

UNIVERSITI PUTRA MALAYSIA

PHYSICAL AND MECHANICAL PROPERTIES OF NANOCOPPER PARTICLE-REINFORCED ALUMINA MATRIX COMPOSITES

MOHAMMED SABAH ALI

FK 2017 96

PHYSICAL AND MECHANICAL PROPERTIES OF NANOCOPPER PARTICLE-REINFORCED ALUMINA MATRIX COMPOSITES

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2017

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

To the spirit of my dear father (Sabah Ali Al-Mayali)

To my mother For her unconditional love and support

> To my siblings and family For making my life complete

To my wife (Intisar), daughters (Noor and Tabark), and sons (Ali and Hussain) For their love and care

> To all my very wonderful friends For making my life full of joy and happiness

> > Thank you all.

Mohammed Sabah Ali May 2017 Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

PHYSICAL AND MECHANICAL PROPERTIES OF NANOCOPPER PARTICLE-REINFORCED ALUMINA MATRIX COMPOSITES

By

MOHAMMED SABAH ALI

September 2017

Chairman: Associate Professor Azmah Hanim Mohamed Ariff, PhDFaculty: Engineering

Over the past century, there has been a dramatic increase in fabrication and synthesizing of porous ceramics. However, only a few of them used waste material to fabricate alumina porous ceramics and reinforced it using nano-copper (Cu) particles. The motivation behind these efforts are the increasing raw materials cost and decreasing natural resources consumption which requires the use of byproducts and wastes as raw material for different industrial processes. This is a step towards environmental protection, sustainable development, and also to produce porous alumina ceramics with good porosity and mechanical properties. Thus, in this study, porous alumina ceramics were fabricated using graphite waste, natural active yeast, and rice husk ash as poreforming agents and source of silica (SiO₂). Series of porous alumina ceramics was prepared using powder metallurgy technique. The physical and mechanical properties of porous alumina ceramics with and without nano-copper (Cu) particles were measured by differential thermal analysis (DTA), energy-dispersive X-ray spectroscopy (EDX), linear shrinkage, average density (green and sintered) data measurement, and Universal Testing Machine (UTM). The average densities for both green and sintered samples decrease with increasing pore forming agent ratio for porous alumina ceramics with and without nano-copper (Cu) particles. While the linear shrinkage increases with the increase of pore forming agent ratio with and without nano-copper (Cu) particles. Besides, the structural properties of porous alumina ceramics with and without nanocopper (Cu) particles, ceramic phases, morphology, and porosity were examined using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The effects of the pore-forming agent ratios on the mechanical properties, the porosity and the microstructure with and without nano-copper (Cu) particles have been investigated in this study. The results showed that through increasing the pore-forming agent ratio for graphite waste, natural active yeast, and rice husk ash, the porosity increased from 37.3 to 61.1%, 30.2 to 63.8% and 42.9 to 49.0%, respectively. The hardness also decreased from 172.6 to 38.1 HV₁ and from 160.6 to 15.0 HV₁ for porous alumina ceramics using graphite waste and yeast as pore-forming agents, respectively.

However, the hardness of the porous alumina ceramics with rice husk ash as a poreforming agent increased at 30 wt.% (150.9 HV₁) and 50 wt.% (158.9 HV₁). The tensile strength for porous alumina ceramics using graphite waste and natural active yeast as pore-forming agents decreased from 24.9 to 14.3 MPa and from 26.2 to 5.4 MPa, respectively. The compressive strength decreased from 112.3 to 34.3 MPa and from 19.5 to 1.8 MPa, respectively. The flexural strength decreased from 71.28 MPa to 30.42 MPa and from 72.56 MPa to 20.72 MPa, respectively. However, for porous alumina ceramics using rice husk ash, the tensile strength increased at 30 wt.% (24.1 MPa) and 50 wt.% (21.9 MPa). The compressive strength also increased at 30 wt.% (69.7 MP) and at 50% (60.1 MPa). The flexural strength increased at 30 wt.% (93.38 MPa) and 50 wt.% (92.38 MPa). The variation in mechanical properties was also attributed to the formation of ceramic phases such as mullite, cristobalite, corundum, and sillimanite other than the formation porosity. It is also found that with increasing porosity, the mechanical properties decrease. This is a good agreement with Rice's formula. While by adding nano-copper (Cu) particles all mechanical properties improved with increasing Cu ratio which attributed to decrease porosity and formation ceramic phases such as tenorite (CuO).

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

SIFAT FIZIKAL DAN MEKANIKAL ZARAH TEMBAGA NANO BERTETULANG KOMPOSIT MATRIKS ALUMINA

Oleh

MOHAMMED SABAH ALI

September 2017

Pengerusi Fakulti : Profesor Madya Azmah Hanim Mohamed Ariff, PhD : Kejuruteraan

Sejak ber abad yang lalu, terdapat peningkatan dramatik dalam fabrikasi dan sintesis seramik berliang menggunakan bahan-bahan buangan. Walau bagaimanapun, hanya sebahagian sahaja menggunakan bahan buangan untuk menghasilkan alumina seramik berliang dan diperkukuh menggunakan zarah nano tembaga (Cu). Motivasi di sebalik usaha ini adalah kerana kurangnya penggunaan sumber asli dan kos bahan mentah yang semakin meningkat yang memerlukan penggunaan hasil sampingan dan sisa sebagai bahan mentah untuk proses industri yang berbeza. Ini adalah satu langkah ke arah perlindungan alam sekitar dan pembangunan lestari serata untuk menghasilkan seramik berliang alumina dengan keliangan yang sesuai dan sifat-sifat mekanikal yang baik. Oleh itu, dalam kajian ini, alumina seramik berliang telah direka menggunakan sisa grafit, yis aktif semula jadi dan abu sekam padi sebagai ejen pembentuk liang dan sumber silika (SiO₂). Beberapa seramik berliang alumina telah disediakan dengan menggunakan teknik metalurgi serbuk. Sifat-sifat fizikal dan mekanikal seramik alumina berliang samada dengan dan tanpa zarah nano-tembaga (Cu) diukur melalui analisis terma (DTA), tenaga-serakan X-ray spektroskopi (EDX), pengecutan linear, ketumpatan purata (hijau dan tersinter) pengukuran data dan mesin ujian sejagat (UTM). Ketumpatan purata bagi kedua-dua sampel hijau dan tersinter menurun dengan peningkatan nisbah ejen pembentuk liang untuk seramik alumina berliang dengan dan tanpa zarah nanotembaga (Cu). Manakala, pengecutan linear meningkat dengan peningkatan nisbah ejen pembentuk liang dengan dan tanpa zarah nano-tembaga (Cu). Di samping itu, sifat-sifat struktur alumina seramik berliang dengan atan tanpa zarah nano-tembaga (Cu), fasa seramik, morfologi dan keliangan telah diperiksa menggunakan X-ray pembelauan (XRD) mikroskop elektron pengimbas (FESEM). Kesan nisbah ejen pembentuk liang ke atas sifat mekanik, keliangan dan mikrostruktur dengan dan tanpa zarah nanotembaga (Cu) telah disiasat dalam kajian ini. Hasil kajian menunjukkan bahawa dengan meningkatkan nisbah ejen pembentuk liang bagi sisa grafit, yis aktif semulajadi dan abu sekam padi, keliangan meningkat setiap satu daripada 37.3 ke 61.1%, 30.2 ke 63.8% dan 42.9 ke 49.0%. Kekerasan juga menurun 172.6 ke 38.1 HV₁ dan 160.6 ke 15.0 HV₁

untuk seramik alumina berliang menggunakan sisa grafit dan yis sebagai ejen pembentuk liang. Walau bagaimanapun, kekerasan seramik alumina berliang dengan abu sekam padi sebagai ejen pembentuk liang meningkat pada 30 wt.% (150.9 HV₁) dan 50 wt.% (158.9 HV₁). Kekuatan tegangan untuk seramik alumina berliang menggunakan sisa grafit dan vis aktif semulajadi sebagai agen pembentuk liang menurun daripada 24.9 ke 14.3 MPa dan 26.2 ke 5.4 MPa. Kekuatan mampatan menurun daripada 112.3 ke 34.3 MPa dan 19.5 ke 1.8 MPa. Kekuatan lenturan menurun daripada 71.28 MPa kepada 30.42 MPa dan dari 72.56 MPa kepada 20.72 MPa, secara respektif. Walau bagaimanapun, untuk seramik alumina berliang menggunakan abu sekam padi, kekuatan tegangan meningkat pada 30 wt.% (24.1 MPa) dan 50 wt.% (21.9 MPa). Kekuatan mampatan juga meningkat pada 30 wt.% (69.7 MP) dan pada 50% (60.1 MPa). Kekuatan lenturan meningkat pada 30 wt.% (93.38 MPa) dan 50 wt.% (92.38 MPa). Perubahan dalam sifat-sifat mekanikal juga disebabkan oleh pembentukan fasa seramik seperti mullite, cristobalite, aluminum oksida dan sillimanite selain daripada pembentukan keliangan. Kajian mendapati dengan peningkatan keliangan, sifat-sifat mekanikal berkurangan. Ini adalah bersamaan dengan formula Rice. Walau bagaimanapun selepas menambah zarah nano-tembaga (Cu), semua sifat-sifat mekanikal meningkat dengan peningkatan nisbah Cu yang dikaitkan dengan mengurangkan bilangan keliangan dan pembentukan fasa seramik seperti tenorite (CuO).

ACKNOWLEDGEMENTS

In the Name of ALLAH, the most Merciful and Beneficent

I am very grateful to Allah S.W.T. Who has given me blessed, strength, courage, and patience to complete my thesis successfully.

Special appreciation goes to my supervisor, Assoc. Prof. Dr. Azmah Hanim Mohamed Ariff for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. Many thanks and gratitude also goes to the supervisory committee, Dr. Che Nor Aiza Jaafar, Dr. Suraya Mohd Tahir, and Dr. Norkhairunnisa Mazlan for their guidance and advice. I would like to thank my friends Dr. Mohammad Alghoul and Jwan for their help and support.

Also, I would like to express my utmost appreciation and gratitude to Universiti Putra Malaysia (GP-IBT/2013 /9410600) for the financial support. Special thanks to Eng. Muhammad Wildan and Eng. Mohd Saiful for their technical supports.

Sincere thanks to all members of ITMA laboratory and Glass, Ceramic, Composite, and Metal (GCCM) for their help and moral supports upon the completion of my project.

Finally, I would like to thank the Al-Mussaib Technical College/ Al-Furat Al-Awsat Technical University/ Ministry of Higher Education and Scientific Research/ Iraq for the scholarship.

