TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIDIABETIC PROPERTIES OF SEED COATS OF SELECTED BEANS AND TESTA OF COCONUT (Cocus nucifera L.)

ADEKOLA KHADIJAT ADETOLA

FBSB 2017 10
TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIDIABETIC PROPERTIES OF SEED COATS OF SELECTED BEANS AND TESTA OF COCONUT (Cocus nucifera L.)

By

ADEKOLA KHADIJAT ADETOLA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

May 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To my beloved parents, Prof. and Dr. (Mrs) F.A. Adekola

For their endless support, prayers and encouragement.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIDIABETIC PROPERTIES OF SEED COATS OF SELECTED BEANS AND TESTA OF COCONUT (Cocus nucifera L.)

By

ADEKOLA KHADIJAT ADETOLA

May 2017

Chairman : Professor Abu Bakar Saleh, PhD
Faculty : Biotechnology and Biomolecular Sciences

Diabetes mellitus is one of the most common metabolic disorders affecting the global population; management of this disorder still remains inadequate owing to the side effects of synthetic hypoglycaemic drugs available. This study aims at comparing the seed coats of four varieties of beans (red kidney bean, red bean, black-eyed pea, black bean) and testa of coconuts (mature and tender coconut) in terms of their antioxidant and antidiabetic properties. Hundred (100) gram portions of the milled bean seed coats and coconut testas were soaked, centrifuged and filtered to obtain crude extracts. Quantification of the phenolic acids and flavonoids in the extracts was carried out using high performance liquid chromatography coupled with diode array detection. The total phenolic content, total flavonoid content, antioxidant potentials (DPPH, ABTS and FRAP) and the α-amylase and α-glucosidase inhibitory activities of the crude extracts were studied in vitro. The results showed that the red kidney bean seed coat (RKB) {DPPH IC₅₀=63.60±3.50 µg/mL, ABTS IC₅₀=111.30±0.60 µg/mL, FRAP=204.71±2.87 mmol} and tender coconut testa (TCO) {DPPH IC₅₀=47.40±7.00 µg/mL, ABTS IC₅₀=125.70±6.70 µg/mL, FRAP=546.10±36.90 mmol} exhibited the highest antioxidant activities. Both extracts had also shown strong inhibition towards α-glucosidase activity (RKB, IC₅₀=19.90±5.67 and TCO, IC₅₀=4.84±1.43 µg/mL) and followed by mild inhibition towards α-amylase activity (RKB, IC₅₀=120.5±15.4 and TCO, IC₅₀=532.8±68.0 µg/mL). The total phenolic content of RKB seed coat and TCO testa extracts were 21.80±0.50 and 44.60±7.06 mg gallic acid equivalents per gram of seed coat while the flavonoid contents were 24.38±1.22 and 67.59±7.00 mg quercetin equivalents per gram of seed coat respectively. The chromatography results showed that the extracts contained appreciable level of some phenolic acids (0.01±0.01 - 5.74±0.54 mg/g) and flavonoids (0.05±0.00 - 7.25±0.06 mg/g) including gallic acid, ellagic acid, caffeic acid, chlorogenic acid, quercetin, catechin, epigallocatechin gallate and rutin. In the in vivo study, antidiabetic effects of TCO and RKB on streptozotocin...
induced diabetic rats were evaluated using various biochemical parameters. Forty-nine (49) rats were randomly divided into seven groups of seven rats each for normal control, diabetic untreated and five diabetic treated groups. Administration of extracts at a dose of 200 and 400 mg/kg body weight (b.wt.) were carried out daily for 14 days. The results showed that both TCO and RKB extracts at the different doses were able to significantly (p<0.05) reduce hyperglycaemia. Infact, TCO demonstrated the most remarkable reduction of 1.5 fold decrease at the dose of 200 mg/kg b.wt when compared to the normal control group. Treatments using these two extracts also reduced the levels of cholesterol, urea, bilirubin, creatinine, alanine transaminase (ALT), aspartate transaminase (AST) and total protein by trace amounts. These results suggest that red kidney bean seed coat and tender coconut testa would have higher potential as nutraceuticals and could serve as natural alternative sources for antidiabetic remedy.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

JUMLAH KANDUNGAN FENOLIK, ANTIOKSIDAN DAN CIRI-CIRI ANTIDIABETIK JENIS KULIT BENIH KACANG DAN TESTA KELAPA
(Coccus nucifera L.)

