University of Punjab Bathinda
India
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 6 July 2017
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Noor Azmi Shaharuddin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Syahida Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Lai Kok Song, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ________________________________ Date: __________________

Name and Matric No: Alafiatayo Akinola Adekoya, GS34365
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Dr. Noor Azmi Shaharuddin

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Syahida Ahmad

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Lai Kok Song

Signature: ____________________________
Name of Member of Supervisory Committee: Professor Dr. Maziah Mahmood
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABREVIATIONS	xxiii

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 General events in Premature Skin aging	4
2.1.1 The Skin: Structure and Functions	4
2.2 Biochemical Process of Skin Aging	6
2.3 Elastase Inhibition	8
2.4 Hyaluronidase Inhibition	9
2.5 Types of Skin Aging and Causes	9
2.5.1 Intrinsic Aging	10
2.5.2 Extrinsic Aging	11
2.6 Plant Therapeutic Metabolite	12
2.6.1 Plant primary metabolites	12
2.6.2 Antioxidants	14
2.6.3 Phenolic compounds	15
2.6.4 Flavonoids	16
2.7 Reactive Oxygen Species and Antioxidant defence	18
2.8 Natural Products for Skin Aging Prevention	20
2.9 Zingiberaceae Family	21
2.9.1 Therapeutic Application and usage of Zingiberaceae	23
2.10 Zebrafish as a Model for Plant Extract Toxicity Analysis	24
2.11 Whole Transcriptome Sequencing Technology	25
2.11.1 RNA-sequencing	25
2.12 Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)	27

3 ANTIOXIDATIVE PROPERTIES OF ZINGIBERACEAE SPECIES

3.1 Introduction	28
3.2 Materials And Methods	29
3.2.1 Plants Materials	29
3.2.2 Chemicals and Reagents	31
3.2.3 Preparation of Extracts	31
3.2.4 DPPH Free Radical Scavenging Activity	32
3.2.5 Ferric Reducing Antioxidant Potential (FRAP) Assay
3.2.6 Total Flavonoid Content
3.2.7 Total Phenolic acid content
3.2.8 Total Polyphenol Content
3.2.9 Effects of Methanol Concentrations on Total Flavonoid Content
3.2.10 Statistical Analysis
3.3 Results And Discussions
3.3.1 Total antioxidant content
3.3.2 Total Flavonoids
3.3.3 Total Phenolic acid content
3.3.4 Total Polyphenol content
3.4 Conclusion

4 BIOCHEMICAL PROFILING AND QUANTIFICATION OF FLAVONOIDS IN ZINGIBERACEAE
4.1 Introduction
4.2 Materials And Methods
4.2.1 Chemicals and Reagents
4.2.2 Total Protein Content
4.2.3 Total Reducing Sugar
4.2.4 Total Hydrolysed Sugar Content
4.2.5 Total Lipid Content
4.2.6 β-carotene Content
4.2.7 Total Ascorbic acid content
4.3 Profiling and Quantification of Specific Flavonoids
4.3.1 Preparation of rhizomes extract for flavonoid separation using HPLC
4.3.2 Flavonoid Standards preparation for HPLC
4.3.3 HPLC Protocol for Flavonoid Separation
4.4 Fatty Acids Lipid Profiling
4.4.1 Preparation of rhizomes for fatty acid profiling using GC-FID
4.4.2 GC-FID Protocol for Fatty acids profiling
4.5 Results And Discussions
4.5.1 Flavonoid Quantification and profiling using HPLC
4.5.2 Fatty Acids Profile
4.6 Conclusion

5 EFFECTS OF Zingiberaceae RHIZOMES EXTRACTS ON THE INHIBITION OF PRO-SKIN AGING ENZYMES ACTIVITY
5.1 Introduction
5.2 Materials And Methods
5.2.1 Chemicals and Reagents
5.2.2 Plant extracts
5.2.3 Elastase Inhibition Assay
5.2.4 Collagenase Inhibition Assay
5.2.5 Hyaluronidase Inhibition Assay
5.3 Results And Discussions
6 PROLIFERATIVE EFFECTS AND TOXICITY ASSESSMENT OF \textit{C. xanthorrhiza} and \textit{C. longa} RHIZOME EXTRACTS ON NORMAL HUMAN ADULT DERMAL FIBROBLAST \((ATCC PCS 201 – 012)\) AND ZEBRAFISH \((\textit{Danio rerio})\)

6.1 Introduction

6.2 Materials And Methods

6.2.1 Chemicals and Reagents

6.2.2 Preparation of Complete Growth Media

6.2.3 Thawing of Frozen cells and Initiation of Cultures

6.2.4 Cell Culture Maintenance

6.2.5 Subculture of Cells

6.3 Determination of \textit{C. xanthorrhiza} and \textit{C. longa} Rhizomes Extracts Proliferative Potential on Normal Human Adult Dermal fibroblast cells \((ATCC 210-012^\circ)\) in Post UV Irradiation \((20mJ/s)\).