Mohammed Sabah Ali

May 2017

I certify that a Thesis Examination Committee has met on 12 September 2017 to conduct the final examination of Mohammed Sabah Ali on his thesis entitled "Physical and Mechanical Properties of Nanocopper Particle-Reinforced Alumina Matrix Composites" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohamad Ridzwan bin Ishak, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia

Mohd Sapuan bin Salit @ Sinon, PhD Professor Ir. Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Edi Syams bin Zainudin, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Recep Calin, PhD

(Chairman)

Professor Kirikkale University Turkey (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 26 October 2017

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azmah Hanim Mohamed Ariff, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Che Nor Aiza Jaafar, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Suraya Mohd Tahir, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Norkhairunnisa Mazlan, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:

Date: ____

Name and Matric No: Mohammed Sabah Ali (GS39884)

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

DR. AZMAH HANIM BINTI MOHAMED ARIFF Associate Professor Department of Mechanical & Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia

Signature: Name of Chairman of Supervisory Committee:

Assoc. Prof. Dr. Azmah Hanim Mohamed Ariff,

Signature: Name of Member of Supervisory Committee:

Dr. Che Nor Aiza Jaafar

Signature: Name of Member of Supervisory Committee:

Dr. Suraya Mohd Tahir

Signature: Name of Member of Supervisory Committee:

Dr. Norkhairunnisa Mazlan

TABLE OF CONTENTS

ABS ABS ACH APP DEC LIST LIST	STRACT STRAK KNOWLI PROVAL CLARAT T OF TA T OF FIC T OF AB	EDGEMENTS ION BLES GURES BREVIATIONS	Page i iii v vi viii xv xvii xvvii xxvii
CHA	PTER		
1	INTR	ODUCTION	1
	1.1	Research background	1
	1.2	Problem statement	3
	1.3	Research hypothesis	4
	1.4	Research objectives	4
	1.5	Scope of the study	5
	1.6	Importance of the study and limitation	5
	1.7	Outline of thesis	6
2	LITE	RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Ceramic matrix composites	7
	2.3	Porous ceramics	8
		2.3.1 Porosity in ceramic matrix composite	8
		2.3.2 Preparation of macro-porous ceramics	9
		2.3.3 Sacrificial fugitive's method	10
	2.4	Pore-forming agent	12
		2.4.1 Graphite waste	13
		2.4.2 Rice husk ash	13
		2.4.3 Yeast	14
	2.5	Porous alumina (Al ₂ O ₃) ceramics	14
	2.6	Uniaxial compaction	14
	2.7	Toughening mechanisms of ceramic composites using metal	
		particle additives	15
		2.7.1 Toughening of ceramic composite using nano-metal	17
		particles	1/
	20	2.7.2 Nano-copper (Cu) particles	20
	2.8	2.8.1 Denosity	20
		2.0.1 FOIOSILY 2.8.2 Sintoring and density	20
		2.0.2 Sincing and ucisity 2.8.3 Linear shrinkage	21 22
	2.0	Structural studies	22
	2.9	2.0.1 Phase structure	23 22
		2.7.1 Thas subcurve 2.9.1 Alpha-SiO ₂ system	23 23
		2.9.1.2 Tenorite (CuO)	23 24
			<u>~</u> -•

6

2.10) Microst	ructural studies of porous ceramics 2	25
	2.10.1	Effects of porosity and pore forming agent on the	
		mechanical properties of porous ceramics 2	25
2.11	1 Mechan	ical studies	37
	2.11.1	Factors affecting the porosity and mechanical properties of	f
		porous ceramic composite materials	37
	2.11.2	Effects of metal particles as additives on porous ceramic	
		composite materials	38
		1	
3 ME	THODOLO	GY	44
3.1	Introduc	ction	44
3.2	Preparat	tion of pore-forming agent powder	46
	3.2.1	Graphite waste powder preparation (Industrial waste)	46
	3.2.2	Natural active veast powder preparation	47
	3.2.3	Rice husk ash (RHA) powder preparation (agricultural	
		waste)	47
33	Preparat	tion of porous alumina ceramics	48
	3.3.1	Preparation of porous alumina ceramics without nano-	
	5.5.1	copper particles	48
	332	Preparation of porous alumina ceramics reinforced with	
	5.5.2	nano-copper particles	49
	333	Weighing mixing and milling process	50
	334	Pressureless sintering and sacrificial fugitive's technique f	50
	335	Preparation of hinder	51
	336	Pelleting process and drying	51
	5.5.0	3.3.6.1 Samples pelleting for Brazilian test	51
		3.3.6.2 Samples pelleting for compressive test	51
		3.3.6.3 Samples pelleting for flavural test	52
3.4	Heat tre	atment process	52 57
3.7	Physical	L characterization	55
5.5	3 5 1	Physical characterization of raw materials	55
	5.5.1	3.5.1.1 Measuring true density for alumina and pore-	55
		forming agent powders using gas pychometer	
		instrument	55
		3.5.1.2 Magguring particle size distribution of pore	55
		forming agent neudors using Maluarn master	
		sizer 2000 instrument	55
		2.5.1.2 Differential thermal analysis (DTA)	55
	252	Dhysical characterization of porous alumina coromica	55
	5.5.2	samples with and without nano conner particles	56
		2.5.2.1 Crean density manufacture manufactures 5	50
		2.5.2.1 Green density measurement	30
		5.5.2.2 Average sintered density and porosity	50
		measurement 3	20
		5.5.2.5 Measuring the open pore distribution using	-7
		image-J software	5/ ~~
		3.5.2.4 Linear shrinkage measurement 5	57
		3.5.2.5 X-rays diffraction measurement (XRD) 5	57
		3.5.2.6 Transmission electron microscopy (TEM) 5	58

and EDX 58 3.5.2.8 Sample preparation 58 3.6 Mechanical characterization 60 3.6.1 Hardness test 60 3.6.2 Compression test 60 3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength (indirect) 61 3.6.4 Flexural strength (addrest) 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1 Raw materials characterization 64 4.2.1.2 Chemical composition and density for alumina powder, nono-copper powder, and binder 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3.1 Physical properties of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash) 72 4.3.1 Physical properties of porous alumina ceramics 173 4.3.1.1 Overall and open porous its 74 4.3.1.3 Shrinkage 76 4.3.1.4 Microstructure of porous alumina ceramics 74 4.3.1.5 Open pore size distribution of porous alumina ceramics 57
3.5.2.8 Sample preparation 58 3.6 Mechanical characterization 60 3.6.1 Hardness test 60 3.6.2 Compression test 60 3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent samterials 67 4.2.1.5 XRD analysis for pore forming agent materials 70 4.2.1.6 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 70 4.2.1.8 ZND analysis for pore forming agent materials 70 4.3.1 Physical properties and pore forming agent materials 71 4.3.1 Physical properties of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash) 72 4.3.1 Physical properties of porous alumina ceramics 173 4.3.1.1 Overall and open porosites 73 4.3.1.2 Sintered, relative and green densities 74 4.3.1.3 Shrinkage 76 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina
3.6 Mechanical characterization 60 3.6.1 Hardness test 60 3.6.2 Compression test 60 3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 66 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA analysis for pore forming agent materials 67 4.2.1.5 XRD analysis for pore forming agent materials 67 4.2.1.6 KRD analysis for pore forming agent materials 67 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties of porous alumina ceramics
3.6.1 Hardness test 60 3.6.2 Compression test 60 3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina 64 4.2.1 Raw materials characterization 64 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 66 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent materials 67 4.2.1.5 XRD analysis for pore forming agent materials 67 4.2.1.5 XRD analysis for pore forming agent materials 67 4.2.1.5 XRD analysis for pore forming agent materials 67 4.2.1.5 XRD analysis for pore forming agent materials 70 4.2.1.5 XRD analysis for pore forming agent materials 70 4.3.1 Physical properties and pore forming agent mater
3.6.2 Compression test 60 3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₂) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1 Raw materials characterization 64 4.2.1.2 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 66 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for pore forming agent materials 70 4.2.1.6 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 73
3.6.3 Tensile strength (indirect) 61 3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 66 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for pore forming agent materials 70 4.2.1.6 XRD analysis for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 73 4.3.1.1 Overall and open porosities 73 4.3.1.2 Sintered, relative and green densities 74 4.3.1.5 Open pore size distribution of porous alumina ceram
3.6.4 Flexural strength 62 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for alumina and nano-copper powders 69 4.2.1.6 XRD analysis for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3 Physical properties and pore forming agent 73 active yeast, and rice husk ash) 72 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 73 4.3.1.1 Overall and open porosites 73 4.3.1.2 Sintered, relative and green densities 74 4.3.1.3 Shrinkage 76 4.3.1.4 Microstructure of prorus alumina ceramics 43 4.3.1.5 Open pore size distribution of porous alumina ceramics using different forming agent 73 4.3.1.5 Open pore size distribution of porous alumina ceramics of porous alumina ceramics 74 4.3.1.5 Open pore size distribution of porous alumina ceramics value and pore forming agent 73 4.3.1.5 Open pore size distribution of porous alumina ceramics value and pore forming agent 73 4.3.1.5 Open pore size distribution of porous alumina ceramics value and pore forming agent 73 4.3.1.4 Microstructure of proves alumina ceramics
4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites 64 4.2.1 Raw materials characterization 64 4.2.1 Raw materials characterization 64 4.2.1 Raw materials characterization 64 4.2.1.2 Chemical composition and density of alumina powder, nono-copper powder, and binder 64 4.2.1.2 Chemical composition and density of pore forming agent's materials 66 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for alumina and nano-copper powders 69 4.2.1.6 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore forming agent materials 72 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 73 4.3.1.1 Overall and open porosities 73 4.3.1.2 Sintrecd, relative and green dens
4.1Introduction644.2Experimental results of raw materials and porous alumina (Al ₂ O ₃) ceramic composites644.2Raw materials characterization644.2.1Raw materials characterization644.2.1.1Chemical composition and density for alumina powder, nono-copper powder, and binder forming agent's materials664.2.1.2Chemical composition and density of pore forming agent's materials664.2.1.3The particle size distribution of pore agent's materials674.2.1.4TGA and DTA analysis for pore forming agent's materials674.2.1.5XRD analysis for pore forming agent materials674.2.1.7FESEM for pore forming agent materials724.3Physical properties and pore forming agent materials724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics744.3.1.5Open pore size distribution of porous alumina ceramics744.3.1.4Microstructure of porous alumina ceramics744.3.1.5Open pore size distribution of porous alumina ceramics74
 4.2 Experimental results of raw materials and porous alumina (Al₂O₃) ceramic composites 4.2.1 Raw materials characterization 4.2.1 Raw materials characterization 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 4.2.1.2 Chemical composition and density of pore forming agent's materials 4.2.1.3 The particle size distribution of pore agent's materials 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for alumina and nano-copper powders 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash) 72 4.3.1 Physical properties of porous alumina ceramics 73 4.3.1.2 Sintered, relative and green densities 74 4.3.1.3 Shrinkage 76 4.3.1.5 Open pore size distribution of porous alumina ceramics
 (Al₂O₃) ceramic composites 4.2.1 Raw materials characterization 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 4.2.1.2 Chemical composition and density of pore forming agent's materials 4.2.1.3 The particle size distribution of pore agent's materials 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 4.2.1.5 XRD analysis for alumina and nano-copper powders 4.2.1.6 XRD analysis for pore forming agent materials 72 4.3 Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash) 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3.1.3 Shrinkage 4.3.1.4 Microstructure of porous alumina ceramics 74 4.3.1.5 Open pore size distribution of porous alumina ceramics
4.2.1Raw materials characterization644.2.1.1Chemical composition and density for alumina powder, nono-copper powder, and binder644.2.1.2Chemical composition and density of pore forming agent's materials664.2.1.3The particle size distribution of pore agent's materials674.2.1.4TGA and DTA analysis for pore forming agent's materials674.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.2.1.7FESEM for pore forming agent materials72Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics76
 4.2.1.1 Chemical composition and density for alumina powder, nono-copper powder, and binder 4.2.1.2 Chemical composition and density of pore forming agent's materials 4.2.1.3 The particle size distribution of pore agent's materials 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 4.2.1.5 XRD analysis for alumina and nano-copper powders 4.2.1.6 XRD analysis for pore forming agent materials 4.3 Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash) 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3.1.1 Overall and open porosities 73 4.3.1.2 Sintered, relative and green densities 74 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics
4.3 powder, nono-copper powder, and binder 4.2.1.2 Chemical composition and density of pore forming agent's materials 4.2.1.3 The particle size distribution of pore agent's materials 67 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 67 4.2.1.5 XRD analysis for alumina and nano-copper powders 69 4.2.1.6 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 72 Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash) 72 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3.1.2 Sintered, relative and green densities 73 4.3.1.3 Shrinkage 74 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics 79
4.2.1.2Chemical composition and density of pore forming agent's materials664.2.1.3The particle size distribution of pore agent's materials674.2.1.4TGA and DTA analysis for pore forming agent's materials674.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.2.1.7FESEM for pore forming agent materials72Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics76
forming agent's materials664.2.1.3The particle size distribution of pore agent's materials674.2.1.4TGA and DTA analysis for pore forming agent's materials674.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.3Physical properties and pore forming agent materials724.3Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
 4.2.1.3 The particle size distribution of pore agent's materials 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 4.2.1.5 XRD analysis for alumina and nano-copper powders 4.2.1.6 XRD analysis for pore forming agent materials 70 4.2.1.7 FESEM for pore forming agent materials 72 4.3 Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash) 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3.1 Overall and open porosities 4.3.1.3 Shrinkage 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics 79
materials674.2.1.4TGA and DTA analysis for pore forming agent's materials674.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.3Physical properties and pore forming agent materials724.3Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
 4.2.1.4 TGA and DTA analysis for pore forming agent's materials 4.2.1.5 XRD analysis for alumina and nano-copper powders 4.2.1.6 XRD analysis for pore forming agent materials 4.3 Physical properties and pore forming agent (graphite waste, natural active yeast, and rice husk ash) 4.3 Physical properties of porous alumina ceramics using different forming agent 4.3 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3 Physical properties of porous alumina ceramics 4.3 Physical properties of porous alumina ceramics 4.3.1 Physical properties of porous alumina ceramics 4.3.1 Overall and open porosities 4.3.1.3 Shrinkage 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics
agent's materials674.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.3Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.2.1.5XRD analysis for alumina and nano-copper powders694.2.1.6XRD analysis for pore forming agent materials704.3Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
powders694.2.1.6XRD analysis for pore forming agent materials704.3Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.2.1.6XRD analysis for pore forming agent materials704.34.2.1.7FESEM for pore forming agent materials724.3Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.34.2.1.7 FESEM for pore forming agent materials724.3Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
 4.3 Physical properties and pore formation of porous alumina ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash) 4.3.1 Physical properties of porous alumina ceramics using graphite waste as pore-forming agent 4.3.1.1 Overall and open porosities 4.3.1.2 Sintered, relative and green densities 4.3.1.3 Shrinkage 4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics 79
ceramics using different forming agent (graphite waste, natural active yeast, and rice husk ash)724.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1Physical properties of porous alumina ceramics using graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
graphite waste as pore-forming agent734.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1.1Overall and open porosities734.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1.2Sintered, relative and green densities744.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1.3Shrinkage764.3.1.4Microstructure of porous alumina ceramics774.3.1.5Open pore size distribution of porous alumina ceramics79
4.3.1.4 Microstructure of porous alumina ceramics 77 4.3.1.5 Open pore size distribution of porous alumina ceramics 79
ceramics 79
ceramics 19
4.3.1.6 Phase formation of porous alumina caramics 70
4.3.2 Physical properties of porous alumina ceramics using
4.5.2 Thysical properties of porous atumina certaines using natural active yeast as pore-forming agent 80
4321 Overall and open porosities 81
4.3.2.1 Over an and open poiosities $3.3.1$
density 82
4.3.2.3 Shrinkage 83
4.3.2.4 Microstructure of porous alumina ceramics 83
4.3.2.4 Microstructure of porous alumina ceramics 83 4.3.2.5 Pore size distribution of porous alumina
4.3.2.4Microstructure of porous alumina ceramics834.3.2.5Pore size distribution of porous alumina ceramics85

