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Chairman :   Associate Professor Azmah Hanim Mohamed Ariff, PhD 

Faculty :   Engineering 

Over the past century, there has been a dramatic increase in fabrication and synthesizing 

of porous ceramics. However, only a few of them used waste material to fabricate 

alumina porous ceramics and reinforced it using nano-copper (Cu) particles. The 

motivation behind these efforts are the increasing raw materials cost and decreasing 

natural resources consumption which requires the use of byproducts and wastes as raw 

material for different industrial processes. This is a step towards environmental 

protection, sustainable development, and also to produce porous alumina ceramics with 

good porosity and mechanical properties. Thus, in this study, porous alumina ceramics 
were fabricated using graphite waste, natural active yeast, and rice husk ash as pore-

forming agents and source of silica (SiO2). Series of porous alumina ceramics was 

prepared using powder metallurgy technique. The physical and mechanical properties of 

porous alumina ceramics with and without nano-copper (Cu) particles were measured 

by differential thermal analysis (DTA), energy-dispersive X-ray spectroscopy (EDX), 

linear shrinkage, average density (green and sintered) data measurement, and Universal 

Testing Machine (UTM). The average densities for both green and sintered samples 

decrease with increasing pore forming agent ratio for porous alumina ceramics with and 

without nano-copper (Cu) particles. While the linear shrinkage increases with the 

increase of pore forming agent ratio with and without nano-copper (Cu) particles. 

Besides, the structural properties of porous alumina ceramics with and without nano-

copper (Cu) particles, ceramic phases, morphology, and porosity were examined using 
X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). 

The effects of the pore-forming agent ratios on the mechanical properties, the porosity 

and the microstructure with and without nano-copper (Cu) particles have been 

investigated in this study. The results showed that through increasing the pore-forming 

agent ratio for graphite waste, natural active yeast, and rice husk ash, the porosity 

increased from 37.3 to 61.1%, 30.2 to 63.8% and 42.9 to 49.0%, respectively. The 

hardness also decreased from 172.6 to 38.1 HV1 and from 160.6 to 15.0 HV1 for porous 

alumina ceramics using graphite waste and yeast as pore-forming agents, respectively. 
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However, the hardness of the porous alumina ceramics with rice husk ash as a pore-

forming agent increased at 30 wt.% (150.9 HV1) and 50 wt.% (158.9 HV1). The tensile 

strength for porous alumina ceramics using graphite waste and natural active yeast as 

pore-forming agents decreased from 24.9 to 14.3 MPa and from 26.2 to 5.4 MPa, 

respectively. The compressive strength decreased from 112.3 to 34.3 MPa and from 19.5 

to 1.8 MPa, respectively. The flexural strength decreased from 71.28 MPa to 30.42 MPa 
and from 72.56 MPa to 20.72 MPa, respectively. However, for porous alumina ceramics 

using rice husk ash, the tensile strength increased at 30 wt.% (24.1 MPa) and 50 wt.% 

(21.9 MPa). The compressive strength also increased at 30 wt.% (69.7 MP) and at 50% 

(60.1 MPa). The flexural strength increased at 30 wt.% (93.38 MPa) and 50 wt.% (92.38 

MPa). The variation in mechanical properties was also attributed to the formation of 

ceramic phases such as mullite, cristobalite, corundum, and sillimanite other than the 

formation porosity. It is also found that with increasing porosity, the mechanical 

properties decrease. This is a good agreement with Rice’s formula. While by adding 

nano-copper (Cu) particles all mechanical properties improved with increasing Cu ratio 

which attributed to decrease porosity and formation ceramic phases such as tenorite 