6.3.1 UV Irradiation of Culture Dermal fibroblast cells

6.3.2 UV Irradiation and Sample treatment

6.3.3 Cell Proliferation Assay

6.4 Zebrafish \((\textit{Danio rerio})\) Embryotoxic and Teratogenic Toxicity Assessment

6.4.1 Zebrafish Maintenance

6.4.2 Preparations and dilutions of test extracts

6.4.3 Production of Zebrafish fertilized eggs

6.4.4 Exposure of Zebrafish embryos and larvae to \textit{C. xanthorrhiza} and \textit{C. longa} extracts

6.4.5 Evaluation of Zebrafish embryos hatch rate

6.4.6 Evaluation of Zebrafish larvae heart beats

6.4.7 Therapeutic Index (TI) Evaluation

6.5 Results And Discussions

6.5.1 Proliferative Effects of \textit{C.longa} and \textit{C. xanthorrhiza} extracts on Normal human dermal fibroblast cell \((ATCC PCS 201-012)\)

6.5.2 Toxicity Assessment \textit{C. longa} and \textit{C. xanthorrhiza} extracts on Zebrafish \((\textit{Danio rerio})\) Larvae and Embryos.

6.5.3 Effect of \textit{C. xanthorrhiza} and \textit{C. longa} extracts on hatching rate

6.5.4 Effect of \textit{C. xanthorrhiza} and \textit{C. longa} extracts on heartbeat rate

6.6 Conclusion

7 TRANSCRIPTOMICS ANALYSIS OF UV-IRRADIATED AND TREATED NORMAL HUMAN ADULT DERMAL FIBROBLAST

7.1 Introduction

7.1.1 RNA Sequencing in Skin Aging Transcriptomics

7.2 Materials And Methods

7.2.1 Cells Treatment and Total RNA Extraction
7.2.2 Evaluation of Total RNA Quality with Bioanalyzer 127
7.2.3 Library preparation for RNA sequencing 127
7.2.4 Sequencing and Bioinformatics Analysis 129
7.2.5 Reads Mapping and Transcripts Assembly on Reference Genome 130

7.3 Results And Discussions 131
7.3.1 FastQC 131
7.3.2 Gene Ontology (GO) Terms Annotations 143
7.4 Conclusion 161

8
8.1 Introduction 162
8.1.1 Biomarkers Development 162
8.2 Materials And Methods 163
8.2.1 RNA Extraction of Treated UV irradiated Normal Human Dermal Fibroblast cells 163
8.2.2 Reverse Transcription (RT) – First Strand cDNA Synthesis 164
8.2.3 PCR Amplification of Differential Expressed Gene selected from RNA Seq Results 165
8.2.4 Purification and Quantification of PCR products 166
8.2.5 BLAST (Basic Local Alignment Search Tool) of Purified PCR Products Sequence 167
8.2.6 Primer Design for RT-PCR 167
8.2.7 Quantitative Real-time Amplification Assay for Gene Verification and Expression Analysis 167
8.3 Results And Discussions 169
8.3.1 Identification of Novel Transcripts 180
8.3.2 REAL – TIME qPCR 181
8.4 Conclusion 185