	4.3.3	Physical	properties of porous alumina ceramics using	
		rice husl	c ash as pore- forming agent	87
		4.3.3.1	Overall and open porosities	88
		4.3.3.2	Sintered density, relative density, and green	
			density	89
		4.3.3.3	Shrinkage	89
		4.3.3.4	Microstructure of porous alumina ceramics	90
		4.3.3.5	Open pore size distribution of porous alumina	
			ceramics	91
		4.3.3.6	Phase formation of porous alumina ceramics	92
4.4	Effect of	f pore-for	ming agent (graphite waste, natural active yeast.	(-
	and rice	husk ash) on pore formation and mechanical properties	
	for alum	ina matri	x	94
	4 4 1	Mechani	cal properties of porous alumina ceramics using	<i>.</i>
		oraphite	waste as pore forming agent	95
		4 4 1 1	Hardness of porous alumina ceramics	95
		4412	Compressive strength of porous alumina))
		7.7.1.2	ceramics	96
		1113	Tensile strength of porous alumina ceramics	97
		A A 1 A	Elevural strength of porous alumina ceramics	08
		4.4.1.5	Stross stroin diagram of porous alumina	90
		4.4.1.5	coramics	00
	112	Machani	ical proportion of porous alumina coromics	"
	4.4.2	using no	tural active veget as pere forming agent	101
		4 4 2 1	Hardness of porous alumina coromics	101
		4.4.2.1	Compressive strength of porous alumina	101
		4.4.2.2	compressive strength of porous alumina	102
		1122	Tensile strongth of nonous elumine commiss	102
		4.4.2.5	Eleveral strength of porous alumina ceramics	105
		4.4.2.4	Stress strein diagram of porous alumina	104
4		4.4.2.3	suess-su an diagram of porous arunnina	105
	112	Maahani	certainies	105
	4.4.3	Mechan	ical properties of porous alumna cerainics	
		using no	e nusk asil as pore agent and source of sinca	107
		(SIO_2)	Handrace of a second chaming commiss	107
		4.4.3.1	Compression store at a finance showing	107
		4.4.3.2	Compressive strength of porous alumina	100
		1 1 2 2	Tensile strongth of nonous elumine commiss	100
		4.4.3.3	Element of a group of the second seco	109
		4.4.3.4	Flexural strength of porous alumina ceramics	110
		4.4.3.5	Stress-strain diagram of porous alumina	111
15	D1		ceramics	111
4.5	Physical	and Mec	nanical properties comparison of porous	110
	alumina	ceramics	using different pore-forming agent	112
	4.5.1	Physical	properties of porous alumina ceramics using	110
	4 5 3	different	pore agents	113
	4.5.2	Mechani	ical properties of porous alumina ceramics	110
1.6	г .	using dif	Therent pore agents	119
4.6	Experim	ental resu	lits of porous alumina (Al_2O_3) ceramics	100
	reinforce	ed with na	ano-copper (Cu) metal particles	122

4.6.1	Physical	and mechanical properties of porous alumina		
	ceramics	s reinforced nano-copper metal particles using		
	different	t pore agent (graphite waste, natural active		
	yeast, ar	nd rice husk ash)	122	
	4.6.1.1	Physical properties of porous alumina ceramic		
		reinforced with nano-copper metal particles		
		using graphite waste as pore-forming agent	122	
	4.6.1.2	Physical properties of porous alumina ceramic		
		reinforced with nano-copper metal particles		
		using natural active yeast as pore-forming		
		agent	132	
	4.6.1.3	Physical properties of porous alumina		
		ceramics using rice husk ash as pore-forming		
		agent	141	
4.6.2	ical properties of porous alumina ceramics			
reinforced with nano-copper particles using graphite waste, natural active yeast and rice husk ash as pore				
	4.6.2.1	Mechanical properties of porous alumina		
	ceramics using graphite waste as pore-			
		forming agent	151	
	4.6.2.2	Mechanical properties of porous alumina		
		ceramics using natural active yeast as pore		
		agent	156	
	4.6.2.3	Mechanical properties of porous alumina		
		ceramics using rice husk ash as pore-forming		
		agent	161	
5 CONCLUSIONS	S AND R	RECOMMENDATIONS	167	
5.1 Introduct	tion		167	
5.2 Conclusi	ions		167	
5.3 Recomm	endation	is for future study	170	
DEFEDENCES			171	
REFERENCES DIODATA OF STUDEN	т		1/1 102	
LIST OF PUBLICATIO	NS		180	

LIST OF TABLES

Table		Page
2.1	The main comparison between some methods that have been reviewed in the background study of literature for the production of macro-porous ceramics	12
2.2	Examples of pore agent effects on the mechanical properties of some porous ceramic materials with different work conditions	35
2.3	Examples of metal additive effects on the mechanical properties of some porous ceramic materials	43
3.1	Weight ratios percent of the porous alumina ceramics composites without nano-copper additives	48
3.2	Weight ratios percent of the porous alumina ceramics composites with nano-copper additives	49
4.1	The density and chemical composition of alumina (Al_2O_3) , Copper (Cu), and sugar (sucrose) materials	65
4.2	The density and chemical composition of graphite waste, yeast, and rice husk ash	66
4.3	Different ratios of graphite waste with alumina used to fabricate alumina porous ceramics, porosity characterisation, density and linear shrinkage	73
4.4	Different ratios of yeast with alumina used to fabricate alumina porous ceramics, porosity characterisation, density and linear shrinkage	81
4.5	Different ratios of rice husk ash with alumina used to fabricate alumina porous ceramics, porosity characterisation, density and linear shrinkage	88
4.6	Mechanical properties of alumina porous ceramic using graphite waste as pore forming agent	95
4.7	Mechanical properties of alumina porous ceramic using yeast as pore forming agent	101
4.8	Mechanical properties of alumina porous ceramic using rice husk ash as pore forming agent	107

4.9	Different ratios of graphite waste with alumina used to fabricate porous alumina ceramics, porosity characterisation, density and linear shrinkage	123
4.10	Different ratios of yeast with alumina used to fabricate porous alumina ceramics, porosity characterisation, density and linear shrinkage	133
4.11	Different ratios of rice husk ash with alumina used to fabricate porous alumina ceramics, porosity characterisation, density and linear shrinkage	142
4.12	Mechanical properties of alumina porous ceramic reinforced with nano-copper using graphite waste as pore forming agent	152
4.13	Mechanical properties of alumina porous ceramic reinforced with nano-copper using yeast as pore forming agent	157
4.14	Mechanical properties of alumina porous ceramic reinforced with nano-copper using rice husk ash as pore forming agent	162

 \bigcirc

LIST OF FIGURES

Figure		Page
1.1	Classification of porous ceramics according to pore size, applications and fabrication methods (Ohji and Fukushima, 2012)	3
2.1	Force–displacement curve diagram for a monolithic ceramic and ceramic matrix composite showing that ceramic matrix composite has maximal fracture energy (Rosso, 2006)	8
2.2	Manufacturing techniques of macro-porous ceramics (Eom <i>et al.</i> , 2013)	10
2.3	Typical heat treatment used for the pyrolysis of organic sacrificial materials (the starch used as organic materials is removed in two steps at about 250 and 370°C) (Studart <i>et al.</i> , 2006)	11
2.4	The stages occurring during the pressing process and the relationship between the relative density and forming pressure (Boch and Niepce, 2010)	15
2.5	The mechanisms of toughening using ductile particles in ceramic composite, (a) ductile particle bridging, (b) crack deflection by ductile particle (Liu <i>et al.</i> , 2013)	16
2.6	Shapes of common filler particle and their particular surface area to volume ratio reprinted from (Thostenson <i>et al.</i> , 2005)	18
2.7	Types of microstructures producing R-curve effect: a) dispersion of hard particles; b) microstructure causing multi-cracking; c) phase transformation-inducing compressive stresses at crack tip (case of partially stabilized zirconia) (Boch and Niepce, 2010)	19
2.8	Sintering mechanisms (Rahaman, 2006)	22
2.9	Al ₂ O ₃ -SiO ₂ phase diagram (Boch and Niepce, 2010)	24
2.10	TEM image of tenorite nanoparticles (Mubarak Ali et al., 2015)	25
2.11	Increasing macropore size, the compressive strength of porous (HAP) ceramics decreases linearly for a given total porosity (Liu, 1997)	26
2.12	Porosity and compressive strength behaviour of porous HAP ceramics in different sizes of pore-forming (Liu, 1997)	27