(CuO). 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

SIFAT FIZIKAL DAN MEKANIKAL ZARAH TEMBAGA NANO 

BERTETULANG KOMPOSIT MATRIKS ALUMINA 

Oleh 

MOHAMMED SABAH ALI 

September 2017 

Pengerusi : Profesor Madya Azmah Hanim Mohamed Ariff, PhD 

Fakulti : Kejuruteraan 

Sejak ber abad yang lalu, terdapat peningkatan dramatik dalam fabrikasi dan sintesis 

seramik berliang menggunakan bahan-bahan buangan. Walau bagaimanapun, hanya 

sebahagian sahaja menggunakan bahan buangan untuk menghasilkan alumina seramik 

berliang dan diperkukuh menggunakan zarah nano tembaga (Cu). Motivasi di sebalik 

usaha ini adalah kerana kurangnya penggunaan sumber asli dan kos bahan mentah yang 

semakin meningkat yang memerlukan penggunaan hasil sampingan dan sisa sebagai 

bahan mentah untuk proses industri yang berbeza. Ini adalah satu langkah ke arah 

perlindungan alam sekitar dan pembangunan lestari serata untuk menghasilkan seramik 
berliang alumina dengan keliangan yang sesuai dan sifat-sifat mekanikal yang baik. Oleh 

itu, dalam kajian ini, alumina seramik berliang telah direka menggunakan sisa grafit, yis 

aktif semula jadi dan abu sekam padi sebagai ejen pembentuk liang dan sumber silika 

(SiO2). Beberapa seramik berliang alumina telah disediakan dengan menggunakan 

teknik metalurgi serbuk. Sifat-sifat fizikal dan mekanikal seramik alumina berliang 

samada dengan dan tanpa zarah nano-tembaga (Cu) diukur melalui analisis terma 

(DTA), tenaga-serakan X-ray spektroskopi (EDX), pengecutan linear, ketumpatan 

purata (hijau dan tersinter) pengukuran data dan mesin ujian sejagat (UTM). Ketumpatan 

purata bagi kedua-dua sampel hijau dan tersinter menurun dengan peningkatan nisbah 

ejen pembentuk liang untuk seramik alumina berliang dengan dan tanpa zarah nano-

tembaga (Cu). Manakala, pengecutan linear meningkat dengan peningkatan nisbah ejen 

pembentuk liang dengan dan tanpa zarah nano-tembaga (Cu). Di samping itu, sifat-sifat 
struktur alumina seramik berliang dengan atan tanpa zarah nano-tembaga (Cu), fasa 

seramik, morfologi dan keliangan telah diperiksa menggunakan X-ray pembelauan 

(XRD) mikroskop elektron pengimbas (FESEM). Kesan nisbah ejen pembentuk liang 

ke atas sifat mekanik, keliangan dan mikrostruktur dengan dan tanpa zarah nano-

tembaga (Cu) telah disiasat dalam kajian ini. Hasil kajian menunjukkan bahawa dengan 

meningkatkan nisbah ejen pembentuk liang bagi sisa grafit, yis aktif semulajadi dan abu 

sekam padi, keliangan meningkat setiap satu daripada 37.3 ke 61.1%, 30.2 ke 63.8% dan 

42.9 ke 49.0%. Kekerasan juga menurun 172.6 ke 38.1 HV1 dan 160.6 ke 15.0 HV1 
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untuk seramik alumina berliang menggunakan sisa grafit dan yis sebagai ejen pembentuk 

liang. Walau bagaimanapun, kekerasan seramik alumina berliang dengan abu sekam 

padi sebagai ejen pembentuk liang meningkat pada 30 wt.% (150.9 HV1) dan 50 wt.% 

(158.9 HV1). Kekuatan tegangan untuk seramik alumina berliang menggunakan sisa 

grafit dan yis aktif semulajadi sebagai agen pembentuk liang menurun daripada 24.9 ke 

14.3 MPa dan 26.2 ke 5.4 MPa. Kekuatan mampatan menurun daripada 112.3 ke 34.3 
MPa dan 19.5 ke 1.8 MPa. Kekuatan lenturan menurun daripada 71.28 MPa kepada 

