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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the Degree of Doctor of Philosophy 

IMPLEMENTING NUMERICAL SIMULATION FOR STATIC AND 

DYNAMIC LOADING OF CABLE-STAYED PENANG BRIDGE 

By 

MOHAMMED IDRIS MOHAMMED 

November 2016 

Chairman : Associate Professor Faizal Mustapha, PhD 

Faculty : Engineering 

Penang (I) bridge is classified as a Cable stayed bridge, which constructed globally 

for their long spans and aesthetics appealing. Factors such as high traffic volumes 

and geometrical movements cause increase in deflections and stresses on the bridge 

system, which at the end these defects possibly lead to degrade their service life 

cycle. Due to these reasons, Penang (I) bridge needs continuous monitoring i.e. a 

tool to resist any changes toward various loading conditions, such as sensors 

arrangement. Hence, the study aims to recommend sensors positions for Penang (I) 

bridge, by conducting modal analysis and simulation processes which introduced in 

the Finite Element Method (FEM). In addition, specific software called, ‘Nastran & 

Patran’ was used to compute the displacement, forces and stresses based on static 

symmetrical and unsymmetrical loading conditions, as well as mode shapes on 

dynamic loading condition. As a result, from these analyses, critical elements and 

their associated grids points of the bridge elements were identified, which eventually, 

sensors placement have been proposed. The results revealed there are 78 sensors can 

be placed at the entire structures, which are mainly located at the cables, towers and 

end side spans and main spans of the bridge. In term of contribution, the study 

noticed the complexity of Penang (I) bridge structures coupled with high traffic 

volumes might lead to damages at invisibles locations, which only can be identified 

using the finite element analysis. Therefore, the proposed sensors for the bridge 

probably can be used by the relevant authorities and perhaps as guidelines for future 

references.  
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Jambatan Pulau Pinang (I), merupakan jambatan kabel-penahan yang dibina di 

peringkat global bagi jangka panjang dan mempunyai nilai estetika. Faktor-faktor 

seperti penambahan jumlah trafik dan peningkatan pergerakan geometri 

menyebabkan pesongan dan tekanan pada sistem jambatan, dan juga ia membawa 

kepada memendekkan kitaran hayat perkhidmatan mereka. Oleh kerana sebab-sebab 

ini, Jambatan Pulau Pinang (I) memerlukan pemantauan berterusan iaitu alat untuk 

menentang sebarang perubahan ke arah pelbagai keadaan beban muatan, seperti 

susunan sensor. Oleh itu, kajian ini bertujuan untuk mengesyorkan kedudukan sensor 

untuk jambatan Pulau Pinang (I), dengan menjalankan proses analisis dan simulasi 

modal yang diperkenalkan pada Kaedah Unsur Terhingga (FEM). Di samping itu, 

perisian yang dipanggil, 'Nastran & Patran' telah digunakan untuk mengira anjakan, 

daya dan tekanan berdasarkan keadaan bebanan simetri dan simetri statik, serta 

bentuk mod dengan bebanan dinamik. Hasil daripada analisis ini, unsur-unsur 

kritikal dan mata grid yang berkaitan dengan elemen jambatan telah dikenal pasti, 

yang akhirnya, penempatan sensor telah dicadangkan. Keputusan mendedahkan 

terdapat 76 sensor boleh diletakkan pada keseluruhan struktur, yang kebanyakannya 

terletak di kabel, menara dan rentang sampingan akhir dan rentang utama jambatan. 

Dari segi signifikan kajian, kajian mendapati struktur pembinaan Jambatan Pulau 

Pinang (I) yang agak kompleks dan ditambah pula dengan trafik yang tinggi mungkin 

membawa kepada kerosakan di lokasi yang sukar untuk dilihat, yang hanya boleh 

dikenal pasti dengan menggunakan analisis unsur terhingga (FEM). Oleh itu, sensor 

yang dicadangkan untuk jambatan mungkin boleh digunakan oleh pihak berkuasa 

yang berkaitan dan mungkin sebagai garis panduan untuk rujukan masa depan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Many countries have reflected substantial interest and / or concern toward their civil 

infrastructure, especially in cable stayed bridges. The bridges are elegant, efficient 

using material structure, excellent self-balancing structural system, superior overall 

stiffness, enhanced aerodynamic behavior, economical design and weight than 

suspension bridges. They comprise of principle components deck, one / more towers 

and Fan / Harp cables pattern. The incline cables are suspended from the high pylons 

and attached to the girder at grid points. The elasticity of stayed cables primarily 

grants the bridge longer spans without intermediate piers. Such that the dead load 

and live load effect at the girder-deck are transmitted to the towers through the cables 