6

2.13	Flexural strength as a function of porosity for porous Si_3N_4 samples containing rod-shaped and equiaxial pores (Yang, 280 (2004) 1231-1236)	28
2.14	Microcracks at the necks when porous SiC ceramics fractured (Ding <i>et al.</i> , 2007)	29
2.15	Compressive and flexural strength of the porous SiC ceramics as a function of porosity (Eom <i>et al.</i> , 2008)	29
2.16	Morphology of fracture of porous Si3N4 ceramics (Zhang et al., 2010)	30
2.17	(A&B) unique honeycomb morphology for porous SiC fabricated using the gelation freezing method (Fukushima, 2013)	31
2.18	Decreasing diametric tensile strength (DTS) of the porous clay ceramics with increasing kenaf content ratio at different sintering temperatures (Sengphet, 2013)	32
2.19	Decreasing of the mechanical properties (a-flexural, b- compressive, c-elastic modulus and d-hardness) for porous alumina ceramics with increases in the porosity using rice husk as a pore forming agent (Mohanta <i>et al.</i> , 2014)	33
2.20	Effects of granulated sugar content on the flexural strength of vitrified bond cubic boron nitride (CBN) grinding wheels (Mao, 2014)	34
2.21	R&D aspects of porous ceramic composite materials including the important factors affecting porosity and the mechanical properties of porous ceramic composite materials	37
2.22	Relationship between (a) porosity and (b) flexural strength with Al content in the initial powder for a compaction pressure of 191.0 MPa with different sintering temperatures (Falamaki, 2001)	38
2.23	Typical microstructure of the Al ₂ O ₃ /5 vol.% Cu composites; source materials of Cu is CuO. Sintering conditions of composites is 1450° C and 30 MPa for 1 h (Ob <i>et al.</i> 2001)	39
2.24	A) compressive strength and B) fracture toughness of porous ceramics A1(0 wt.% Al), A2(5 wt.% Al), B1(5 wt.% Al) and B2(10 wt.% Al) (Wang <i>et al.</i> , 2007)	40
2.25	Relationship between (a) fracture toughness, (b) bending strength and Al content of porous ceramics sintered at different temperatures (Li <i>et al.</i> , 2010)	40

xviii

6

2.26	Bending strength of ceramics with various $NiAl_2O_4$ contents sintered at 1500 °C and 1600 °C (Fung, 2013)	41
2.27	Schematic diagram of grain boundary closure and stress formed by the presence of $NiAl_2O_4$ (Fung, 2013)	42
3.1	Flow chart of experiment (porous alumina ceramics production)	45
3.2	Preparation of graphite waste powder	46
3.3	Preparation of natural active yeast powder	47
3.4	Preparation of rice husk as powder	48
3.5	Pelleting process	53
3.6	Heat treatment process, (a) pore agent materials removing, (b) porous ceramic hardening	54
3.7	Porous alumina sample under compression test	61
3.8	Porous alumina sample under Brazilian test	62
3.9	Porous alumina sample under bending test	63
3.10	Shows the porous alumina sample at 50 wt.% pore-forming agent ratio for different pore-forming agent materials after sintering at 1600 °C for 2 hrs	63
4.1	EDX analysis of a- alumina matrix (Al ₂ O ₃), b- Copper powder (Cu) and c- binder (sucrose)	65
4.2	EDX analysis of a- graphite waste, b- yeast and c- rice husk ash	66
4.3	Particle size distribution of different pore forming agents	67
4.4	TGA and DTA for different pore forming agent materials (graphite waste, natural active yeast, and rice husk ash)	68
4.5	TGA for sugar and rice husk ash	69
4.6	XRD patterns for Al ₂ O ₃ and Cu powders	69
4.7	XRD patterns for different pore forming agents	71
4.8	FESEM images for pore forming agent materials, Al ₂ O ₃ , Cu powders and binder materials	72

4.9	Increasing the overall and open porosity with an increase of the graphite waste content for all samples that were sintered at $1600 \degree$ for 2 hrs	74
4.10	Decreasing sintered bulk and green density with increasing graphite waste content, for all samples that were sintered at $1600 \degree$ for 2 hrs	75
4.11	Increasing shrinkage of alumina porous samples sintered at 1600°C for 2 hrs which increases the graphite waste content	76
4.12	FESEM images show the different porosity and pore size for porous alumina ceramic samples sintered at 1600°C at 2 hrs (A&B) 10% graphite waste, (C&D) 30% graphite waste and (E&F) 50% graphite waste	77
4.13	Pores, grains and neck shapes of porous alumina samples (A) 10% graphite waste, (B) 30% graphite waste	78
4.14	Pore size distribution and pore ratio of porous alumina ceramic samples with different ratios of graphite using FESEM image analysed by image-J	79
4.15	XRD pattern for porous alumina samples 10, 30 and 50% graphite waste sintered at 1600°C for 2 hrs	80
4.16	Increasing the overall and open porosity with an increase of yeast content for all samples that were sintered at 1600 °C for 2 hrs	81
4.17	Decreasing sintered bulk and green density with increasing yeast content, for all samples that were sintered at $1600 ^{\circ}$ for 2 hrs	82
4.18	Increasing linear shrinkage of alumina porous samples sintered at 1600°C for 2 hr which increases yeast content	83
4.19	FESEM images show the different porosity and pore size for porous alumina ceramic samples sintered at 1600°C at 2 hrs (A&B) 10% yeast, (C&D) 30% yeast and (E&F) 50% yeast	84
4.20	Pores, grains and neck shapes of porous alumina samples (c) 10 % yeast, (d) 50 % yeast	85
4.21	Pore size distribution and pore ratio of porous alumina ceramic samples with yeast as pore forming agent	86
4.22	XRD pattern for porous alumina samples 10, 30 and 50% yeast sintered at 1600°C for 2 hrs	87

XX

4.23	Trend of total porosity and open porosity with increase in the content of rice husk ash, all samples were sintered at 1600°C for 2 hrs	88
4.24	Trend of sintered bulk density and green density with increase in the content rice husk ash. All samples were sintered at 1600°C for 2 hrs	89
4.25	Variation of linear shrinkage for porous alumina ceramic samples sintered at 1600°C for 2 hrs using rice husk ash as a pore agent	90
4.26	FESEM images of samples of porous ceramic sintered at 1600°C for 2 hrs with different ratios of rice husk ash; (a, d) 10 wt.% rice husk ash, (b, e) 30 wt.% rice husk ash and (c, f) 50 wt.% rice husk ash	91
4.27	Distribution of open pore size of the samples of porous alumina ceramic sintered at 1600°C for 2 hrs with different ratios of rice husk ash	92
4.28	XRD patterns for porous alumina samples sintered at 1600°C for 2 hrs with rice husk ash	94
4.29	Relationship between the graphite waste contents, the overall porosity and hardness of porous alumina ceramics sintered at 1600°C for 2 hrs	96
4.30	Relationship between the graphite waste contents, the overall porosity and compressive strength of porous alumina ceramics sintered at 1600°C for 2 hrs	97
4.31	Relationship between the graphite waste contents, the overall porosity and (b) tensile strength of porous alumina ceramics sintered at 1600°C for 2 hrs	98
4.32	Relationship between the graphite waste contents, the overall porosity and (b) flexural strength of porous alumina ceramics sintered at 1600°C for 2 hrs	99
4.33	The stress-strain curves of the porous alumina ceramic samples with different ratios of graphite waste 10-50wt. % sintered at 1600°C for 2 hr using Brazilian test	100
4.34	Hardness variation with yeast and porosity content for porous alumina porous ceramic samples sintered at 1600 $^{\circ}$ C for 2 hrs	102

xxi

4	4.35	Relationship between yeast content and the mechanical properties (compressive strength) of porous alumina ceramics sintered at 1600°C for 2 hrs	103
4	4.36	Relationship between yeast content and the mechanical properties (indirect tensile strength) of porous alumina ceramics sintered at 1600°C for 2 hrs	104
4	4.37	Relationship between the yeast contents, the overall porosity and (b) flexural strength of porous alumina ceramics sintered at 1600°C for 2 hrs	105
4	4.38	Stress-strain curves of porous alumina ceramic samples with different ratios of yeast (10-50 wt.%) sintered at 1600°C for 2 hrs using the Brazilian test	106
4	4.39	The variations in the hardness with the content of rice husk ash of the samples of porous alumina ceramic sintered at $1600 $ for 2 hrs	108
4	4.40	The variations in the compressive strength of the content of rice husk ash of the samples of porous alumina ceramic sintered at $1600 \degree$ for 2 hrs	109
4	4.41	The variations in the tensile strength of the content of rice husk ash of the samples of porous alumina ceramic sintered at 1600 °C for 2 hrs	110
4	4.42	The variations in the flexural strength of the content of rice husk ash of the samples of porous alumina ceramic sintered at 1600 °C for 2 hrs	111
4	4.43	Stress-strain curves of porous alumina ceramic samples with different ratios of rice husk ash (10-50 wt.%) sintered at 1600 °C for 2 hrs using the Brazilian test	112
4	4.44	a) Total porosity trends with increasing content of the different pore-forming agents (b) the sintered bulk densities trend with increasing pore-forming agent content. All samples were sintered at 1600°C for 2 hrs	113
	4.45	Variation of linear shrinkage for different pore-forming agents for porous alumina ceramic samples sintered at 1600°C for 2 hrs	114
	4.46	Graphite waste, yeast and rice husk ash with different porosity, pore size and pore shape for porous alumina samples sintered at $1600^{\circ}C$	115

	4.47	Pores, grains and neck shapes of porous alumina samples for different pore-forming agent	116
	4,48	XRD patterns for porous alumina samples sintered at 1600°C for 2 hrs with, (A) graphite waste, (B) yeast and (C) rice husk ash	117
	4.49	Pore size distribution for alumina porous ceramic samples sintered at 1600°C for 2 hrs using different ratio of graphite waste, yeast, and rice husk ash	118
	4.50	Hardness variation with different pore-forming agent content for porous alumina porous ceramic samples sintered at 1600°C for 2 hrs	119
	4.51	Relationship between the different pore-forming agent content and the mechanical properties (a) compressive strength, (b) tensile strength and (c) flexural strength of porous alumina ceramics sintered at 1600°C for 2 hrs	120
	4.52	Stress-strain curves of porous alumina ceramic samples with different ratios of pore-forming agent (10-50 wt.%) sintered at 1600°C for 2 hrs using the Brazilian test	121
	4.53	Variation of porosity of porous alumina ceramic samples sintered at 1600 °C for 2 hrs with copper content for different ratios of graphite waste	124
	4.54	Variation of sintered densities of alumina porous ceramic sintered at 1600°C for 2 hrs with the ratio of copper content for different ratios of graphite waste	125
	4.55	Variation of green densities of alumina porous ceramic sintered at 1600°C for 2 hrs with the ratio of copper content for different ratios of graphite waste	126
	4.56	The variation of shrinkage of porous alumina ceramic samples sintered at 1600°C for 2 hrs with the ratio of copper content for different ratio of graphite	127
	4.57	Microstructure, filling the pores with copper molten, the irregular shaped of pores and necks in porous alumina ceramics body of porous alumina ceramics samples sintered at 1600°C for 2 hrs for different ratios of graphite waste	128
	4.58	(a) green body of alumina ceramic composite at room temperature; (b) removal of the pore agent (graphite waste) according to the TGA; (C) melt Cu particles to fill the pores of porous alumina samples which leads to reduction of porosity	129

4.	.59 <u>1</u>	Agglomeration of Cu metal in the grain boundaries of porous alumina matrix	129
4.	.60] .60	Distribution of open pore size of the samples of porous alumina ceramic reinforced with Cu metal sintered at 1600°C for 2 hrs with different ratios of graphite waste	130
4.	.61 2	XRD patterns of porous alumina ceramics samples sintered at 1600°C for 2 hrs with different ratios of graphite waste	131
4.	.62	TEM and EDX of porous alumina ceramics reinforced with nano- copper using graphite waste as pore forming agent	132
4.	.63	Variation of porosity of porous alumina ceramic samples sintered at 1600°C for 2 hrs with copper content for different ratios of yeast	134
4.	.64 1 1	Variation of sintered densities of alumina porous ceramic sintered at 1600°C for 2 hrs with the ratio of copper content for different ratios of yeast	135
4.	.65 v	Variation of green densities of alumina porous ceramic sintered at 1600°C for 2 hrs with the ratio of copper content for different ratios of yeast	135
4.	.66	The variation of shrinkage of porous alumina ceramic samples sintered at 1600 °C for 2 hrs with the ratio of copper content for different rations of yeast	136
4.	.67 1 8 1	Microstructure, filling the pores with copper molten, the irregular shaped of pores and necks in porous alumina ceramics body of porous alumina ceramics samples sintered at 1600°C for 2 hrs for different ratios of yeast	137
4.	.68	Agglomeration of Cu metal in the grain boundaries of porous alumina matrix	138
4.	.69 I	Distribution of open pore size of the samples of porous alumina ceramic reinforced with Cu metal sintered at 1600°C for 2 hrs with different ratios of yeast	139
4.	.70	XRD pattern of porous alumina ceramics samples sintered at 1600°C for 2 hrs with different ratios of natural active yeast	140
4.	.71	FEM and EDX of porous alumina ceramics reinforced with nano- copper using natural active yeast as pore forming agent	141
4.	.72	Variation of porosity of porous alumina ceramic samples sintered at 1600°C for 2 hrs with copper content for different ratios of rice nusk ash	143