9 CONCLUSIONS AND RECOMMENDATIONS 187
9.1 Conclusions 187
9.2 Future Research And Recommendations 188

REFERENCES 190
APPENDICES 220
BIODATA OF STUDENT 267
LIST OF PUBLICATIONS 268
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main group of flavonoids, compounds and sources.</td>
</tr>
<tr>
<td>2</td>
<td>Plants with anti-aging potentials and possible mechanism of action.</td>
</tr>
<tr>
<td>3</td>
<td>Taxonomy of C. xanthorrhiza.</td>
</tr>
<tr>
<td>4</td>
<td>Plant identification with voucher number.</td>
</tr>
<tr>
<td>5</td>
<td>DPPH total antioxidant capacity for ten selected Zingiberaceae using 5 different solvent.</td>
</tr>
<tr>
<td>6</td>
<td>FRAP total antioxidant capacity for ten selected Zingiberaceae using 5 different solvent.</td>
</tr>
<tr>
<td>7</td>
<td>Total flavonoid content for ten selected Zingiberaceae using 5 different solvent.</td>
</tr>
<tr>
<td>8</td>
<td>Total Phenolic acids content for ten selected Zingiberaceae using 5 different solvent.</td>
</tr>
<tr>
<td>9</td>
<td>Total Polyphenols content for ten selected Zingiberaceae using 5 different solvent.</td>
</tr>
<tr>
<td>10</td>
<td>FID oven temperatures</td>
</tr>
<tr>
<td>11</td>
<td>Percentage lipid content</td>
</tr>
<tr>
<td>12</td>
<td>Quantified flavonoids in rhizome extracts of different Zingiberaceae using gradient ratio of 2% acetic acid (aqueous) to acetonitrile detected at 254 nm.</td>
</tr>
<tr>
<td>13</td>
<td>Percentage of Fatty acids Present in Zingiberaceae spp. determined using FAME Method.</td>
</tr>
<tr>
<td>14</td>
<td>Morphological characteristics evaluated as measures for the teratogenic potency of C. xanthorrhiza and C. longa at different time.</td>
</tr>
<tr>
<td>15</td>
<td>LC${50}$, EC${50}$ (mean values of 3 independent experiments) and TI values as derived from the concentrations-response curves for C. xanthorrhiza</td>
</tr>
</tbody>
</table>
LC₅₀, EC₅₀ (mean values of 3 independent experiments) and TI
values as derived from the concentrations-response curves for C.
longa

17 Phred quality score

18 QC results for sample U₁

19 Detailed sequencing statistics for sample U₁

20 QC results for sample T₂

21 Detailed sequencing statistics for sample T₂

22 QC results for control sample

23 Detailed sequencing statistics for control sample

24 List of differential expressed genes with Potential anti-aging
properties induced by C. xanthorrhiza.

Composition of the Epicentre Reverse Transcriptase first strand
synthesis reaction used for the conversion of extracted RNA
from HDF cells to cDNA

25 List of selected up-regulated genes in sample U₁ (UV irradiated
HDF cells) but down regulated in sample T₂ (UV irradiated
HDF cells and treated with C. Xanthorrhiza.

26 List of selected down regulated genes in sample U₁ (UV
irradiated HDF cells) but up-regulated in sample T₂ (UV
irradiated HDF cells and treated with C. Xanthorrhiza.

27 Polymerase Chain Reaction steps for the Amplification of genes
of interest obtained from RNA - seq for validation (cycles 35)

The sequence of primers designed from purified Amplified PCR
product of DNA sequencing used for target genes RT-qPCR
expression analysis

29 RNA quality and Quantity check results by using NanoDrop and
Bioanalyzer

30
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of Normal and Wrinkled Skin visual representation changes.</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>The role of ascorbic acid as a cofactor for proline hydroxylase enzyme in the production of hydroxyproline in collagen synthesis.</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of 6 major classes of flavonoids</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanisms of both intrinsic and photoaging process as a result of ROS generated from Sunlight and cellular oxidative phosphorylation through induction of AP-1 transcription factor.</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Life cycle of Zebrafish</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Applications of RNA-Seq</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Ten selected Zingiberaceae family cultivated at Taman Pertanian Universiti (TPU) utilized for this study</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Total flavonoid content of C. xanthorrhiza rhizome extracted with different concentration of methanol expressed as Naringenin equivalent.</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Total flavonoid content of C. longa rhizome extracted with different concentration of methanol expressed as Naringenin equivalent.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Total protein, total soluble protein and total insoluble protein content of selected Zingiberaceae rhizomes using Bradford assay. Bar shows standard error of mean (n=3).</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Total reducing sugar content of selected Zingiberaceae rhizomes using Samogyl-Nelson method. Bar shows the standard error of mean (n=3)</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Total beta carotene content of selected Zingiberaceae rhizomes. Bar shows the standard error mean (n=3).</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Total hydrolysed sugar content of selected Zingiberaceae rhizomes using Anthrone method. Bar shows the standard error of mean (n=3)</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Total ascorbic acid content of selected Zingiberaceae rhizomes. Bar shows the standard error of mean (n=3).</td>
<td>60</td>
</tr>
</tbody>
</table>
4.6 HPLC chromatogram of *Z. zerumbet* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.7 HPLC chromatogram of *C. xanthorrhiza* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.8 HPLC chromatogram of *B. rotunda* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.9 HPLC chromatogram of *K. pulchra* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.10 HPLC chromatogram of *C. mangga* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.11 HPLC chromatogram of *C. aeroginosa* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.12 HPLC chromatogram of *Z. officinale var. rubrum* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.13 HPLC chromatogram of *C. longa* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.14 HPLC chromatogram of *A. cochigera* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