Oleh

ADEKOLA KHADIJAT ADETOLA

Mei 2017

Pengerusi : Profesor Abu Bakar Saleh, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Diabetes mellitus adalah salah satu gangguan metabolik yang paling biasa yang memberi kesan kepada penduduk global; pengurusan penyakit ini masih tidak mencukupi disebabkan oleh kesan-kesan sampingan ubat-ubatan sintetik hipoglisemia yang ada. Kajian ini bertujuan untuk membandingkan kulit benih empat jenis kacang (kacang panggang, kacang merah, kacang hitam bermata, kacang hitam) dan testa kelapa (matang dan muda) dari segi antioksidan dan ciri-ciri antidiabetes. Seratus bahagian (100) gram kulit benih kacang (RKB) dan testas kelapa yang (TCO) dikisar telah direndam, sentrifuj dan ditapis untuk mendapatkan ekstrak mentah. Kuantifikasi asid fenolik dan flavonoid dalam ekstrak telah dijalankan dengan menggunakan kromatografi cecair berprestasi tinggi dipasangkan dengan pengesanan diod. Jumlah kandungan fenolik, jumlah kandun gan flavonoid, potensi antioksidan (DPPH, ABTS dan FRAP) dan aktiviti perencatan α-amilase dan α-glucosidase bagi ekstrak mentah telah dikaji secara in vitro. Hasil kajian menunjukkan bahawa ekstrak kulit kacang panggang {DPPH IC₅₀=63.60±3.50 µg/mL, ABTS IC₅₀=111.30±0.60 µg/mL, FRAP=204.71±2.87 mmol} dan testa kelapa muda {DPPH IC₅₀=47.40±7.00 µg/mL, ABTS IC₅₀=125.70±6.70 µg/mL, FRAP=546.10±36.90 mmol} telah mempamerkan aktiviti antioksidan yang tertinggi. Kedua-dua ekstrak juga telah menunjukkan perencatan kuat ke arah aktiviti α-glucosidase (RKB, IC₅₀=19.90±5.67 and TCO, IC₅₀=4.84±1.43 µg/mL) dan diikuti oleh perencatan sederhana terhadap aktiviti α-amilase (RKB, IC₅₀=19.90±5.67 and TCO, IC₅₀=4.84±1.43 µg/mL). Jumlah kandungan fenolik RKB kulit benih dan TCO testas ekstrak masing-masing adalah 21.80 ± 0.50 dan 44.607 ± 0.56 mg bersamaan asid galik/g kulit benih manakala jumlah kandungan flavonoid RKB kulit benih dan TCO testas ekstrak masing-masing adalah 24.38±1.22 and 67.597±7.00 mg bersamaan quercetin/g kulit benih. Keputusan kromatografi menunjukkan bahawa ekstrak mengandungi beberapa asid fenolik (0.01±0.01 - 5.747±0.54 mg/g) dan flavonoid (0.05±0.00 - 7.25±0.06 mg/g).
termasuk asid galik, asid ellagik, asid kafeik, asid klorogenik, kuersetin, katekin, epigallokatekin gallate dan rutin. Dalam kajian in vivo, kesan antidiabetik TCO dan RKB pada streptozotocin teraruh tikus diabetik telah dinilai menggunakan pelbagai parameter biokimia. Empat puluh sembilan tikus secara rawak dibahagikan kepada tujuh kumpulan iaitu tujuh tikus setiap satu untuk kawalan normal, kencing manis dan kumpulan diabetes terawat. Perawatan ekstrak pada dos 200 dan 400 mg/kg b.wt. telah dijalankan setiap hari selama 14 hari. Hasil kajian menunjukkan bahawa keduadua ekstrak TCO dan RKB pada dos yang berbeza dapat (p<0.05) mengurangkan hiperglisemia dengan ketara sebanyak 1.5% kali ganda penurunan. Malah, TCO menunjukkan pengurangan yang paling luar biasa pada dos 200 mg/kg b.wt. Rawatan menggunakan keduadua ekstrak juga telah mengurangkan tahap kolesterol, urea, bilirubin, kreatinin, alanine transaminase (ALT), aspartate transaminase (AST) dan jumlah protein oleh jumlah ekstrak yang rendah. Keputusan ini menunjukkan bahawa kulit kacang panggang merah kacang dan testa kelapa muda mempunyai potensi yang lebih tinggi sebagai nutraseutikal dan boleh menjadi sumber semula jadi alternatif bagi perawatan antidiabetik.
ACKNOWLEDGEMENTS