(Wu and Wang, 2008; Lee, et al., 2008; Gimsing and Georgakis, 2011). 

However, these large structures are experiencing inadequate and deterioration over 

its operating time. Hence, there is a necessity for continuous maintenance and 

rehabilitation scheduled services. In many engineering areas, monitoring techniques 

are employed to ensure the structure integrity and hence able to maintain its safety. 

The term, structural health monitoring actually deals with safety issue, which 

emphasizes on structural performance as well as contribute to saving cost of 

repairing.  Hence, the application of continuous monitoring would delay or limit 

damage growth, as sufficient information of data related to damage rates exists 

(Zapico and Gonzalez, 2006). In addition, Deza (2004) stated bridges disposition 

demands for safety implication and clear economical so that the burden of repairing 

or replacing cost is refrained.  Meanwhile, an accurate assessment of the present 

traffic load relevant to the bridge carrying capacity and anticipation of alteration in 

future loads or the structure capacity can cause deterioration in the applicable time 

span. 

Despite experiencing deterioration over its operating time, the structures are also 

suffered from damage. It is described and characterized as the alteration in the 

designed components features of the infrastructure from geometry and material 

properties, which caused and involved unfavorable circumstance to structure 

integrity and its operative functionality (Farrar, et al., 2006).  The damages of the 

bridge structure can be identified in two ways i.e. directly and/or indirectly. The first 

is identifying the damage type e.g. cracks due to corrosion / delamination, in which 

the appropriate inspection technique is used based on the physical phenomena and 

have local and direct application. While the latter is via global response 

characteristics of undamaged structure, where it compares the data before and after 

the damage. In both conditions, it requires reliable monitoring i.e. quantitative 

performance measures. The technique of monitoring previously was primarily based 
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on pessimistic prediction and periodic inspection which was referring to the direct 

approach (Staszewski, et al., 2004). 

 

 

Furthermore, the bridges are also encountered the structural material failure, which 

is known as defect or flaw, due to improved loading condition.  For examples the 

bridge may operate at its optimal level which resulted to corrosion and fatigue 

damages. While, environmental hazards such as floods or earthquake  are the 

examples of scenario that caused bridge structure failure, where it inflicts the 

structure to the level of non-adequate to perform effectively (Farrar and Worden, 

2007). Hence, in dealing with these issues, Civil Structural Health Monitoring 

(CSHM) has been introduced in implementing measurable periodical procedure to 

recognize the identity of damage strategy in the complex civil structures. These 

measures are analyzed to predict the structure physical condition (Farrar, et al., 

2006).  

 

 

Structural Monitoring covers modeling and analysis that are utilized to assess the 

integrity of the bridge in the sense of operating, ageing, and the level of safety. The 

implementation of structure health monitoring systems for bridges is to determine 

the vital logical explanations, which can be described in 6 levels; (1) the existence 

of damage in the bridge; (2) the location of this or these damages; (3) the character 

or particular kind of damage present; (4) the degree of damage and its extent level; 

(5) the consequence effect and the influence of the damage on the structure at present 

and future;(6) the bridge persistence situation to run for longer period than 

anticipated include forecasting its future behavior and integrity (Stubbs et al., 2000). 

In relation to the current study, it concerns on the first 2 levels of the implementation 

of structure health monitoring systems for bridge i.e. the existence and location of 

these damages. 