4.15 HPLC chromatogram of *Z. officinale* rhizome extract at wavelength of 254nm and 1.0 mL/min flow rate at different elution time for individual flavonoid detected.

5.1 Percentage inhibition of elastase by ten selected Zingiberaceae rhizomes. Bar represent the standard deviation of mean (n=3)

5.2 Percentage inhibition of collagenase by ten selected Zingiberaceae rhizomes. Bar represent the standard deviation of mean (n=3)

5.3 Percentage inhibition of hyaluronidase by ten selected Zingiberaceae rhizomes. Bar represent the standard deviation of mean (n=3)
6.1 Male and Female zebrafish (Spawners) set for breeding

6.2 Schematic diagram of zebrafish toxicity testing

6.3 Morphology of normal human adult dermal fibroblast cells after 48hr culture in low serum kit media. Mag. 150x

6.4 Morphology of normal human adult dermal fibroblast cells treated with retinoic acid after 24hr in low serum kit media. Mag. 150x

6.5 Morphology of normal human adult dermal fibroblast cells treated with *C. longa* for 24hr after irradiated with 20mJ/cm² of UV in low serum kit media. Mag. 150x

6.6 Morphology of normal human adult dermal fibroblast cells treated with *C. xanthorrhiza* for 24hr after irradiated with 20mJ/cm² of UV in low serum kit media. Mag. 150x

6.7 Morphology of normal human adult dermal fibroblast cells UV irradiated with 20mJ/cm² after 24hr. Mag. 150x

6.8 Optimization of retinoic acid as an enhancer for cell proliferation on normal human dermal fibroblast cells treated for 24hrs. Cells concentration per well were 1.0 x 10⁴ data presented in percentage mean ± SD (n=3), ***p<0.05 were statistically different between concentration and control.

6.9 Proliferative effects of *C. longa* concentrations on normal human dermal fibroblasts cells treated for 24hrs. Cells concentration per well were 1.0 x 10⁴ data presented in percentage mean ± SD (n=3), ***p<0.05 were statistically different between concentration and control.

6.10 Proliferative effects of *C. xanthorrhiza* concentrations on normal human dermal fibroblasts cells treated for 24hrs. Cells concentration per well were 1.0 x 10⁴ data presented in percentage mean ± SD (n=3), ***p<0.05 were statistically different between concentration and control.

6.11 Proliferative effect of *C. longa* and *C. xanthorrhiza* extract on UV irradiated of normal human adult dermal fibroblast cells treated for 24hrs after UV dose of 20mJ/cm²

6.12 Images of zebrafish larvae at different concentration of *C. longa* treatment at 24hr post fertilization (hpf). Scale bars:100 μm.

6.13 Images of zebrafish larvae at different concentration of *C. longa* treatment at 48hr post fertilization (hpf). Scale bars:300 μm, 125μg - 100 μm
6.14 Images of zebrafish larvae at different concentration of *C. longa* treatment at 72hr post fertilization (hpf). Scale bars: 300 µm.

6.15 Images of zebrafish larvae at different concentration of *C. longa* treatment at 96hr post fertilization (hpf). Scale bars: 300 µm.

6.16 Images of zebrafish larvae at different concentration of *C. longa* treatment at 120hr post fertilization (hpf). Scale bars: 300 µm.

6.17 Images of teratogenic and embryo toxic effects of *C. longa* treatment. Scale bars: 300 µm.

6.18 Concentration-response curves for malformation and mortality of Zebrafish embryos and larvae at different hours of post fertilization (hpf) in 5 different *C. longa* extract concentrations (15.65, 31.25, 62.50, 125.0 and 250.0 µg/mL).