First and foremost, I thank Almighty Allah for HIS infinite mercies, protection and guidance throughout the course of my study. I will forever be indebted to God Almighty for making this pursuit of knowledge a reality.

My sincere appreciation goes to my supervisor, Prof. Dato Abu Bakar Salleh for his support and guidance throughout the course of my study. He is always ready to help despite his tight schedules. I am really grateful sir, May Almighty Allah continue to bless you sir.

I would like to extend my appreciation to my Co-supervisors; Dr Uswatun Hasanah bt Zaidan and Assoc Prof. Azrina Azlan for their advice and support towards this research and for sparing their time to read though this thesis, I am thankful.

My sincere acknowledgement also goes to my external supervisor Dr Mohammed Nazrim Marikkar for his time, support and guidance during the research and writing of this thesis, I am indeed grateful sir.

I wouldn’t be doing justice if I fail to appreciate my wonderful siblings; Wale, Kamal, Mariam, Abdullah and Abdulrahman for their love and support. I couldn’t have asked for better siblings, you guys are the best. Much love to you guys.

I would like to acknowledge the financial support from a fundamental research grant (FRGS/2/2013/SG01/UPM/02/5) awarded by Ministry of Higher Education Malaysia.

My appreciation also goes to all the academic and administrative staffs of Faculty of Biotechnology and Biomolecular Sciences for their assistance in one way or the other.

Last but not the least; I would like to acknowledge my lab mates, colleagues and friends for making my stay in UPM a wonderful one.
I certify that a Thesis Examination Committee has met on 17 May 2017 to conduct the final examination of Adekola Khadijat Adetola on her thesis entitled "Total Phenolic Content, Antioxidant and Antidiabetic Properties of Seed Coats of Selected Beans and Testa of Coconut (Coccus nucifera L.)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yunus bin Abd. Shukor, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Syahida binti Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Alfi Khatib, PhD
Associate Professor
International Islamic University Malaysia
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 6 July 2017
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abu Bakar Saleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Uswatun Hasanah Bt Zaidan, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Azrina Azlan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohd Nazrim Marikkar, PhD
Associate Professor
International Institute for Halal Research & Training
International Islamic University Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________ Date: ________________

Name and Matric No.: Adekola Khadijat Adetola, GS 42950
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Professor Dr. Abu Bakar Saleh

Signature:
Name of Member of Supervisory Committee: Dr. Uswatun Hasnah Bt Zaidan

Signature:
Name of Member of Supervisory Committee: Associate Professor Dr. Azrina Azlan

Signature:
Name of Member of Supervisory Committee: Associate Professor Dr. Mohd Nazrim Marikkar
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 General Introduction
1.2 Problem statement
1.3 Hypothesis
1.4 Objectives of the study

2 LITERATURE REVIEW
2.1 Diabetes
 2.1.1 Diagnosis of diabetes
 2.1.2 Types of diabetes
2.2 Prevalence of diabetes worldwide
2.3 Prevalence of diabetes in Malaysia
2.4 Complications of diabetes
 2.4.1 Retinopathy
 2.4.2 Nephropathy
 2.4.3 Neuropathy
 2.4.4 Cardiovascular disease
 2.4.5 Erectile dysfunction
2.5 Nutritive values of coconut
2.6 Nutritive value of bean seed coat
2.7 Phytochemical study of coconut
2.8 Phytochemical study of common beans
2.9 α-Amylase and α-glucosidase
2.10 α-Amylase and α-glucosidase inhibitors
2.11 Free radicals and oxidative stress
2.12 Antioxidants
2.13 Antioxidant activities
 2.13.1 DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity
 2.13.2 ABTS (2, 2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) assay
 2.13.3 FRAP (Ferric reducing antioxidant power) assay
 2.13.4 Folin-Ciocalteu reducing capacity (FCR Assay)
2.14 Phenolic compounds
2.15 Correlation between antioxidant and antidiabetic properties of common beans and coconut testa extracts