30.42 MPa dan dari 72.56 MPa kepada 20.72 MPa, secara respektif. Walau 

bagaimanapun, untuk seramik alumina berliang menggunakan abu sekam padi, kekuatan 

tegangan meningkat pada 30 wt.% (24.1 MPa) dan 50 wt.% (21.9 MPa). Kekuatan 

mampatan juga meningkat pada 30 wt.% (69.7 MP) dan pada 50% (60.1MPa). Kekuatan 

lenturan meningkat pada 30 wt.% (93.38 MPa) dan 50 wt.% (92.38 MPa). Perubahan 

dalam sifat-sifat mekanikal juga disebabkan oleh pembentukan fasa seramik seperti 

mullite, cristobalite, aluminum oksida dan sillimanite selain daripada pembentukan 

keliangan. Kajian mendapati dengan peningkatan keliangan, sifat-sifat mekanikal 

berkurangan. Ini adalah bersamaan dengan formula Rice. Walau bagaimanapun selepas 

menambah zarah nano-tembaga (Cu), semua sifat-sifat mekanikal meningkat dengan 

peningkatan nisbah Cu yang dikaitkan dengan mengurangkan bilangan keliangan dan 
pembentukan fasa seramik seperti tenorite (CuO). 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

Overview 

 

This study investigates the effect of different pore-forming agents (graphite waste from 

the primary battery, natural active yeast, and rice husk ash) on the physical, 

microstructural and mechanical properties of porous alumina ceramics with and without 

nano-copper particles (Cu). The physical properties included porosity, density (green 

and sintered), and linear shrinkage. The microstructural properties involved 

morphology, pore shape, and grains while the mechanical properties included the 

hardness, compressive strength, tensile strength and flexural strength. This study 

involved using sacrificial and pressureless techniques to improve the mechanical 

properties of porous alumina ceramics using waste materials and sugar as a binder. 

 
 

This chapter highlights the research background, problem statement, research 

hypothesis, research objective, the scope of this study and contributions to knowledge.   

 

 

1.1 Research background  

 

The solid materials that have been obtained from the burning of clays are known the 

ceramics, which derived from the Greek word keramos. Also, the ceramics can be 

defined as materials, which often include crystalline structure, inorganic and non-

metallic materials. The ceramic materials involve of both nonmetallic and metallic 
elements such as Si3N4, ZrO2, CaO, SiO2, and Al2O3. In other words, based on the 

modern definition, ceramics materials are either amorphous or crystalline solid materials 

comprising only covalent, ionic or ionocovalent chemical bonds between nonmetallic 

and metallic elements. Firing and calcining are the important processes used in the 

preparation the ceramic and raw materials. Burning or firing is the final heat treatment 

conducted in the furnace on the green ceramic material to develop a strong chemical 

bond and produce other required chemical, mechanical and physical properties. 

Calcining involves the heat treatment of raw materials before used to produce the final 

ceramic materials. The point of calcination is to produce changes in volume and remove 

the combined constituents which will volatile chemically (Cardarelli, 2008). 

 

 
Based on the industrial applications of ceramic materials, ceramics are classified to 

major categories such as cements, refractories, glasses, abrasives, and advanced porous 

ceramics. Today, one of the important industrial applications of ceramic materials is the 

advance porous ceramics due to their benefit in the scientific and industrial fields, which 

focus on the relationship between properties and microstructure, developments of 

processing and discovering new application. The unique properties of tailored porous 

ceramic, such as its excellent strain and damage tolerance, good thermal shock 

resistance, wear resistance, high corrosion and its lightweight, render advanced ceramic 



© C
OPYRIG

HT U
PM

2 
 

as potential components (Jean, 2014; Zhang et al., 2012) of filtering materials for 

separation membranes, lightweight structural materials (Tang, 2004), catalyst supports, 

thermal insulation, bioreactors, gas filters for high temperature, (Dessai, 2013; Dong et 

al., 2017; Yu, 2011) medical ultrasonic imaging and underwater sonar detectors. 

Therefore, these advantages, make advanced porous ceramic more distinctive compared 

to other materials such as polymeric and metallic materials in certain applications 
(Rahaman, 2006 ).  

 

 

Ceramics with designed porosity is one of the most versatile materials for thermal 

insulation, filters, bio-scaffold for tissue engineering, absorption and as catalysts 

(Konrad et al., 2014). The past decade has seen the rapid development of porous ceramic, 

several efforts have been devoted by the researchers on inventing porous ceramic 

processing technologies, that lead to a significant improvement in porous ceramic 

structure and properties (Hammel et al., 2014; Ohji and Fukushima, 2012).  