	4.73	Variation of sintered densities of alumina porous ceramic sintered at $1600 \circ C$ for 2 hrs with the ratio of copper content for different ratios of rice husk ash.	144
	4.74	Variation of green densities of alumina porous ceramic sintered at 1600°C for 2 hrs with the ratio of copper content for different ratios of rice husk ash	144
	4.75	The variation of shrinkage of porous alumina ceramic samples sintered at 1600 °C for 2 hrs with the ratio of copper content for different ration of rice husk ash	145
	4.76	Microstructure, filling the pores with copper molten, the irregular shaped of pores and ceramic phases such as mullite and corundum in porous alumina ceramics body of porous alumina ceramics samples sintered at 1600°C for 2 hrs for different ratios of rice husk ash	146
	4.77	Agglomeration of Cu metal in the grain boundaries of porous alumina matrix	147
	4.78	Distribution of open pore size of the samples of porous alumina ceramic reinforced with Cu metal sintered at 1600°C for 2 hrs with different ratios of rice husk ash	148
	4.79	XRD patterns of porous alumina ceramics samples sintered at 1600°C for 2 hrs with different ratios of rice husk ash	150
	4.80	TEM and EDX of porous alumina ceramics reinforced with nano- copper using rice husk ash as pore forming agent	151
	4.81	Variations of compressive of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of graphite waste	153
	4.82	Variations of tensile strengths of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of graphite waste	154
	4.83	Variation of the hardness of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu content for different ratios of graphite waste	155
	4.84	Variation of flexural strength of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu content for different ratios of graphite waste	156

4.85	Variations of compressive of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of yeast	158
4.86	Variations of tensile strength of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of yeast	159
4.87	Variation of hardness of porous alumina ceramic samples sintered at 1600°C for 2 hrs with Cu content for different ratios of yeast	160
4.88	Variation of hardness of porous alumina ceramic samples sintered at 1600°C for 2 hrs with Cu content for different ratios of yeast	161
4.89	Variations of compressive of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of rice husk ash	163
4.90	Variations of tensile strength of porous alumina ceramic samples sintered at 1600°C for 2 hrs, with Cu metal content for different ratios of rice husk as pore agent	164
4.91	Variation of hardness of porous alumina ceramic samples sintered at 1600°C for 2 hrs with Cu content for different ratios of rice husk as	165
4.92	Variation of flexural strength of porous alumina ceramic samples sintered at 1600°C for 2 hrs with Cu content for different ratios of rice husk ash	166

6

LIST OF ABBREVIATIONS

ACP	Ammonium hexachloroplatinate
ASTM	American Society for Testing and Materials
DTA	Differential thermal analysis
DTS	Diametric tensile strength
EDX	Energy-dispersive X-ray
FESEM	Field-emission scanning electron microscopy
НАР	Hydroxyapatite
HRD	Hardness
JCPDS	Joint Committee on Powder Diffraction Standards
КР	Kenaf powder
PMMA	Polymethylmethacrylate
Pos.[2θ]	Position [20]
PVB	Polyvinyl butyral
R&D	Research and development
RBAO	Reaction bonding of aluminum oxide
RHA	Rice husk ash
RPC	Reticulated porous ceramic
S. D	Stander deviation
TEM	Transmission electron microscopy
TGA	Thermogravimetric Analysis
UTM	Universal Testing Machine
XRD	X-ray diffraction

xxvii

6

CHAPTER 1

INTRODUCTION

Overview

This study investigates the effect of different pore-forming agents (graphite waste from the primary battery, natural active yeast, and rice husk ash) on the physical, microstructural and mechanical properties of porous alumina ceramics with and without nano-copper particles (Cu). The physical properties included porosity, density (green and sintered), and linear shrinkage. The microstructural properties involved morphology, pore shape, and grains while the mechanical properties included the hardness, compressive strength, tensile strength and flexural strength. This study involved using sacrificial and pressureless techniques to improve the mechanical properties of porous alumina ceramics using waste materials and sugar as a binder.

This chapter highlights the research background, problem statement, research hypothesis, research objective, the scope of this study and contributions to knowledge.

1.1 Research background

The solid materials that have been obtained from the burning of clays are known the ceramics, which derived from the Greek word keramos. Also, the ceramics can be defined as materials, which often include crystalline structure, inorganic and non-metallic materials. The ceramic materials involve of both nonmetallic and metallic elements such as Si₃N₄, ZrO₂, CaO, SiO₂, and Al₂O₃. In other words, based on the modern definition, ceramics materials are either amorphous or crystalline solid materials comprising only covalent, ionic or ionocovalent chemical bonds between nonmetallic and metallic elements. Firing and calcining are the important processes used in the preparation the ceramic and raw materials. Burning or firing is the final heat treatment conducted in the furnace on the green ceramic material to develop a strong chemical bond and produce other required chemical, mechanical and physical properties. Calcining involves the heat treatment of raw materials before used to produce the final ceramic materials. The point of calcination is to produce changes in volume and remove the combined constituents which will volatile chemically (Cardarelli, 2008).

Based on the industrial applications of ceramic materials, ceramics are classified to major categories such as cements, refractories, glasses, abrasives, and advanced porous ceramics. Today, one of the important industrial applications of ceramic materials is the advance porous ceramics due to their benefit in the scientific and industrial fields, which focus on the relationship between properties and microstructure, developments of processing and discovering new application. The unique properties of tailored porous ceramic, such as its excellent strain and damage tolerance, good thermal shock resistance, wear resistance, high corrosion and its lightweight, render advanced ceramic as potential components (Jean, 2014; Zhang *et al.*, 2012) of filtering materials for separation membranes, lightweight structural materials (Tang, 2004), catalyst supports, thermal insulation, bioreactors, gas filters for high temperature, (Dessai, 2013; Dong *et al.*, 2017; Yu, 2011) medical ultrasonic imaging and underwater sonar detectors. Therefore, these advantages, make advanced porous ceramic more distinctive compared to other materials such as polymeric and metallic materials in certain applications (Rahaman, 2006).

Ceramics with designed porosity is one of the most versatile materials for thermal insulation, filters, bio-scaffold for tissue engineering, absorption and as catalysts (Konrad *et al.*, 2014). The past decade has seen the rapid development of porous ceramic, several efforts have been devoted by the researchers on inventing porous ceramic processing technologies, that lead to a significant improvement in porous ceramic structure and properties (Hammel *et al.*, 2014; Ohji and Fukushima, 2012).

Macroporous ceramics with designed porosity have a wide application including 1filtration in high temperature 2- diesel filters 3- thermal insulation 4- bone implants and others. In addition, replica, sacrificial templates, and direct foaming methods have been discovered by several scientists for manufacturing macroporous ceramics (Ahmad *et al*, 2014) as shown in Figure 1.1.

Generally, porous ceramics can be classified into three grades according to its pore diameter: 1) micro-pore ceramics in the range of d < 2 nm, 2) meso-pore ceramics in the range of 50 nm > d >2 nm, and 3) macro-pore ceramics in the range of d > 50 nm. (Ohji and Fukushima, 2012; Studart *et al.*, 2006). For example, meso- and macro-pore ceramics are desired in sensors and catalysis to supply a high surface area and to improve the accessibility of liquids and gases to reactive areas. Small pores in the range of 50-100 nm are desired to provide physical cues that promote differentiation, proliferation, the migration of cells and finally quick healing. Large pores >300 - 400 µm with hierarchical structures are desired in regenerative medicine for implanted scaffold vascularization (Studart *et al.*, 2011).

Unfortunately, the mechanical properties of porous ceramics decreased when the porosity area increased and the fracture toughness of ceramic is also low.

Figure 1.1: Classification of porous ceramics according to pore size, applications, and fabrication methods (Ohji and Fukushima, 2012)

1.2 Problem statement

The motivation behind these efforts are the increasing raw materials cost and decreasing natural resources consumption which requires the use of byproducts and wastes as raw material for different industrial processes. This is also a step towards environmental protection and sustainable development. Because of the large amounts of agricultural and industrial waste in the world this days, the present research would like to use graphite waste from primary battery as industrial waste, natural active yeast as microorganism's materials and rice husk ash as pore-forming agent to produce macroporous ceramic materials reinforced with ductile nano-metals particles (nano-copper).

In spite of the growth in macroporous ceramics with designed porosity and their wide applications including filtration in high temperature, diesel filters, thermal insulation, bone implants, absorptions, and catalyst. The main disadvantage of porous ceramic with designed porosity that is the decreasing mechanical properties when the porosity increase. In filters, the mechanical properties must be strong enough to withstand the pressure during operating time and must have thermal and chemical properties that is important for it to function sustainably especially in hot gas and molten metal filtration (Hammel et al., 2014; Konrad et al., 2014; Ohji and Fukushima, 2012). Therefore, in the case of the filtration of hot gas and molten metal, the fluctuation of temperature during the process will leave the materials liable to thermal shock. During service, the mechanical properties of the filter must be high enough to bear the operation pressure, and also the filter properties must not deteriorate with the temperature increase. In addition, the range of temperature (260-900°C) in the filtration process is considered in the filtration of hot gas and these filters may face pressures of up to 8 MPa. Because filtration occurs under these conditions, it is important that the filters of ceramics have sufficient mechanical strength and thermal shock resistance (Hammel, 2014). Therefore, in this study, nano-copper particles have been used as a reinforcement factor to improve the mechanical properties of porous alumina samples. The conditions for the porous alumina ceramics include a reinforced phase when sintering at high temperatures using a new process that requires the addition of Cu metal in nanoscale directly through a combination of the sacrificial technique and pressure-less sintering methods which is a cost-effective procedure.

1.3 Research hypothesis

This study is carried out with three main hypotheses as follows.

1- Depending on the thermal properties of pore-forming agents, it can produce alumina porous ceramics with different level of porosity and mechanical properties through sintering at high temperature.

2-The presence of porosity with different levels leads to decrease in the mechanical properties of alumina porous ceramics however the presence of ceramic phases such as silica (SiO₂) plays a significant role in improving mechanical properties despite the presence of porosity.

3-Addition of nano-metal particles in porous alumina ceramics would affect strongly the mechanical properties by decreasing the porosity, toughening mechanism, and formation of ceramic phases.

1.4 Research objectives

In the present research work, porous alumina ceramics with and without nano-copper particles (Cu) have been prepared using pressureless and sacrificial techniques. All porous alumina ceramics were characterized for the physical and mechanical properties.

The research objectives are;

- To investigate the pore formation in alumina matrix with graphite waste, natural active yeast, and rice husk ash (RHA) and its effect on the physical properties.
- To determine the relationship between different pore modifier wt. % from 10 to 50% on the pore formation and the relationship to the mechanical properties.
- To investigate the physical properties of alumina matrix with different pore modifier reinforced with copper particles between 3-12 wt.%.
- To investigate mechanical properties of alumina matrix with different pore modifier reinforced with copper particles between 3-12 wt.%.

1.5 Scope of the study

In order to reach the objective of the study, the scope of the study are as follows.

- 1- Porous alumina ceramics have been prepared using different pore agents (graphite waste, natural active yeast, and rice husk ash) based on the ratios 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of pore agent using the sacrificial and pressureless sintering techniques.
- 2- A reinforced porous alumina ceramics have been prepared using Cu metal in nanoscale particles as reinforcement phase through the ratios of 3 wt. %, 6 wt. %, 9 wt. % and 12 wt. % of (Cu) metal for selected ratios of all pore agent.
- 3- The chemical phases and chemical composition of pore agents and alumina powder have been determined using XRD, TEM, and EDX in order to discover the chemical phases and chemical composition of pore agent and material matrix.
- 4- Identifying the first sintering temperature of green ceramics to remove the pore agent according to the weight loss by conducting the TGA and DTA of pore agent materials.
- 5- Mechanical properties of porous and reinforced porous alumina ceramics have been measured using UTM-machine.
- 6- Pore size distribution, physical and structural properties of porous and reinforced porous alumina ceramics have been analyzed using FESEM, XRD, Archimedes method, and linear shrinkage.

1.6 Importance of the study and limitation

- 1- Contribution of knowledge to the materials engineering field in the possibility of using new material as a pore former and improve the technique to strengthen and produce the macroporous ceramic with porosity designed by using ductile nano metal particles.
- 2- To manufacture porous ceramic composite by using industrial and agricultural waste.
- 3- To produce porous ceramic composites with high mechanical properties by adding the nano metal particle.
- 4- To produce macroporous ceramic materials that can be used in potentials application, for example, metal filters, hot gas filters, membranes, and bioceramics. In addition, one of the importance limitation of producing of porous ceramics using sacrificial fugitives is low interconnectivity among the pores.