 

 

1.2 Problem Statement  

 

The global challenge of civil and mechanical engineering community is monitoring 

the performance of bridge structures, which are operating beyond than their design 

expectation. Factors such as aging, natural phenomena, incremental traffic volume 

and fluctuations functionality are detrimental causes which inflict and degrading 

bridge members operate during their life cycle (Frangopol, 2011). Significantly, the 

demand for high bridge performance and/or aging may result in the vulnerability of 

constructed facilities (Tsompanakis, 2010). 

 

 

According to Cohen et al. (2007); Belluck, (2007); Doyle, (2009), previous statistics 

have indicated that around 41% of the USA’S 577,710 bridges are either suffers from 

structural deficient or functional obsolete. One of such cases is the total collapse of 

I-35W Highway Bridge of four lanes in the state Minnesota- Minneapolis city which 

use to carry 140,000 vehicles/day in 2007, the image of such collapsed is illustrated 

in Figure 1.1. Furthermore, the outcome of the investigation revealed that it was due 

to; (I) the migration toward opportunity in big cities leading to increase in traffic 
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volume; (II) the country economy declines; (III) lack of structural inspection which 

resulted in negligence of the corroded bridge members and become unsafe. 

Similarly, in China and India where bridges are essential to overcome river banks 

and/or passage overgrowing population area. Their bridges collapsed due aging, 

ineffective monitoring procedures, and overloading tracks. Meanwhile, in 

Queensland Australia alone, about 3000 bridges with an annual maintenance cost in 

excess of 20 million dollars and replacement value of two billion dollars (Tan et al., 

2009).  

 

 

    
 

Figure 1.1 : I-35W highway bridge collapsed in Minneapolis Aug. 2007  

(Source: Salam and Helmy, 2014). 

 

 

As bridges need to operate in any environmental conditions, their infrastructures are 

required to be sensed to perform their task for safety and ensure long term services. 

In order to understand their reaction, the involvement of embedded sensing system 

make them intelligently response to any suffering due to strain-displacement, 

temperature, internal forces, stresses and vibration that result in deterioration and /or 

deformation from their natural characteristic.  

 

 

In relation to cables stayed bridges, many of them are still in use today and were 

designed according to the old traffic code. Presently, their infrastructures are 

experiencing to faster, heavier weight tracks and growing moving traffic volume than 

before. In order to continue using these structures, it is necessary to continue evaluate 

their loading-bearing capacity for pursuing of ensuring safe performance (Spyrakos, 

et al., 1999; Deza, 2004).  

 

 

Without exception in Malaysia, Penang (I) Bridge is also classified as old cables 

stayed bridge. This bridge is located at the North-West of Peninsular Malaysia, it is 

about 13.7km long concrete civil structure, harp cable stayed and 4 lanes opened to 

traffic in September 1985 (McCabe et al., 1990). Due to increase in traffic capacity, 

the approach spans were winded from 2-lane to 3-lane dual carriageway. The 

expansion had included additional lane for motorcycle (King, et al., 2009). Also, 

Two-lane at the viaduct approach spans and two single-lane approach ramps were 

added (Buckby, et al., 2009; Corbett, et al., 2010). However, at present, the traffic 

Collapse of I-35W 

bridge 
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volume and the weight of vehicles are no longer the same as in the 1990’s, these are 

due to the growth of industry and population at the mainland and Penang Island.  

 

 

The highest traffic volumes recorded at rush hours between 6.00am to 8.00am, nearly 

thousand vehicles toward the island and similarly leaving the island at peak hour 

4.00pm to 7.00pm1. It is interesting to note that, even though Penang (II) Bridge was 

officially opened to traffic in the year 2014, but still Penang (I) Bridge dominates 

high percentage of the traffic volume. In addition, the result from the interview also 

revealed it was about 5% to 10% certain class of vehicles were reduced, since Penang 

(II) Bridge operates. A survey conducted by the Public Transport Department in 

2010 found out that 70% of daily users of the bridge were from the mainland-

Butterworth side going to the industrial zones of Penang Island which is closer to 

Penang (I) Bridge.  

 

 

With regard to Penang (I) bridge stayed cables, the history indicated since 1996 to 

1999 the bridge had been vulnerable to cables overstress in short cables M1 and E12. 

In 2000, new bearings positioned at the piers to limit the load on short cables. 