 

 

Macroporous ceramics with designed porosity have a wide application including 1- 
filtration in high temperature 2- diesel filters 3- thermal insulation 4- bone implants and 

others.  In addition, replica, sacrificial templates, and direct foaming methods have been 

discovered by several scientists for manufacturing macroporous ceramics (Ahmad et al, 

2014) as shown in Figure 1.1. 

 

 

Generally, porous ceramics can be classified into three grades according to its pore 

diameter: 1) micro-pore ceramics in the range of d ˂ 2 nm, 2) meso-pore ceramics in the 

range of 50 nm ˃ d ˃2 nm, and 3) macro-pore ceramics in the range of d ˃ 50 nm. (Ohji 

and Fukushima, 2012; Studart et al., 2006). For example, meso- and macro-pore 

ceramics are desired in sensors and catalysis to supply a high surface area and to improve 
the accessibility of liquids and gases to reactive areas. Small pores in the range of 50-

100 nm are desired to provide physical cues that promote differentiation, proliferation, 

the migration of cells and finally quick healing. Large pores  ˃300 – 400 μm with 

hierarchical structures are desired in regenerative medicine for implanted scaffold 

vascularization (Studart et al., 2011).  

 

 

Unfortunately, the mechanical properties of porous ceramics decreased when the 

porosity area increased and the fracture toughness of ceramic is also low. 
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Figure 1.1: Classification of porous ceramics according to pore size, 

applications, and fabrication methods (Ohji and Fukushima, 2012) 

1.2 Problem statement 

The motivation behind these efforts are the increasing raw materials cost and decreasing 

natural resources consumption which requires the use of byproducts and wastes as raw 

material for different industrial processes. This is also a step towards environmental 

protection and sustainable development. Because of the large amounts of agricultural 

and industrial waste in the world this days, the present research would like to use graphite 
waste from primary battery as industrial waste, natural active yeast as microorganism’s 

materials and rice husk ash as pore-forming agent to produce macroporous ceramic 

materials reinforced with ductile nano-metals particles (nano-copper). 

In spite of the growth in macroporous ceramics with designed porosity and their wide 

applications including filtration in high temperature, diesel filters, thermal insulation, 

bone implants, absorptions, and catalyst. The main disadvantage of porous ceramic with 

designed porosity that is the decreasing mechanical properties when the porosity 

increase. In filters, the mechanical properties must be strong enough to withstand the 

pressure during operating time and must have thermal and chemical properties that is 
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important for it to function sustainably especially in hot gas and molten metal filtration 

(Hammel et al., 2014; Konrad et al., 2014; Ohji and Fukushima, 2012). Therefore, in the 

case of the filtration of hot gas and molten metal, the fluctuation of temperature during 

the process will leave the materials liable to thermal shock. During service, the 

mechanical properties of the filter must be high enough to bear the operation pressure, 

and also the filter properties must not deteriorate with the temperature increase. In 
addition, the range of temperature (260-900ºC) in the filtration process is considered in 

the filtration of hot gas and these filters may face pressures of up to 8 MPa. Because 

filtration occurs under these conditions, it is important that the filters of ceramics have 

sufficient mechanical strength and thermal shock resistance (Hammel, 2014). Therefore, 

in this study, nano-copper particles have been used as a reinforcement factor to improve 

the mechanical properties of porous alumina samples. The conditions for the porous 

alumina ceramics include a reinforced phase when sintering at high temperatures using 

a new process that requires the addition of Cu metal in nanoscale directly through a 

combination of the sacrificial technique and pressure-less sintering methods which is a 

cost-effective procedure.  

 

 

1.3 Research hypothesis 

 

This study is carried out with three main hypotheses as follows.  

1- Depending on the thermal properties of pore-forming agents, it can produce alumina 

porous ceramics with different level of porosity and mechanical properties through 

sintering at high temperature.   