1.7 Outline of thesis

The thesis arrangement is designed as follows.

Chapter 1 explains an introduction of porous and reinforced porous alumina ceramics, the problem statement, the objective, the scopes and also the importance of this research study. The theory, features and previous works including the past and current work that has been carried out by other researchers of porous ceramics are explained in **Chapter 2**.

The methodology and characterization of the porous and reinforced porous alumina using graphite waste, natural active yeast and rice husk ash as pore-forming agent are explained **in Chapter 3**.

The results regarding the effect of the addition of different pore agent (graphite waste, natural active yeast, and rice husk ash) to alumina matrix, the effect of the addition of Cu metal in nanoscale, on the physical and mechanical properties of porous alumina ceramics are analyzed and discussed in **Chapter 4**. Finally, the conclusion and suggestion for future works are showed in **Chapter 5**.

REFERENCES

- Ahmad, R., Ha, J.-H., and Song, I.-H. (2014). Effect of valeric acid on the agglomeration of zirconia particles and effects of the sintering temperature on the strut wall thickness of particle-stabilized foam. *Journal of the European Ceramic Society*, 34 (5), 1303-1310
- Ali, A. M., Abdullah, N. S., Ratnam, M. M., and Ahmad, Z. A. (2016). Linear Shrinkage of the ZTA Ceramic Cutting Inserts. *Procedia Chemistry*, *19*, 879-883
- Ali, E. S., and Ahmad, S. (2012). Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nano clay. *Composites Part B: Engineering*, 43(7), 2813-2816
- Alman, D. E., and Hawk, J. A. (2001). Abrasive wear behavior of a brittle matrix (MoSi 2) composite reinforced with a ductile phase (Nb). *Wear*, 251(1), 890-900
- Antsiferov, V. P., SE. (2007). Enhancing strength of high-porous cordierite ceramics by mechanochemical activation of the charge. *Russian Journal of Non-Ferrous Metals*, 48 (6), 456-460
- Aramaki, S., and Roy, R. (1962). Revised Phase Diagram for the System Al₂O₃—SiO₂. Journal of the American Ceramic Society, 45(5), 229-242.
- ASTM, C1327-03, (2005). Vickers Indentation Hardness of Advanced Ceramics. ASTM-International, West Conshohocken, PA 19428-2959, https://www.astm.org, United States.
- ASTM, C1161-02c, (2005). Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature". *ASTM-International, West Conshohocken, PA 19428-2959*, https://www.astm.org, United States.
- ASTM, C1424-10, (2005). standard test method for monotonic compressive strength of advanced ceramics at ambient temperature. *ASTM International, West Conshohocken, PA19428-2959*, https://www.astm.org, United States.
- ASTM, C20-00 (2005) Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. *ASTM International, West Conshohocken, PA 19428-*2959, https://www.astm.org, United States.
- ASTM. D3967, (2005) Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. *ASTM International, West Conshohocken, PA 19428-*2959, https://www.astm.org, United States.
- Manoj Kumar, B.V, J.-H. E., Young-Wook Kim, In-Sub Han And Sang-Kuk Woo. (118 (2010) 13-18). Effect of aluminum source on flexural strength of mullite-

bonded porous silicon carbide ceramics. *Journal of the Ceramic Society of Japan*(1)

- Bai, J. (2010). Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and α-Al 2 O 3. *Ceramics International*, *36* (2), 673-678s.
- Bakhtiari, F., and Darezereshki, E. (2011). One-step synthesis of tenorite (CuO) nanoparticles from Cu 4 (SO 4)(OH) 6 by direct thermal-decomposition method. *Materials Letters*, 65(2), 171-174
- Barham, N. L., Kaplan, W. D., and Rittel, D. (2014). Static and dynamic mechanical properties of alumina reinforced with sub-micron Ni particles. *Materials Science and Engineering: A*, 597, 1-9
- Bartolomé, J. F., Gutiérrez-González, C. F., and Torrecillas, R. (2008). Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites. *Composites Science and Technology*, 68 (6), 1392-1398
- Benhammou, A., El Hafiane, Y., Abourriche, A., Abouliatim, Y., Nibou, L., Yaacoubi, A., (2014). Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordierite-ceramic. *Ceramics International*, 40 (7), 8937-8944
- Benhammou, A. E. H., Y Abourriche, A Abouliatim, Y Nibou, L Yaacoubi, A Tessier-Doyen, N Smith, A Tanouti, B. (2014). Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordierite-ceramic. *Ceramics International*, 40 (7), 8937-8944
- Boch, P., and Niepce, J.-C. (2010). *Ceramic Materials: Processes, Properties, and Applications* (Vol. 98): John Wiley & Sons.
- Bradt, R. C. (2008). The Sillimanite Minerals: Andalusite, Kyanite, and Sillimanite *Ceramic and Glass Materials* (pp. 41-48): Springer.
- Cao, J., Dong, X., Li, L., Dong, Y., and Hampshire, S. (2014). Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. *Journal of the European Ceramic Society*, 34(13), 3181-3194
- Cao, J., Lu, J., Jiang, L., andWang, Z. (2016). Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass. *Ceramics International*, 42(8), 10079-10084
- Cardarelli, F. (2008). Ceramics, refractories, and glasses. *Materials Handbook: A Concise Desktop Reference*, 593-689
- Carter, C. B., and Norton, M. G. (2007). *Ceramic materials: science and engineering:* Springer Science & Business Media.

- Chae, S.-H. K., Young-Wook Song, In-Hyuek Kim, Hai-Doo Bae, Ji-Soo. (2009). Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics. *Journal of The Korean Ceramic Society*, 46(1), 35-40
- Chen, R., and Tuan, W. (1999). Pressureless sintering of Al₂O₃/Ni nanocomposites. Journal of the European Ceramic Society, 19(4), 463-468
- Chen, R., andTuan, W. (2001). Toughening alumina with silver and zirconia inclusions. Journal of the European Ceramic Society, 21(16), 2887-2893
- Chi, W., Jiang, D., Huang, Z., and Tan, S. (2004). Sintering behavior of porous SiC ceramics. *Ceramics International*, 30 (6), 869-874
- Chi, W. J., Dongliang Huang, Zhengren Tan, Shouhong. (2004). Sintering behavior of porous SiC ceramics. *Ceramics International*, 30(6), 869-874
- Chmielewski, M., andPietrzak, K. (2007). Processing, microstructure and mechanical properties of Al 2 O 3–Cr nanocomposites. *Journal of the European Ceramic Society*, 27(2), 1273-1279
- Choi, Y.-H. K., Young-Wook Woo, Sang-Kuk Han, In-Sub. (47, No. 6 (2010) 509~514,). Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics. *Journal of The Korean Ceramic Society*
- Chou, W., and Tuan, W. (1995). Toughening and strengthening of alumina with silver inclusions. *Journal of the European Ceramic Society*, 15(4), 291-295
- Choy, M.-T., Tang, C.-Y., Chen, L., Law, W.-C., Tsui, C.-P., and Lu, W. W. (2015). Microwave assisted-in situ synthesis of porous titanium/calcium phosphate composites and their in vitro apatite-forming capability. *Composites Part B: Engineering*, 83, 50-57
- Chung, D. D. (2010). *Composite materials: science and applications:* Springer Science & Business Media.
- Clegg, R. E., and Paterson, G. (2004). *Ductile particle toughening of hydroxyapatite ceramics using platinum particles*. Structural Integrity and Fracture International Conference (SIF'04), Brisbane, pp. 47-53.
- Cook, S. G., Little, J. A., and King, J. E. (1995). Etching and microstructure of engineering ceramics. *Materials Characterization*, 34 (1), 1-8
- David Linden, a. T. B. R., and Thomas B, R. (2002). Hand book of batteries *Book,McGraw-Hill, chapter* 8 (Third edition)
- Deng, Z.-Y., Fukasawa, T., Ando, M., Zhang, G.-J., and Ohji, T. (2001). Bulk alumina support with high tolerant strain and its reinforcing mechanisms. Acta materialia, 49 (11), 1939-1946

- Dessai, R. R. D., JAE Sen, D Mazumder, S. (2013). Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation. *Journal of Alloys and Compounds*, 564, 125-129
- Ding S huqiang , Z., Zeng Yu-Ping, Jiang Dongliang. (2007). Fabrication of mullitebonded porous silicon carbide ceramics by in situ reaction bonding. *Journal of the European Ceramic Society*, 27(4), 2095-2102
- Ding, S., Zhu, S., Zeng, Y.-P., and Jiang, D. (2007). Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding. Journal of the European Ceramic Society, 27(4), 2095-2102
- Dittmann, J. W., Norbert, and Franks, G. (2014). Micro Structural Investigations and Mechanical Properties of Macro Porous Ceramic Materials from Capillary Suspensions. *Journal of the American Ceramic Society*, 97(12), 3787-3792
- Donald, W. O. (2008). Graphite. Minerals Yearbook, Metals and Minerals, By Geological Survey (US), 1
- Dong, X., Wang, M., Guo, A., Zhang, Y., Ren, S., Sui, G. (2017). Synthesis and properties of porous alumina ceramics with inter-locked plate-like structure through the tert-butyl alcohol-based gel-casting method. *Journal of Alloys and Compounds, 694*, 1045-1053
- Dong, Y., Zhou, J.-e., Lin, B., Wang, Y., Wang, S., Miao, L.(2009). Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. *Journal of hazardous materials*, 172 (1), 180-186
- Dong, Y. W., Chang-An Zhou, Jun Hong, Zhanglian. (2012). A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties. *Journal of the European Ceramic Society*, 32(10), 2213-2218
- Dong, Z., andChen, W. (2013). Synthesis and hardness evaluation of porous M (Cr, Co) 7 C 3–Co composites. *Materials Science and Engineering: A*, 576, 52-60
- Elsen, S. R., and Ramesh, T. (2015). Optimization to develop multiple response hardness and compressive strength of zirconia reinforced alumina by using RSM and GRA. *International Journal of Refractory Metals and Hard Materials*, 52, 159-164
- Eom, J.-H., Kim, Y.-W., Song, I.-H., and Kim, H.-D. (2007). Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process. *Materials Science and Engineering: A*, 464(1), 129-134
- Eom, J.-H., Kim, Young-Wook, Raju, Santosh. (2013). Processing and properties of macroporous silicon carbide ceramics: A review. *Journal of Asian Ceramic Societies*, 1(3), 220-242

- Eom, J.-H. K., Young-Wook. (2009). Effect of additive composition on microstructure and strength of porous silicon carbide ceramics. *Journal of Materials Science*, 44(16), 4482-4486
- Eom, J.-H. K., Young-Wook Song, In-Hyuck Kim, Hai-Doo. (2008). Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates. *Journal of the European Ceramic Society*, 28(5), 1029-1035
- Fairhurst, C. (1964). On the validity of the 'Brazilian'test for brittle materials. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1(4), 535-546.
- Falamaki, C., Aghaei, Alireza, Ardestani, Navid Razavi. (2001). RBAO membranes/catalyst supports with enhanced permeability. *Journal of the European Ceramic Society*, 21(12), 2267-2274
- Feng, Y., Wang, K., Yao, J., Webley, P. A., Smart, S., and Wang, H. (2013). Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. *Ceramics International*, 39(7), 7551-7556
- Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. *Journal* of the Ceramic Society of Japan, 121(1410), 162-168
- Fung, Y.-L. E. W., Huanting. (2013). Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. *Journal of Membrane Science*, 444, 252-258
- Gan, M., and Wang, J. (2012). Applications of image processing technique in porous material characterization. In *Advanced Image Acquisition, Processing Techniques and Applications I.* InTech. Shanghai, China.
- German, R. M., Suri, P., and Park, S. J. (2009). Review: liquid phase sintering. *Journal* of Materials Science, 44(1), 1-39
- Görhan, G., andŞimşek, O. (2013). Porous clay bricks manufactured with rice husks. *Construction and Building Materials*, 40, 390-396
- Grigoriev, O., Karoteev, A., Maiboroda, E., Berezhinsky, I., Serdega, B., Ostrovoi, D. Y., (2006). Structure, nonlinear stress-strain state and strength of ceramic multilayered composites. *Composites Part B: Engineering*, 37(6), 530-541
- Gu, M., Huang, C., Zou, B., and Liu, B. (2006a). Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials. *Materials Science and Engineering: A*, 433(1-2), 39-44