3 MATERIALS AND METHODS

3.1 Sampling
3.2 Chemicals
3.3 Sample preparation
3.4 Study flowchart
3.5 Extract preparation
3.6 Determination of total phenolic content
 3.6.1 Total phenolic content (TPC)
 3.6.2 Preparation of gallic acid standard curve
3.7 Determination of total flavonoid content
 3.7.1 Total flavonoid content (TFC)
 3.7.2 Preparation of quercetin standard curve
3.8 Quantification of phenolic compounds using high performance liquid chromatography coupled with diode array detection (HPLC-DAD)
3.9 Determination of antioxidant activity
 3.9.1 DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity
 3.9.2 ABTS radical scavenging activity
 3.9.3 Ferric reducing antioxidant power assay (FRAP)
3.10 Enzyme inhibitory activity
 3.10.1 α-Amylase inhibition assay
 3.10.2 α-Glucosidase activity
3.11 Animal studies
 3.11.1 Experimental animals
 3.11.2 Study of anti-hyperglycaemic activity
 3.11.3 Study of antidiabetic activity
 3.11.4 Biochemical analysis
3.12 Statistical analysis

4 RESULTS AND DISCUSSION

4.1 Total phenolic content (TPC)
4.2 Total flavonoid content (TFC)
4.3 Quantification of phenolic compounds
4.4 Antioxidant activities
 4.4.1 DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging activity
 4.4.2 ABTS+ (2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) radical scavenging activity
 4.4.3 Ferric reducing antioxidant power assay (FRAP)
4.5 α-Amylase inhibition activity
4.6 Alpha glucosidase inhibition activity
4.7 Correlation between phenolic and flavonoid contents with antioxidant and enzyme inhibitory activities of extracts
4.8 Effect of TCO and RKB on body weight of animals
4.9 Effect of TCO and RKB on oral glucose tolerance (OGTT) in rats
4.10 Effect of TCO and RKB on blood glucose levels (mg/dL) of Streptozotocin-induced rats
4.11 Effect of TCO and RKB on the levels of creatinine, bilirubin, urea and cholesterol in serum of experimental groups of rats
4.12 Effect of TCO and RKB on the levels of Alanine transaminase (ALT), Aspartate transaminase (AST) and Total protein serum of experimental groups of rats