6.19 Images of zebrafish larvae at different concentration of *C.xanthorrhiza* treatment at 24hr post fertilization (hpf). Scale bars: 100 µm.

6.20 Images of zebrafish larvae at different concentration of *C. xanthorrhiza* treatment at 48hr post fertilization (hpf). Scale bars: 300 µm (15.63 µg, 31.25 µg and control), Scale bars:-100 µm (125 µg, 250 µg).

6.21 Images of zebrafish larvae at different concentration of *C. xanthorrhiza* treatment at 72hr post fertilization (hpf). Scale bars: 300 µm (15.63 µg, 31.25 µg, 62.50 µg and control), Scale bars:-100 µm (62.50 µg, 125 µg, 250 µg).

6.22 Images of zebrafish larvae at different concentration of *C. xanthorrhiza* treatment at 96hr post fertilization (hpf). Scale bars: (250 µg) - 100 µm. Scale bars:-300 µm (15.63 µg, 31.25 µg, 62.50 µg and control).

6.23 Images of zebrafish larvae at different concentration of *C. xanthorrhiza* treatment at 120hr post fertilization (hpf). Scale bars: (250 µg) - 100 µm. Scale bars:-300 µm (15.63 µg, 31.25 µg, 62.50 µg and control).

6.24 Images of teratogenic and embryo toxic effects of *C. xanthorrhiza* treatment. Scale bars:-300 µm

6.25 Concentration-response curves for malformation and mortality of Zebrafish embryos and larvae at different hours of post fertilization (hpf) in 5 different *C. xanthorrhiza* extract concentrations (7.80, 15.65, 31.25, 62.50, and 125.0 µg/mL).
6.26 Hatch rate of zebrafish embryo on exposure to *C. xanthorrhiza*. Data presented in mean ± SD (n=3).

6.27 Hatch rate of zebrafish embryo on exposure to *C. longa*. Data presented in mean ± SD (n=3).

6.28 Effects of *C. xanthorrhiza* on zebrafish larvae heart beat rate. Data presented in mean ± SD (n=3).

6.29 Effects of *C. longa* on zebrafish larvae heart beat rate. Data presented in mean ± SD (n=3).

7.1 The work flow chart for library preparations for Transcriptome analysis

7.2 Pie chart summary of QC depicting percentage of high quality, low quality and contaminated reads for sample U1

7.3 Pie chart summary of QC depicting percentage of high quality, low quality and contaminated reads for sample T2

7.4 Pie chart summary of QC depicting percentage of high quality, low quality and contaminated reads for Control sample.

7.5 Representation of differential expressed genes in sample U1, T2 and C

7.6 Volcano plot for sample U1. Red dots represent significantly differential expressed genes.

7.7 Volcano plot for sample T2. Red dots represent significantly differential expressed genes.

7.8 HeatMap representation of differential expressed genes showing the highly expressed genes in both U1 and T2 treated samples.

7.9 Gene Ontology (GO) functional annotations clustering analysis for sample U1 (A) Significant biological process identified; (B) Significant cellular component items identified; (C) Significant molecular function items identified.

7.10 KEGG Pathway Enrichment analysis for sample U1

7.11 Activation of cancer pathway as a result of UV irradiation of HDF as reported in KEGG pathway enrichment analysis result.

7.12 Activation of cytokine-cytokine receptor interaction as a result of UV irradiation of HDF as reported in KEGG pathway enrichment analysis result.
7.13 Gene Ontology (GO) functional annotations clustering analysis for sample T2 (A) Significant biological process identified; (B) Significant cellular component items identified; (C) Significant molecular function items identified.

7.14 KEGG Pathway Enrichment analysis for sample T2

7.15 MAPK KEGG pathway enrichment analysis results. This is a signaling pathway in UV-induced premature skin aging showing the effect of *C. Xanthorrhiza* extract treatment on UV-HDF resulting to cell proliferation. Red color represent Up-regulation while green color represent down regulation.

7.16 Gene Ontology (GO) functional annotations clustering analysis for Sample U1 & T2 against C. Significant biological process identified; (B) Significant cellular component items identified; (C) Significant molecular function items identified.