- Gu, M., Huang, C., Zou, B., and Liu, B. (2006b). Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB₂ ceramic tool materials. *Materials Science and Engineering: A*, 433(1), 39-44
- Hammel, E., Ighodaro, O.-R., and Okoli, O. (2014). Processing and properties of advanced porous ceramics: An application based review. *Ceramics International*, 40 (10), 15351-15370
- Han, M., Yin, X., Cheng, L., Ren, S., and Li, Z. (2017). Effect of core-shell microspheres as pore-forming agent on the properties of porous alumina ceramics. *Materials* & Design, 113, 384-390
- Hu Liangfa, Benitez, R., Basu, S., Karaman, I., and Radovic, M. (2012). Processing and characterization of porous Ti 2 AlC with controlled porosity and pore size. Acta Materialia, 60(18), 6266-6277
- Hu LiangFa and Wang, C.-A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. *Ceramics International*, 36(5), 1697-1701
- Hua, K., Shui, A., Xu, L., Zhao, K., Zhou, Q., and Xi, X. (2016a). Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste. *Ceramics International*
- Hua, K., Shui, A., Xu, L., Zhao, K., Zhou, Q., andXi, X. (2016b). Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste. *Ceramics International*, 42 (5), 6080-6087
- Hussain, F., Hojjati, M., Okamoto, M., andGorga, R. E. (2006). Review article: polymermatrix nanocomposites, processing, manufacturing, and application: an overview. *Journal of Composite Materials*, 40 (17), 1511-1575
- Ighodaro, O. L., Okoli, O. I., Zhang, M., and Wang, B. (2012). Ceramic Preforms with 2D Regular Channels for Fabrication of Metal/Ceramic-Reinforced Composites. *International Journal of Applied Ceramic Technology*, 9(2), 421-430
- Jancar, J. (2008). Review of the role of the interphase in the control of composite performance on micro-and nano-length scales. *Journal of Materials Science*, 43(20), 6747-6757
- Jean, G. S., Valérie Demuynck, Maryse Cambier, Francis Gonon, Maurice. (2014). Macroporous ceramics: Novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying. *Ceramics International*, 40(7), 10197-10203
- Ji, Y., andYeomans, J. (2002). Processing and mechanical properties of Al 2 O 3–5 vol.% Cr nanocomposites. *Journal of the European Ceramic Society*, 22(12), 1927-1936

- Junkes, J. A. D., Benjamin Gutbrod, Björn Hotza, Dachamir Greil, Peter Travitzky, Nahum. (2013). Influence of coatings on microstructure and mechanical properties of preceramic paper-derived porous alumina substrates. *Journal of Materials Processing Technology*, 213(2), 308-313
- Kafkaslıoğlu, B., andTür, Y. K. (2016). Pressureless sintering of Al₂O₃/Ni nanocomposites produced by heterogeneous precipitation method with varying nickel contents. *International Journal of Refractory Metals and Hard Materials*, *57*, 139-144
- Kawai, C. (2001). Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated β -Si3N4 grains. *Journal of Materials Science*, 36(23), 5713-5717
- Kayal, N., Dey, A., andChakrabarti, O. (2012). Synthesis of mullite bonded porous SiC ceramics by a liquid precursor infiltration method: Effect of sintering temperature on material and mechanical properties. *Materials Science and Engineering: A*, 556, 789-795
- Kennedy, G. P., Lim, K.-Y., Kim, Y.-W., Song, I.-H., and Kim, H.-D. (2011). Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics. *Metals and Materials International*, 17 (4), 599-605
- Kennedy, L. J., Vijaya, J. J., and Sekaran, G. (2005). Electrical conductivity study of porous carbon composite derived from rice husk. *Materials chemistry and physics*, *91*(2), 471-476
- Kim, J.-H. E. a. Y.-W. (2008). Effect of template size on microstructure and strength of porous silicon carbide ceramics *Journal of the Ceramic Society of Japan* 116(10), 1159-1163
- Konrad, C. H., Völkl, R., andGlatzel, U. (2014). A novel method for the preparation of porous zirconia ceramics with multimodal pore size distribution. *Journal of the European Ceramic Society*, 34(5), 1311-1319
- Kumar, A., Mohanta, K., Kumar, D., and Parkash, O. (2014). Green properties of drypressed alumina compacts fabricated using sucrose as binder. *Ceramics International*, 40 (4), 6271-6277
- Kumar, B. M., Eom, J.-H., Kim, Y.-W., Song, I.-H., and Kim, H.-D. (2011). Effect of aluminum hydroxide content on porosity and strength of porous mullite-bonded silicon carbide ceramics. *Journal of the Ceramic Society of Japan*, 119 (1389), 367-370
- Lalande, J., Scheppokat, S., Janssen, R., and Claussen, N. (2002). Toughening of alumina/zirconia ceramic composites with silver particles. *Journal of the European Ceramic Society*, 22(13), 2165-2171

- Lange, F. F. (1989). Thermodynamics of densification: II, grain growth in porous compacts and relation to densification. *Journal of the American Ceramic Society*, 72(5), 735-741
- Le Huec, J. S., Tclement, Dfaber, J Le Rebeller, A. (1995). Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. *Biomaterials*, 16 (2), 113-118
- L. F. Hu and C.-A. Wang (2010), "Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics," *Ceramics International, vol. 36, no. 5, pp.* 1697–1701,
- Lemes-Rachadel, P., Birol, H., Oliveira, A., and Hotza, D. (2012). Development of alternative glass ceramic seal for a planar solid oxide fuel cell. *Advances in Materials Science and Engineering*, 2012
- Li, G.-J., Huang, X.-X., and Guo, J.-K. (2003). Fabrication, microstructure and mechanical properties of Al 2 O 3/Ni nanocomposites by a chemical method. *Materials Research Bulletin*, 38(11), 1591-1600
- Li, G. F., Yiqun Zheng, Yuan Wu, Yuping. (2010). Preparation and properties of high toughness RBAO macroporous membrane support. *Ceramics International*, 36 (7), 2025-2031
- Li, S., Wang, C.-A., and Zhou, J. (2013). Effect of starch addition on microstructure and properties of highly porous alumina ceramics. *Ceramics International*, 39(8), 8833-8839
- Lieberthal, M., andKaplan, W. D. (2001). Processing and properties of Al₂O₃ nanocomposites reinforced with sub-micron Ni and NiAl₂O₄. *Materials Science and Engineering: A, 302*(1), 83-91
- Lin, Z., Li, M., and Zhou, Y. (2007). TEM investigations on layered ternary ceramics. *J. Mater. Sci. Technol*, 23(2), 145-165
- Liu, D.-M. (1997). Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. *Ceramics International*, 23(2), 135-139
- Liu, D.-M., and Tuan, W. (1997). Microstructure and its influence on thermal and electrical conductivity of ZrO₂–Ag composites. *Materials Chemistry and Physics*, 48(3), 258-262
- Liu, S., Zeng, Y. P., and Jiang, D. (2009). Effects of Preheat-Treated Aluminosilicate Addition on the Phase Development, Microstructure, and Mechanical Properties of Mullitized Porous OBSC Ceramics. *International Journal of Applied Ceramic Technology*, 6(5), 617-625
- Liu, Y., Zhou, J., and Shen, T. (2013). Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. *Materials & Design*, 45, 67-71

- Lu, J., Gao, L., Sun, J., Gui, L., andGuo, J. (2000). Effect of nickel content on the sintering behavior, mechanical and dielectric properties of Al 2 O 3/Ni composites from coated powders. *Materials Science and Engineering: A*, 293(1), 223-228
- Luo, J.-J., and Daniel, I. M. (2003). Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. *Composites Science and Technology*, 63(11), 1607-1616
- Lyckfeldt, O., and Ferreira, J. (1998). Processing of porous ceramics by 'starch consolidation'. *Journal of the European Ceramic Society*, 18 (2), 131-140
- Malaiskiene, J., Skripkiunas, G., Vaiciene, M., and Kizinievic, O. (2016). The influence of mullite wool waste on the properties of concrete and ceramics. *Construction and Building Materials*, *110*, 8-16
- Mao, J. Z., FL Liao, GC Zhou, Ym huang, HP Wang, Cywu, SH. (2014). Effect of granulated sugar as pore former on the microstructure and mechanical properties of the vitrified bond cubic boron nitride grinding wheels. *Materials & Design*, 60, 328-333
- Mashhadi, M., Taheri-Nassaj, E., Mashhadi, M., andSglavo, V. M. (2011). Pressureless sintering of B 4 C–TiB 2 composites with Al additions. *Ceramics International*, 37(8), 3229-3235
- Mashhadi, M., Taheri-Nassaj, E., Sglavo, V. M., Sarpoolaky, H., and Ehsani, N. (2009). Effect of Al addition on pressureless sintering of B 4 C. *Ceramics International*, 35(2), 831-837
- Matori, K. A., Haslinawati, M., Wahab, Z., Sidek, H., Ban, T., and Ghani, W. (2009). Producing amorphous white silica from rice husk. *MASAUM Journal of Basic* and Applied Sciences, 1(3), 512
- Meille, S., Lombardi, M., Chevalier, J., and Montanaro, L. (2012). Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. *Journal of the European Ceramic Society*, 32 (15), 3959-3967
- Menchavez, Ruben L, Intong, andLori-Ann S. (2010). Red clay-based porous ceramic with pores created by yeast-based foaming technique. *Journal of materials science*, 45 (23), 6511-6520
- Mohanta, K., Kumar, A., Parkash, O., and Kumar, D. (2014). Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. *Journal of the European Ceramic Society*, *34* (10), 2401-2412

- Moya, J. S., Díaz, M., Gutiérrez-González, C. F., Diaz, L. A., Torrecillas, R., andBartolomé, J. F. (2008). Mullite-refractory metal (Mo, Nb) composites. *Journal of the European Ceramic Society*, 28 (2), 479-491
- Mubarak Ali, D., Arunkumar, J., Pooja, P., Subramanian, G., Thajuddin, N., and Alharbi, N. S. (2015). Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. *Saudi Pharmaceutical Journal*, 23(4), 421-428
- Negahdari, Z., Willert-Porada, M., and Pfeiffer, C. (2010). Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics. *Materials Science and Engineering: A*, 527(12), 3005-3009
- Nie, Z., and Lin, Y. (2015). Fabrication of Porous Alumina Ceramics With Corn Starch In An Easy and Low-Cost Way. *Ceramics–Silikáty*, 59 (4), 348-352
- Novais, R. M. S., MP Labrincha, JA. (2014). Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. *Ceramics International*, 40(8), 11637-11648
- Oh, S.-T., Lee, Jai-Sung, Sekino, Tohru, Niihara, Koichi. (2001). Fabrication of Cu dispersed Al 2 O 3 nanocomposites using Al₂O₃/CuO and Al₂O₃/Cu-nitrate mixtures. *Scripta Materialia*, 44(8), 2117-2120
- Oh, S.-T., Sando, M., Sekino, T., and Niihara, K. (1998). Processing and properties of copper dispersed alumina matrix nanocomposites. *Nanostructured Materials*, 10(2), 267-272
- OH, U. C., Chung, Y. S., Kim, D. Y., and Yoon, D. N. (1988). Effect of Grain Growth on Pore Coalescence During the Liquid-Phase Sintering of MgO-CaMgSiO₄ Systems. *Journal of the American Ceramic Society*, 71(10), 854-857
- Ohji, T., and Fukushima, M. (2012). Macro-porous ceramics: processing and properties. *International Materials Reviews*, 57(2), 115-131
- Oliver, W. C., and Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. *Journal of Materials Research*, *19*(01), 3-20
- Park, Y., Yang, T., Yoon, S., Stevens, R., and Park, H. (2007). Mullite whisker derived from coal fly ash. *Materials Science and Engineering: A*, 454, 518-522
- Piazza, D., Capiani, C, Galassi, C, (2005). Piezoceramic material with anisotropic graded porosity. *Journal of the European Ceramic Society*, 25(12), 3075-3078
- Prabhakaran, K., Melkeri, A., Gokhale, N., andSharma, S. (2007). Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent. *Ceramics International*, 33(1), 77-81