5 SUMMARY, CONCLUSION AND RECOMMENDATION
5.1 Summary
5.2 Conclusion
5.3 Recommendation for further studies

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Criteria for the diagnosis of diabetes</td>
</tr>
<tr>
<td>2.2</td>
<td>Nutritional composition of coconut fruit</td>
</tr>
<tr>
<td>2.3</td>
<td>Nutritional value of beans</td>
</tr>
<tr>
<td>4.1</td>
<td>Phenolics composition of selected beans seed coats and coconut testas (mature & tender) by HPLC-DAD</td>
</tr>
<tr>
<td>4.2</td>
<td>α-amylase inhibitory activities of bean seed coat varieties and coconut testas</td>
</tr>
<tr>
<td>4.3</td>
<td>α-glucosidase inhibitory activities of bean seed coat varieties and coconut testas</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation between total phenolic content (TPC) and total flavonoid content(TFC) with antioxidant and enzyme inhibitory activities of bean seed coat varieties and coconut testa</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of RKB and TCO on body weight</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of RKB and TCO on glucose tolerance test</td>
</tr>
<tr>
<td>4.7</td>
<td>Hypoglycaemic effect of RKB and TCO on streptozotocin-induced diabetic rats</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of TCO and RKB on serum Urea, Creatinine, Bilirubin and Cholesterol</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of TCO and RKB on AST, ALT and Total protein</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Graphical illustration of type I diabetes</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Graphical illustration of type II diabetes</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Prevalence of diabetes worldwide</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanisms of oxidative cellular damage</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Structures of some basic plant phenolic compounds</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Mature coconut testa</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Tender coconut testa</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Red kidney bean seed coat</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Red bean seed coat</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Black bean seed coat</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>Black-eyed pea seed coat</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Flow chart of the study</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Total phenolic content of coconut testas and seed coats of different beans</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Total flavonoid content of coconut testas and seed coats of different beans</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative chromatogram of TCO</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Representative chromatogram of RKB</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Representative chromatogram of RB</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Representative chromatogram of TCO</td>
<td>41</td>
</tr>
<tr>
<td>4.7</td>
<td>Representative chromatogram of BEP</td>
<td>41</td>
</tr>
<tr>
<td>4.8</td>
<td>Representative chromatogram of MCO</td>
<td>42</td>
</tr>
<tr>
<td>4.9</td>
<td>DPPH radical scavenging activities of coconut testas and seed coats of different beans</td>
<td>44</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>ABTS radical scavenging activities of coconut testas and seed coats of different beans</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>Ferric reducing antioxidant power activity of coconut testas and seed coats of different beans</td>
<td>46</td>
</tr>
<tr>
<td>4.12</td>
<td>Acarbose inhibition curve for α-amylase</td>
<td>49</td>
</tr>
<tr>
<td>4.13</td>
<td>Acarbose inhibition curve for α-glucosidase</td>
<td>52</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)</td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate transaminase</td>
<td></td>
</tr>
<tr>
<td>b.wt.</td>
<td>Body weight</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Black beans</td>
<td></td>
</tr>
<tr>
<td>BEP</td>
<td>Black-eyed peas</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribose nucleic acid</td>
<td></td>
</tr>
<tr>
<td>DNS</td>
<td>3,5-dinitrosalicylic acid</td>
<td></td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>Erectile dysfunction</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>Folin-Ciocalteu reagent</td>
<td></td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
<td></td>
</tr>
<tr>
<td>g/L</td>
<td>Grams per litre</td>
<td></td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalent</td>
<td></td>
</tr>
<tr>
<td>HPLC-DAD</td>
<td>High performance liquid chromatography with Diode array detection</td>
<td></td>
</tr>
<tr>
<td>IDF</td>
<td>International diabetes federation</td>
<td></td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin dependent diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibitory concentration</td>
<td></td>
</tr>
<tr>
<td>IU/L</td>
<td>International units per litre</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
<td></td>
</tr>
<tr>
<td>MafA</td>
<td>MAF BZIP Transcription Factor A</td>
<td></td>
</tr>
<tr>
<td>MCO</td>
<td>Mature coconut</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>Millilitres</td>
<td></td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Millimetres</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
<td></td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>Micrograms</td>
<td></td>
</tr>
<tr>
<td>mg/dL</td>
<td>Milligrams per decilitre</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Nanometres</td>
<td></td>
</tr>
<tr>
<td>NHMS</td>
<td>National health and morbidity survey</td>
<td></td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non-insulin dependent diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>OGGTT</td>
<td>Oral glucose tolerance test</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Phenolic compounds</td>
<td></td>
</tr>
<tr>
<td>Pdx-1</td>
<td>Pancreatic and duodenal homeobox gene 1</td>
<td></td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin equivalent</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Red beans</td>
<td></td>
</tr>
<tr>
<td>RKB</td>
<td>Red kidney beans</td>
<td></td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
<td></td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
<td></td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
<td></td>
</tr>
<tr>
<td>TCO</td>
<td>Tender coconut</td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
<td></td>
</tr>
<tr>
<td>TPTZ</td>
<td>Tri (2-pyridyl)-1,3,5-triazine</td>
<td></td>
</tr>
<tr>
<td>U/L</td>
<td>Units per litre</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation</td>
<td></td>
</tr>
</tbody>
</table>
w/v Weight per volume
%
Percentage
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Diabetes mellitus (DM) is an endocrine disorder of carbohydrate, protein and lipid metabolism characterised by elevated blood glucose levels which occurs as a result of defect in insulin secretion, insulin action or both (Yusoff et al., 2015; De Souza et al., 2010). It has become rampant due to increasing rates of obesity among the youths resulting from sedentary lifestyles as well as a steady increase of those with a parental history of type II diabetes (Amutha & Mohan, 2015). Statistics show that over 180 million people are suffering from diabetes worldwide with about 5% deaths each year. If not properly checked, the number of people suffering from this disorder may double by 2030 (Jemain et al., 2011). According to the International Diabetes Federation, about 366 million people were affected with diabetes worldwide in 2011 (Lacroix & Li-Chan, 2014), and is expected to escalate to an alarming figure of 642 million by 2040 (Jaacks et al., 2016). Malaysia which is a multi-ethnic nation comprising 3 major Asian races (Malays, Chinese and Indians) with a population of about 25 million has a high risk of being prone to diabetes epidemic owing to a major shift in lifestyles and ageing of the population (Yun et al., 2007). The recent National Health and Morbidity Survey (NHMS) of Malaysia showed that the prevalence of diabetes in adults aged ≥18 years has increased steadily from 15.2% in 2011 to 17.5% in 2015 (“Institute for Public Health,” 2015; “Institute for Public Health,” 2011).