7.17 KEGG Pathway Enrichment analysis for Sample U1 & T2 against C.

8.1 Gel electrophoresis image of RNA extracted from cultured Norman human adult fibroblast cells. Lane 2 = control sample; Lane 3 = ultraviolet (UV) radiated cells and treated with *C. xanthorrhiza* Extract; Lane 4 = ultraviolet (UV) radiated cells and Lane M = RNA ladder

8.2 Amplification profile of purified PCR products of significantly differential expressed genes identified from RNA-seq. L = DNA ladder (1kb): 1 = MCM 10; 2 = FAM; 3 = IVL; 4 = MFSD2A; 5 = CCNE2; 6 = HIST1H2AG; ELOVL3; 8 = OSR2; 9 = TNFSF10.

8.3 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for FAM111B gene.

8.4 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for IVL gene

8.5 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for MFSD2A gene
8.6 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for CCNE2 gene

8.7 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for HIST1H2AG gene

8.8 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for ELOVL3 gene

8.9 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for OSR2 gene

8.10 DNA sequencing results of forward and reverse PCR amplified product of significantly differential expressed gene in extracted treated cells and Online Basic Alignment Search Tool (BLAST) similarity output for TNFSF10 gene

8.11 Representation of novel transcripts identified

8.12 RT-qPCR gene expression analysis of significantly expressed up-regulated genes in UV irradiated human dermal fibroblast cells but down regulated in UV irradiated HDF cells treated with *C. xanthorrhiza* extract.

8.13 RT-qPCR gene expression analysis of significantly expressed down regulated genes in UV irradiated human dermal fibroblast cells but up-regulated in UV irradiated HDF cells treated with *C. xanthorrhiza* extract.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μL</td>
<td>Micro litre</td>
</tr>
<tr>
<td>μM</td>
<td>Micromola</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activated protein 1</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy ribonucleic acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-diphenyl-2-picrylhydrazyl</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>F.A</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural organization</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant potential</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic equivalent</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Gas chromatography flame ionization detector</td>
</tr>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>HDF</td>
<td>Human dermal Fibroblast</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun nuclear kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto encyclopedia gene and genomes</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinases</td>
</tr>
<tr>
<td>miRNA</td>
<td>Micro ribonucleic acid</td>
</tr>
<tr>
<td>Ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>Mm</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MMP-1</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Necrosis Factoe kappa B</td>
</tr>
<tr>
<td>NGN</td>
<td>NaringeniN</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>PUFA</td>
<td>Poly unsaturated fatty acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNA-seq</td>
<td>Ribonucleic acid sequencing</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>TE</td>
<td>Trolox equivalent</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Good skin integrity is vital to a healthy life. Skin health and beauty is considered one of the major factors representing overall well-being. The aging process is a challenging human experience common to everyone, and the desire to look young prevails in the majority of the global population. With the elongation of life span and quality of life of global population, skin appearance becomes extremely important for people to look attractive and boost confidence in their social interactions. In today’s world, there is a great quest for eternal youth and an insatiable desire for methods which could reverse the biological clock. This has led to the willingness to spend fortune on cosmetics products, and has resulted in numerous cosmetic products flooding the market with no detail studies. Anti-aging products are mainly supplements and cosmeceutical skin care products with hope of creating a younger consumer look by lowering, prevention, and masking of skin aging signs. These signs include laxity (sagging), rhytids (wrinkles), photoaging effects such as solar elastosis, erythema, keratosis, dyspigmentation and poor texture. Anti-aging treatments may also focus on particular agent of skin aging for example exposure to sunlight (Asma et al., 2014).

The craving of man to remain perpetually young is dated back to 4000 B.C., evidences were obtained from archaeological artefacts used for cosmetics purposes found in Egypt, and these were believed to be an integral part of Egyptian dressing (Britannica, 2015). The cosmetics industry is classified as one of the world's fastest growing industries, it's considered to be a necessity instead of things people want for materialistic purpose (Eze et al., 2012). The Industry’s revenue in 2012 was estimated to be $245 billion (€180 billion) and $292 billion for 2015. Americans spend nearly $7 billion a year on cosmetics and $10.1 billion on cosmetics procedures (http://rosiemolinary.com/2011/10/23/the-price-of-beauty/retrieved 19th July 2016). A report on global anti-aging market trend by Transparency Market Research (TMR, 2014) estimated anti-aging market segment from the total cosmetics market to worth USD $191.7 billion globally by 2019 with an annual growth rate of 7.8% between 2013–2019 (TMR Analysis, 2014). According to the report, two regions that carry maximum potential in this segment over the forecast period are Asia – Pacific and Rest of World (RoW). India, China, Japan, and South Korea are poised to attract maximum interest in for anti-aging or age – reversing procedures further supported by the respective government of these Countries (TMR Analysis, 2014). The market value for the Asia – Pacific has increased to more than USD $70 billion, which is the second largest market after western European market.