Simultaneously, two short cables coded M2 and E23 were replaced. In 2003, the 

bridge installed with acoustic system for monitoring cables but still uncertainty for 

health the rest of the other cables. The delay in response to embedding monitoring 

instrument may be due to change of authority body. 

 

 

In December 2004, cable coded M9 was substituted as a result of unexpected 

breakage. Then, later 80 couplers were replaced after being found defected. In 

another event, in 2006, southwest side of the bridge breakage of cable code E9 has 

been detected by the present monitoring system. Corrosion was common result to 

replace the cables by consulting companies from United Kingdom Atkin. Co (Hendy 

and Sandberg, 2004) and Systra Co. (Lam, et al., 2012). Figure 1.2 below shows the 

crack which located between cable anchorage and the concrete attachment to the 

bridge girder. Figure 1.3 depicts the corrosion induced in the cable coupler. 

 

 

 

                                                
1 Based on the survey interview with the PLUS officer on 13th March 2014 
2 Cable Codes for Penang (I) Bridge 
3 Cable Codes for Penang (I) Bridge 
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Figure 1.2 : Structural defect of cable Anchorage with bridge girder  

(Source: Hendy and Sandberg-Atkins-2004) 

 

 

 
 

Figure 1.3 : Illustrate the cable couplers before and after corrosion  

(Source: Hendy and Sandberg-Atkins-2004) 

 

 

As far as Penang (I) Bridge is concerned, it also suffered from common breakage of 

cables, hence, the bridge has been installed with an additional system known as 

advitam “load cells”, which was placed at the cables. Its function is to determine 

loading magnitude and monitoring the capacity of cables, which at the end able to 

provide the data on attributing factors. The system revealed that Penang (I) Bridge 

is actually under deterioration as a result from trafficking loading and ageing factors. 

Despite cables, the other elements such as deck, pylon, piers, and piles are facing the 

same environmental conditions, which require for monitoring system to ensure its 

safety. 

 

 

Based on the above discussion, there is a need of device to spot the damages. One of 

the solutions to detect damages is via sensors implementation. Sensors 

implementation globally is expected to detect damage and their reliability of the data 

collecting subject upon the sensor arrangements. Their average number relies upon 

the length of the infrastructure span. Additionally, limited sensor numbers and 

locations can constraint the measured data for only certain regions i.e. poor 

measurement performance (Ismail, 2011).  
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Traditionally, the global sensing techniques are more effective to assess the entire 

bridge performance. To implement global sensing device of various types, it requires 

identifying the hot spot stresses regions to position these sensors. Thus, in order to 

assist analysis alteration in properties and predict damages easily, Penang (I) Bridge 

needs to have quantitative global sensors placement for overall structure system, in 

addition to the existing local sensor locations. This is also supported by the result of 

the interview conducted earlier with PLUS officer, where it revealed that the bridge 

has minor defects at certain locations. Due to the issues highlighted above, the study 

is conducted based on several objectives. 

 

 

1.3 Research Objectives (RO) 

 

The aim of the research is to employ finite element analysis of Penang (I) Bridge to 

monitor the structure and install sensors. The bridge is assessed with real-time live 

traffic load effect conditions. The objectives of the study are explained in the 

following sequences: 

 

i. To perform static analysis of symmetrical dead load case, additional live load 

case according to British Standard BS 5400 and identify bridge critical points 

for sensor placement.  

ii. To conduct unsymmetrical analysis at the combine dead and live loads and 

investigate the bridge critical points for sensor placement. 

iii. To carry out dynamic analysis at dead load stage and determine frequencies 

with relevant mode shapes. 

 

 

1.4 Scope of Research Work    

 

The present study focuses on evaluating the Penang (I) bridge structure using 

analytical modal data as to determine the weakness of its members.  Factors such as 

location, size and cost of construction demanding the bridge to be assessed and it is 

also important to note that the structure itself is nearly 30years in service. Due to 

these facts, the bridge might be experience deterioration, damage, structural material 

failure and others. Therefore, the bridge needs a proper continuous monitoring tool 

i.e. sensors in detecting the failure of its members. 