- Rahaman, M. N. (2006). *Ceramic Processing and Sintering*: CRC press, Taylor & Francis Group, UK.
- Rahmawati, F., Perkasa, N. M., Purwanto, A., & Nizam, M. (2014, November). The performance of LiFePO₄ battery with graphite waste as anode material. In Electrical Engineering and Computer Science (ICEECS), 2014 International Conference on (pp. 209-211). IEEE.
- Ramakrishna, P. V., Murthy, D. B. R. K., Sastry, D. L., & Samatha, K. (2014). Synthesis, structural and luminescence properties of Mn doped ZnO/Zn₂SiO₄ composite microphosphor. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 129, 274-279.
- Re, G. L., Lopresti, F., Petrucci, G., and Scaffaro, R. (2015). A facile method to determine pore size distribution in porous scaffold by using image processing. *Micron*, 76, 37-45
- Rong, S.-f., JI, Z.-s., Zhu, Y.-c., and Zhang, J.-q. (2007). Effect of Cu on Microstructure and Properties of Al₂O₃ Diphase Ceramic. *Journal of Iron and Steel Research*, *International*, 14(5), 90-93
- Rösler, J., Harders, H., and Baeker, M. (2007). *Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites*: Springer Science & Business Media.
- Rosso, M. (2006). Ceramic and metal matrix composites: Routes and properties. *Journal* of Materials Processing Technology, 175(1), 364-375
- Sbaizero, O., and Pezzotti, G. (2000). Influence of the metal particle size on toughness of Al₂O ₃/Mo composite. *Acta Materialia*, 48 (4), 985-992
- Sbaizero, O., and Pezzotti, G. (2001). Residual stresses and R-curve behavior of AlN/Mo composite. *Journal of the European Ceramic Society*, 21(3), 269-275
- Sbaizero, O., Pezzotti, G., and Nishida, T. (1998). Fracture energy and R-curve behavior of Al 2 O 3/Mo composites. *Acta Materialia*, 46 (2), 681-687
- Scott, D. A. (2002). *Copper and bronze in art: corrosion, colorants, conservation*: Getty publications, Los Angeles.
- Sedaghat, A., Taheri-Nassaj, E., Soraru, G., and Ebadzadeh, T. (2013). Microstructure Development and Phase Evolution of Alumina-mullite Nanocomposite. *Science of Sintering*, 45 (3)
- Seeber, B. S. M., Gonzenbach, Urs Thomas, Gauckler, Ludwig Julius. (2013). Mechanical properties of highly porous alumina foams. *Journal of Materials Research*, 28 (17), 2281-2287

- Sekino, T., Nakajima, T., and Niihara, K. (1996). Mechanical and magnetic properties of nickel dispersed alumina-based nanocomposite. *Materials Letters*, 29 (1), 165-169
- Sengphet, K. P., K Sato, Tsutomu Fauzi, MN Ahmad Radzali, O. (3,N 8,(2013) 2250-3153). Fabrication of Porous Clay Ceramics Using Kenaf Powder Waste. International Journal of Scientific and Research Publications, International Journal of Scientific and Research Publications.
- Serra, M., Conconi, M., Gauna, M., Suárez, G., Aglietti, E., and Rendtorff, N. (2016). Mullite (3Al₂O₃· 2SiO₂) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. *Journal of Asian Ceramic Societies*, 4 (1), 61-67
- Shaw, T. M. (1993). Model for the Effect of Powder Packing on the Driving Force for Liquid-Phase Sintering. *Journal of the American Ceramic Society*, 76 (3), 664-670
- Smirnov, A., andBartolomé, J. (2014). Microstructure and mechanical properties of ZrO 2 ceramics toughened by 5–20vol% Ta metallic particles fabricated by pressureless sintering. *Ceramics International*, 40(1), 1829-1834
- Soltani, N., Bahrami, A., Pech-Canul, M., and González, L. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. *Chemical Engineering Journal*, 264, 899-935
- Somiya, S., Aldinger, F., Claussen, N., Spriggs, R. M., Uchino, K., Koumoto, K., (2003). Handbook of Advanced Ceramics, Volume II Processing and their Applications: Elsevier Inc.
- Studart, A. R., Gonzenbach, U. T., Tervoort, E., and Gauckler, L. J. (2006). Processing routes to macroporous ceramics: a review. *Journal of the American Ceramic Society*, 89(6), 1771-1789
- Studart, A. R. S., J. Xu, L. Yoon, K. Shum, H. C. Weitz, D. A. (2011). Hierarchical porous materials made by drying complex suspensions. *Langmuir*, 27(3), 955-964
- Täffner, U., Carle, V., Schäfer, U., and Hoffmann, M. (2004). Preparation and microstructural analysis of high-performance ceramics *Metallography and Microstructures* (pp. 1057-1066): ASM International.
- Tang, F. F., Hiroshi Uchikoshi, Tetsuo Sakka, Yoshio. (2004). Preparation of porous materials with controlled pore size and porosity. *Journal of the European Ceramic Society*, 24(2), 341-344
- Thostenson, E. T., Li, C., and Chou, T.-W. (2005). Nanocomposites in context. *Composites Science and Technology*, 65(3), 491-516

- Tomba, A., Camerucci, M., Urretavizcaya, G., Cavalieri, A., Sainz, M., and Caballero, A. (1999). Elongated mullite crystals obtained from high temperature transformation of sillimanite. *Ceramics International*, 25(3), 245-252
- Tripathi, H. S., Mukherjee, B., Das, S. K., Ghosh, A., and Banerjee, G. (2003). Effect of sillimanite beach sand composition on mullitization and properties of Al₂O₃-SiO₂ system. *Bulletin of Materials Science*, 26(2), 217-220
- Trusty, P., andYeomans, J. (1997). The toughening of alumina with iron: effects of iron distribution on fracture toughness. *Journal of the European Ceramic Society*, 17 (4), 495-504
- Vekinis, G., Sofianopoulos, E., and Tomlinson, W. (1997). Alumina toughened with short nickel fibres. *Acta Materialia*, 45(11), 4651-4661
- Veljović, D., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R. (2011). The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. *Ceramics International*, 37 (2), 471-479
- Venkataraman, R., Das, G., Singh, S., Pathak, L., Ghosh, R., Venkataraman, B. (2007). Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. *Materials Science and Engineering: A*, 445, 269-274
- Verhaeghe, B., Courtois, C., Petit, F., Cambier, F., Guérin, J.-D., Leriche, A. (2014). Lighter tableware ceramic by controlling porosity: Effect of porosity on mechanical properties. *Ceramics International*, 40(1), 763-770
- Wang, J., Xie, H., Guo, Z., Guan, L., and Li, Y. (2014). Improved thermal properties of paraffin wax by the addition of TiO 2 nanoparticles. Applied Thermal Engineering, 73 (2), 1541-1547
- Wang, S.-r. G., Hao-ran Hui, Lin-hai Wang, Ying-zi. (2007). Reticulated porous multiphase ceramics with improved compressive strength and fracture toughness. *Journal of Materials Engineering and Performance*, 16(1), 113-118
- Wang, S., Jia, D., Yang, Z., Duan, X., Tian, Z., and Zhou, Y. (2013). Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si₃N₄ composite ceramics prepared by gel casting. *Ceramics International*, 39(4), 4231-4237
- Wang, X.-G., Guo, W.-M., Kan, Y.-M., Zhang, G.-J., and Wang, P.-L. (2011). Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives. *Journal of the European Ceramic Society*, 31(6), 1103-1111
- Webb, P. A. (2001). Volume and density determinations for particle technologists. *Micromeritics Instrument Corp*, 2(16), 01

- Wei, G., Hongbin, L., and Chunxia, F. (2010). Influence of La 2 O 3 on preparation and performance of porous cordierite from rice husk. *Journal of rare earths*, 28(4), 614-617
- William and David . (2010). Materials Science and Engineering. book eight edition (John Wiley & Sons, Inc), chapter 12
- Wu, C.-S. (2003). Physical properties and biodegradability of maleatedpolycaprolactone/starch composite. *Polymer Degradation and Stability*, 80(1), 127-134
- Xu, G., Li, J., Cui, H., He, Q., Zhang, Z., and Zhan, X. (2015). Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent. *Ceramics International*, 41(5), 7042-7047
- Xu, G., Ma, Y., Cui, H., Ruan, G., Zhang, Z., and Zhao, H. (2014). Preparation of porous mullite–corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent. *Materials Letters*, 116, 349-352
- Yan, W., Li, N., and Han, B. (2010). Effects Of Sintering Temperature On Pore Characterisation And Strength Of Porous Corundum-Mullite Ceramics. *Journal of Ceramic Processing Research*, 11(3), 388-391
- Yang, J. F. G., Ji Qiang Zhang, Guo Jun Hayashi, Ichiro Ohji, Tatsuki. (280 (2004) 1231-1236). *Effects of pore morphology on the fabrication and mechanical properties of porous* _{Si3N4} *ceramics*. Paper presented at the Key Engineering Materials.
- Yi, F. W., Kun Yao, Jianfeng Webley, Paul Smart, Simon Wang, Huanting. (2013).
 Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. *Ceramics International [P]*, 39(7), 7551-7556
- Yin, L. Z., Xingui Yu, Jinshan, Wang, Honglei. (2016). Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method. *Ceramics International*, 42(1), 1713-1719
- Yoshida, K. T., Hironori Murakami, Akira Miyata, Hiroshi. (2008). Influence of Pore Size on Fracture Strength of Porous Ceramics. *Journal of Solid Mechanics and Materials Engineering*, 2(8), 1060-1069
- Yu, P. W., JZ Yu, FL Yang, JF. (2011). Effect of pure β-Si₃N₄ powder on microstructure and mechanical properties of porous Si₃N₄ ceramics. Paper presented at the IOP Conference Series: *Materials Science and Engineering*.
- Zahedi, M., Khanjanzadeh, H., Pirayesh, H., and Saadatnia, M. A. (2015). Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour–

polypropylene bio-nanocomposites. *Composites Part B: Engineering*, 71, 143-151

- Zeng, T., Dong, X., Mao, C., Zhou, Z., and Yang, H. (2007). Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics. *Journal of the European Ceramic Society*, 27(4), 2025-2029
- Zhang, J.-y. Y., Feng. (2010). Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting. *Journal of Zhejiang University SCIENCE A*, *11*(10), 771-775
- Zhang, J., and Malzbender, J. (2015). Mechanical characterization of micro-and nanoporous alumina. *Ceramics International*, 41(9), 10725-10729
- Zhang, R. F., Daining Chen, Xiangmeng Pei, Yongmao. (2012). Effect of pre-oxidation on the microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics. *Ceramics International*, 38(7), 6021-6026
- Zhou, J., Fan, J.-p., Sun, G.-l., Zhang, J.-y., Liu, X.-m., Zhang, D.-h., (2015). Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method. *Journal of Alloys and Compounds, 632*, 655-660
- Zhou, Z.-h. R., Jian-ming Zou, Jian-peng Zhou, Zhong-cheng Shen, Xiong-jun. (2007). Synthesis and structural characterization of macroporous bioactive glass. Journal of Central South University of Technology, 14, 301-304
- Zhu, L., Dong, Y., Hampshire, S., Cerneaux, S., and Winnubst, L. (2015). Waste-toresource preparation of a porous ceramic membrane support featuring elongated mullite whisker with enhanced porosity and permeance. *Journal of the European Ceramic Society*, 35(2), 711-721
- Zhu, Z., Wei, Z., Shen, J., Zhu, L., Xu, L., Zhang, Y. (2017). Fabrication and catalytic growth mechanism of mullite ceramic whisker using molybdenum oxide as catalyst. *Ceramics International*, 43(2), 2871-2875
- Žmindák, M., and Dudinský, M. (2012). Computational Modelling of Composite Materials Reinforced by Glass Fibers. *Procedia Engineering*, 48, 701-710
- Zuo, K. H., Jiang, D. L., Lin, Q. L., andZeng, Y.-p. (2007). Improving the mechanical properties of Al₂O₃/Ni laminated composites by adding Ni particles in Al₂O₃ layers. *Materials Science and Engineering: A, 443*(1), 296-300.