Diabetes mellitus is a major health problem; hence control of hyperglycaemia is important as if left untreated can increase the vulnerability of several macro vascular and micro vascular complications such as, coronary vascular disease, hypertension, stroke, cardiomyopathy and nephropathy, retinopathy, neuropathy (Jayaraj et al., 2013; Chakrabarti & Rajagopalan, 2002). Recent reports have showed that high postprandial plasma glucose level is more deleterious than fasting blood glucose as it can cause serious complications and also increase mortality rate. Hence, there is a need to control the level of postprandial blood glucose (Ye, Song, Yuan, & Mao, 2010).

One of the effective therapeutic approaches for the treatment of diabetes is to lower the postprandial hyperglycaemia level by suppressing absorption of glucose through the inhibition of the carbohydrate-hydrolyzing enzymes namely, α-amylase and α-glucosidase (De Souza et al., 2010; Nickavar & Abolhasani, 2013). Inhibitors of α-amylase and α-glucosidase such as acarbose, can help in reducing the postprandial blood glucose rise by prolonging the enzymatic hydrolysis of complex carbohydrate, thereby delaying glucose absorption (Shobana et al., 2009). A number of inhibitors of α-amylase and α-glucosidase have been isolated from medicinal plants to serve as an orthodox drug with increased potency and mild side effects when compared with the existing modern drugs (Kazeem et al., 2013).
Another key approach to inhibit the debilitating progression of diabetic health complications is through the complementary use of antioxidants (Mahomoodally & Muthoora, 2014). It has been postulated that oxidative stress induced by reactive oxygen species (ROS) can induce cell membrane disintegration and mutilation of protein, lipid and deoxyribose nucleic acid (DNA) which can initiate or promote the development of several chronic diseases such as; diabetes mellitus (Hashim et al., 2013). Evidence has shown that hyperglycaemic condition is the cause of oxidative stress due to an increment in the production of free radicals in the mitochondria. This has been associated with the pathogenesis of beta cell dysfunction, insulin resistance and occurrence of diabetic complications. Antioxidants such as vitamins E and C have been proven to exhibit antioxidant protective effects against reactive oxygen species and prevention of diabetic microvascular complications in animal models (Yusoff et al., 2015).

Management of diabetes include; insulin action enhancement at the target tissues, use of sensitizers (biguanides, thiazolidinediones), use of sulfonylureas (glibenclamide, glimepiride) to stimulate endogenous insulin secretion and using specific enzyme inhibitors such as; acarbose, miglitol to reduce the demand for insulin (Uddin et al., 2014). However, a number of antidiabetic agents currently available for the management of diabetes including alpha glucosidase inhibitors, meglitinides are usually associated with serious side effects such as, hypoglycaemia, weight gain, gastrointestinal cramps and liver disorders (Lacroix & Li-Chan, 2014; Shobana et al., 2009). Hence, there is a need for antidiabetic therapies of natural origin that are safe and more effective with minimal side effects (Lacroix & Li-Chan, 2014).