2-The presence of porosity with different levels leads to decrease in the mechanical 

properties of alumina porous ceramics however the presence of ceramic phases such as 

silica (SiO2) plays a significant role in improving mechanical properties despite the 

presence of porosity.    

3-Addition of nano-metal particles in porous alumina ceramics would affect strongly the 
mechanical properties by decreasing the porosity, toughening mechanism, and formation 

of ceramic phases. 

 

 

1.4 Research objectives 

 

In the present research work, porous alumina ceramics with and without nano-copper 

particles (Cu) have been prepared using pressureless and sacrificial techniques. All 

porous alumina ceramics were characterized for the physical and mechanical properties. 

 

The research objectives are; 

 

 To investigate the pore formation in alumina matrix with graphite waste, natural 

active yeast, and rice husk ash (RHA) and its effect on the physical properties. 

 To determine the relationship between different pore modifier wt. % from 10 

to 50% on the pore formation and the relationship to the mechanical properties. 

 To investigate the physical properties of alumina matrix with different pore 

modifier reinforced with copper particles between 3-12 wt.%. 

 To investigate mechanical properties of alumina matrix with different pore 

modifier reinforced with copper particles between 3-12 wt.%. 
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1.5 Scope of the study 

 

In order to reach the objective of the study, the scope of the study are as follows. 

 

1- Porous alumina ceramics have been prepared using different pore agents 

(graphite waste, natural active yeast, and rice husk ash) based on the ratios 10 
wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of pore agent using the 

sacrificial and pressureless sintering techniques. 

2-  A reinforced porous alumina ceramics have been prepared using Cu metal in 

nanoscale particles as reinforcement phase through the ratios of 3 wt. %, 6 wt. 

%, 9 wt. % and 12 wt. % of (Cu) metal for selected ratios of all pore agent. 

3-  The chemical phases and chemical composition of pore agents and alumina 

powder have been determined using XRD, TEM, and EDX in order to discover 

the chemical phases and chemical composition of pore agent and material 

matrix. 

4-  Identifying the first sintering temperature of green ceramics to remove the pore 

agent according to the weight loss by conducting the TGA and DTA of pore 

agent materials. 
5- Mechanical properties of porous and reinforced porous alumina ceramics have 

been measured using UTM-machine.  

6-  Pore size distribution, physical and structural properties of porous and 

reinforced porous alumina ceramics have been analyzed using FESEM, XRD, 

Archimedes method, and linear shrinkage. 

 

 

1.6 Importance of the study and limitation 

 

1-  Contribution of knowledge to the materials engineering field in the possibility 

of  using new material as a pore former and improve the technique to strengthen 
and produce the macroporous ceramic with porosity designed by using ductile 

nano metal particles. 

2-  To manufacture porous ceramic composite by using industrial and agricultural 

waste. 

3- To produce porous ceramic composites with high mechanical properties by 

adding the nano metal particle. 

4- To produce macroporous ceramic materials that can be used in potentials 

application, for example, metal filters, hot gas filters, membranes, and 

bioceramics. In addition, one of the importance limitation of producing of 

porous ceramics using sacrificial fugitives is low interconnectivity among the 

pores. 
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1.7 Outline of thesis 

 

The thesis arrangement is designed as follows.  

 

Chapter 1 explains an introduction of porous and reinforced porous alumina ceramics, 

the problem statement, the objective, the scopes and also the importance of this research 
study. The theory, features and previous works including the past and current work that 

has been carried out by other researchers of porous ceramics are explained in Chapter 

2.  
 

 

The methodology and characterization of the porous and reinforced porous alumina 

using graphite waste, natural active yeast and rice husk ash as pore-forming agent are 

explained in Chapter 3.  

 

 

The results regarding the effect of the addition of different pore agent (graphite waste, 

natural active yeast, and rice husk ash) to alumina matrix, the effect of the addition of 
Cu metal in nanoscale, on the physical and mechanical properties of porous alumina 

ceramics are analyzed and discussed in Chapter 4. Finally, the conclusion and 

suggestion for future works are showed in Chapter 5. 
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