 

 

Hence, realizing the importance of having sensors arrangement for Penang (I) Bridge 

is the main goal of the research.  Therefore, the current study applied nonintrusive 

approach by simulating the bridge model as proposed by (Ragland et al., 2011). In 

terms of modal analysis and simulation, in line with (Miao, et al., 2007; Li, et al., 

2010), this research focusing on linear ‘symmetrical and unsymmetrical’ method of 

finite element and the logical outcome based of static and dynamic responses were 

used to propose locations of the sensors.  
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As for the analysis part, the finite element software program i.e. Nastran and Patran 

program has been selected in the current study, which was used by National 

Aeronautics and Space Administration (NASA) for general finite element solution 

instead of SAP20004 which is useful for elastic second order cable element response 

(Thai and Kim, 2008).  

 

 

This is vital to identify the locations of highly stressed members i.e. its critical grid 

points, which eventually lead to sensors placements in the overall bridge 

infrastructure.  In relation to this, the study considered the loading condition in the 

analysis. It used the standard to develop the symmetrical and unsymmetrical analysis 

which at the end, the results would indicate the proposed sensor locations.  

 

 

The details of the research procedure are summarized and pursued as follows:  

 

 To determine the objects and investigate the structure problem and to exploit 

the scope of the research. 

 To review previous scholars works on bridge monitoring using finite element 

and identify their limitations. 

 To employ modal analysis and simulation by adopting a static approach of 

dead load and to determine the critical areas of the bridge members. 

 To include British Standards BS5400 as live traffic load to the infrastructure 

and evaluate the bridge elements for crucial spot of stresses. 

 To establish unsymmetrical condition due to the previous combined static 

loads and assess the bridge behavior. 

 To apply dynamic analysis at the dead load case and to determine the critical 

areas of the bridge members. 

 To discuss the result and findings of analysis in each case of the analysis. 

 To propose sensor locations at each step of the analysis to all bridge elements.   

 To conclude and state objective achievement. 

 

 

1.5 Thesis Organization  

 

Basically, the thesis is orderly split up into five chapters in the following manner;  

Chapter 1: begins its journey by addressing the background of the structural health 

monitoring to be proposed on bridge civil structure. It covers the background of the 

research, problem statement that triggers the interest of the study. Then it continues 

with the objectives of the research, scope of the research work and the importance of 

the investigation to Structural Monitoring application which is related to 

maintenance and rehabilitation activities for instance frequent visual inspection, 

repair, sensing monitor and managing bridge structures.   

 

 

 

                                                
4 Finite element software 
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Chapter 2: Past literatures on related topics have been covered at this chapter. 

Basically, it provides background the bridge structures, bridge monitoring, the 

concept of finite element concept which explains the static and dynamic analysis, 

bridge loading aspect as well as the sensor arrangements. Finally, the gap is 

highlighted at the end of the discussion. 

 

 

Chapter 3: portrays the way the study is conducted. The use of finite element method 

and its contribution in structural analysis is explained. The model of Penang (I) 

Bridge is created with the aid of NASTRAN and PATRAN program.  

 

 

Chapter 4: presents the modal analysis and simulation results and discussion. The 

discussion of the results is divided into 2 main parts i.e. a) Static loading analysis 

and b) dynamic loading analysis. For Static loading analysis, it further divided into 

2 parts, which are symmetrical and unsymmetrical analysis.  The discussion starts 

with symmetrical static loading aspect, where the results is sub-divided into 2 cases, 

a) static analysis of symmetrical dead load case and b) static analysis of symmetrical 

live traffic load case using British Standard ‘BS 5400’. Later, for unsymmetrical 

Static Loading aspect, both scenario i.e. the dead load and live load case are 

considered during the analysis.  While, Dynamic analysis is performed to derive the 

frequencies and mode shapes of the bridge at the dead load case. All the analysis is 

conducted in order to determine the critical grid points, which eventually lead to 

proposed location of sensors placements.  

 

 

Chapter 5: Conclusion and recommendation for future works, this final chapter 

reveals prediction and predetermined summary of the three investigated objectives. 

Finally, it highlights the conclusion as a result from the findings, which include 

recommendations for future research. 
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