Natural antidiabetic remedies from plants, fruits and other dietary sources are gaining awareness because of minimal side effects when compared to some of the modern drugs. This has drawn scientists towards exploring natural antidiabetic remedies due to their ability to stimulate insulin secretion, improve glucose uptake in peripheral tissues and impede the activities of digestive enzymes (Mohamad Jemain et al., 2011). It has been reported that over 1100 plant species so far have been investigated on to treat diabetes (Nickavar & Abolhasani, 2013).

The coconut palm (Cocos nucifera) is an essential member of Arecaceae (palm family) family. It is the most widely grown palm around the globe (Agyemang-Yeboah, 2011). Coconut is usually referred to as ‘tree of heaven’ because it provides useful and diverse products for the benefit of people. More than 93 countries in the world grow coconut in an area of 12 million hectares with production of 59.98 million tonnes of nuts annually. According to Food and Agricultural organization, one of the largest coconuts producing country is Indonesia with production of about 18 million tonnes followed by Philippines and India. Some of the edible products that can be obtained from coconut include; coconut milk, copra, coconut oil. Consumption of coconut is associated with several health benefits such as; increasing the absorption of nutrients, cures kidney and liver diseases, reduction of blood sucrose level (Sangamithra et al., 2013). The health benefits of coconut such as the
ketogenic and glycaemic properties of coconut oil which has been found to enhance insulin secretion and utilize blood glucose have been studied extensively. Testa is the brown part covering coconut kernel which is usually obtained as a by-product during preparation of coconut products (Agyemang-Yeboah, 2011). Testas are however, getting wasted as studies on their health benefits have not yet received wide publicity.

Dry beans (*Phaseolus* spp. *L.*) are very essential grain legumes both from economic and nutritional viewpoints because they are abundant sources of protein, complex carbohydrates, dietary fibres and minerals (López *et al.*, 2013). Intake of legumes regularly has many advantageous physiological effects in controlling and preventing a number of metabolic diseases such as diabetes mellitus and colon cancer (Siddiq *et al.*, 2010). In recent years, special concern has been manifested towards the anti-hyperglycaemic potential of dietary waste sources such as; cereals, coconut and legumes. Since most of the phenolic compounds are concentrated in the seed coat, the objective of this study was to compare brown testa of different coconut types with four varieties of bean seed coats with respect to total phenolic content, antioxidant and antidiabetic properties.

1.2 Problem statement

Diabetes mellitus is a growing public health concern posing serious threat worldwide. Modern drugs available for the management of this disorder are associated with a number of side effects; hence there is a need to focus more on natural antidiabetic remedies which are safer and more effective. This study will focus on the antidiabetic potentials of coconut testa and bean seed coat.

1.3 Hypothesis

- The coconut testa and bean seed coat extracts will show antioxidant properties.
- The coconut testa and bean seed coat extracts will exhibit significant inhibition of α-amylases and α-glucosidases.
- The coconut testa and bean seed coat extracts will show anti-hyperglycaemic effect on diabetic Sprague-dawley rats.

1.4 Objectives of the study

- To measure the antioxidant properties of the coconut testa and beans seed coat extracts.
- To quantify the phenolic compounds in coconut testa and bean seed coat extracts using reverse-phase high performance liquid chromatography (HPLC).
- To evaluate α-amylase and α-glucosidase inhibitory activities in the coconut testa and beans seed coat extracts.
To determine the antidiabetic effect of the coconut testa and bean seed coat extracts on the Sprague-dawley rats.
REFERENCES

Nithiyanantham, S., Selvakumar, S., & Sidduraju, P. (2012). Total Phenolic Content and Antioxidant Activity of Two Different Solvent Extracts from Raw and Processed Legumes, *Cicer arietinum* L. and *Pisum sativum* L.