The Malaysia's cosmetics industry has been witnessing tremendous growth, market size has been growing and consumer demand is rising spontaneously. In few years 40% in growth was witnessed from MYR 1.4 billion Malaysia ringgit in 1995 to MYR 1.9 billion in 2007 (Swidi et al., 2010) projecting total sales value to hit USD $1.1 billion by 2010 with 13% annual growth rate. According to the Malaysia department
Small, medium and large cosmetics company are developing wide range of anti-aging ingredients but desirable features of anti-aging agents such as efficacy, affordable price, safety and mechanisms of action are still lacking. Despite the huge spending and time invested in rejuvenation procedures, most products found on the shelves of cosmetics stores either lacked the proven efficacy claimed by the manufacturer or possess side effects detrimental to human’s health (Avantaggiato et al., 2015; Grosicki, et al., 2014; McEwen, et al., 2012; Miyamura et al., 2011; Zouboulis & Makrantonaki 2011; Odumosu & Ekwe, 2010). Also, there are numerous drawbacks cause by prolong application of some of the synthetic anti-aging cosmetics products such as skin cancer, irritations, inflammations, DNA damage (Suresh, 2014); endocrine disruption and skin absorption of toxic chemicals such as 2, 4 – D, DEET etc. (Pont, et al., 2004; Sarveiya, 2004; Charron & Brand, 2004). Chemical compounds such as hydroquinone, homosalate, paraben which either serve as Sunscreen or whitening agents are found in Anti-aging cosmetics products and reports have shown that these compounds are toxic to the skin. (Makrantonaki & Zouboulis 2012; Brand, et al., 2003). As a consequence of the negative side effects, anti-aging researchers are now looking into the use of natural products as alternative solution to slowing down the skin aging process (Divya et al., 2015; Mohamed et al., 2014; Pérez-Sánchez et al., 2014; Fujii et al., 2013; Hasham et al., 2013; Chiang et al., 2011; Choi et al., 2010; Park et al., 2010; Angerhofer et al., 2009; Kim et al., 2009). Therefore, there is need to explore the scientific validity on herbs usage as anti-wrinkle, and their activity should be further explore (Mukherjee et al., 2011).

In this project, 10 Zingiberaceae rhizomes from Malaysian traditional plants which are used in folkloric practices for the management of skin wrinkles were selected for this studies. They are Zingiber zerumbet, Curcuma xanthorrhiza, Boesenbergia rotunda, Kaempferia galanga, Curcuma mangga, Curcuma aeroginosa, Zingiber officinale var. rubrum, Curcuma longa, Alpina cochigera and Zingiber officinale.

Thus, the hypothesis of this study states that extract from one sample of Zingiberaceae sp. with high antioxidative capacity will induced the up regulation and down regulation of genes or transcription factors related to aging in cellular model of UV induce skin aging.

The general objective of this study is to determine the anti-aging properties of Zingiberaceae using normal human adult dermal fibroblast cells as a model while the specific objectives of this study are:

1. To screen 10 Zingiberaceae plant species for their Antioxidative properties.
2. To determine, quantify specific flavonoid and profile the biochemical compositions in the selected Zingiberaceae samples.
3. To evaluate the effects of *Zingiberaceae* extracts on the inhibition of extracellular degrading enzymes (ECM).

4. To evaluate the proliferative effects and *in vivo* toxicity assessment of *C. xanthorrhiza* and *C. longa* using normal human adult dermal fibroblast cells and Zebrafish (*Danio rerio*) as a model.

5. To identify the differential expressed gene (DEG), annotate genes and identify major pathways involved in both UV-irradiated and UV-Irradiated normal human dermal fibroblast *C. xanthorrhiza* extract treated.

6. To validate gene expression profile using quantitative polymerase chain reaction (qPCR).
REFERENCES

