UNIVERSITI PUTRA MALAYSIA

ANTRAL FOLLICULAR DEVELOPMENT AND OESTROUS RESPONSE IN OESTROUS SYNCHRONIZED AND NATURALLY CYCLING GOATS

MUHAMMAD MODU BUKAR

FPV 2011 18
ANTRAL FOLLICULAR DEVELOPMENT AND OESTROUS RESPONSE IN OESTROUS SYNCHRONIZED AND NATURALLY CYCLING GOATS

MUHAMMAD MODU BUKAR

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2011
ANTRAL FOLLICULAR DEVELOPMENT AND OESTROUS RESPONSE IN
OESTROUS SYNCHRONIZED AND NATURALLY CYCLING GOATS

By

MUHAMMAD MODU BUKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirement for the Degree of Doctor of Philosophy

December 2011
DEDICATION

In the name of Allah, the Beneficient, and the Merciful.

This thesis is dedicated to my precious mother, Hajja Kaltume Mustapha who nurtured me with unconditional love. The thesis is also dedicated to my father, Alhaji Bukar Madu for his unflinching support and encouragement all these years, to all my siblings for their confidence in me; to my wife, Yagana Baba Mele for her support and finally, to my children, Aisha, Kaltume, Abubakar, Idris and Maryam.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ANTRAL FOLLICULAR DEVELOPMENT AND OESTROUS RESPONSE IN OESTROUS SYNCHRONIZED AND NATURALLY CYCLING GOATS

By

MUHAMMAD MODU BUKAR

December 2011

Chairman: Associate Professor Rosnina Yusoff, PhD

Faculty: Veterinary Medicine

At present, most of the information on the pattern of antral follicular development on ruminants were gathered from studies conducted in cattle and sheep. However, very little amount of literature exists for goats, especially the non-seasonal polyoestrous goats domesticated in the humid tropics. Thus, the focus of this thesis was to examine the effects of oestrus synchronisation with PGF$_{2\alpha}$ and P$_4$, alone or in combination, with and without gonadotrophins on antral follicular development in goats. In the first experiment, the effects of oestrus synchronisation with PGF$_{2\alpha}$ and CIDR on follicular
development, plasma IGF-1 concentration and its association with follicle population were studied.

Twenty-four Boer x Australian feral crossbred goats that were between 3-4 years of age, with a mean bodyweight of 35.0 ± 2.7 kg and a median body condition score of 3 were used in this study. The goats were equally divided into 3 groups: PGF$_2$A (A), CIDR (B) and naturally cycling (C). Group A was synchronised with two intramuscular injections of 125 µg cloprostenol, 11 days apart while Group B was synchronised with CIDR inserted in the vagina for 17 days. Group C was not oestrus synchronised. Three waves of follicular development were most frequently observed (58%), followed by 4 waves (31.6%). There were no significant differences (P>0.05) between treatment groups for the other parameters associated with follicular development. A low positive correlation (r=0.14) was observed between IGF-1 concentration and the number of 3 mm follicles and between IGF-I concentration and mean number of follicles (r=0.13). The low correlation between IGF-1 concentration and follicular population suggests a weak association between plasma IGF-1 concentration and follicular development in goats.

The objective of the second experiment was to analyse the effects of PGF$_2$A and P$_4$ methods of oestrus synchronisation with or without eCG and FSH on oestrus response and ovulation rates in the goats. The serum cortisol concentrations were also measured to determine if stress occurred during handling for ultrasonography, in the goats raised
under a hot and humid tropical environment. There were 9 groups of goats and each group was synchronised with different protocol using PGF$_{2\alpha}$, FGA and their combinations and either 5 mg FSH or 300 IU eCG. All the synchronised goats that were given eCG exhibited oestrus (100%). However, the number of follicles was higher (P< 0.05) in FSH synchronised groups than the eCG synchronised groups. It was concluded that the PGF$_{2\alpha}$ + FGA + FSH method of oestrus synchronisation is the most promising alternative to oestrus synchronisation with eCG in goats. The serum cortisol concentrations were not significantly different (P< 0.05) between goats handled for ultrasonography and the control group. The third experiment was conducted to examine the effects of eCG on preovulatory follicle growth and time of ovulation. The number of follicles, maximum size of the ovulatory follicles and time of ovulation in a total of fifty-one FGA + PGF$_{2\alpha}$ + eCG synchronised goats and those without eCG were determined. It was found that eCG significantly (P<0.05) increased the total follicle number, maximum follicle diameter and reduced the time to ovulation by 20 hrs.

In conclusion, this is the first report of the pattern of follicular development during natural and synchronised oestrous cycles in non-seasonal polyoestrous goats raised in the hot humid tropics. The effects of oestrus synchronisation with prostaglandin F$_{2\alpha}$ and P$_4$ on follicular development were similar and both hormones increased the number of follicles and IGF-1 concentration in the synchronised and subsequent oestrous cycles compared with the naturally cycling group. Of the FSH-based oestrus synchronisation protocols, the PGF$_{2\alpha}$ + FGA + FSH resulted in higher number of
follicles than any of the eCG-based oestrus synchronisation protocols evaluated and is the most promising alternative to oestrus synchronisation with eCG in goats.

Key words: Ultrasonography, follicular development, oestrus response, IGF-1 concentration, cortisol
Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERKEMBANGAN FOLIKEL ANTRUM DAN GERAKBALAS OESTRUS PADA KAMBING YANG DISELARASKAN ESTRUS DAN YANG BERKITARAN SEMULA JADI

Oleh

MUHAMMAD MODU BUKAR

Disember 2011

Pengerusi: Profesor Madya Rosnina Yusoff, PhD
Fakulti: Perubatan Veterinar

Sehingga kini banyak maklumat mengenai perkembangan folikel antrum pada haiwan ruminan diperolehi daripada kajian yang melibatkan lembu dan biri-biri, dan maklumat mengenainya pada kambing adalah sangat sedikit, terutama bagi kambing poliestrus tidak bermusim yang dibelajinak di tropik melengas panas. Sehubungan itu, fokus tesis ini adalah untuk mengkaji kesan penyelarasan estrus dengan PGF$_{2\alpha}$ dan P$_4$, bersendirian atau secara kombinasi, dengan dan tanpa gonadotropin terhadap perkembangan folikel antrum. Dalam eksperimen pertama, kesan penyelarasan estrus menggunakan PGF$_{2\alpha}$ dan CIDR terhadap perkembangan folikel, kepekatan plasma IGF-1 dan korelasi dengan populasi folikel dikaji. Dua-puluh empat ekor kambing kacukan Boer x feral Australia yang berumur antara 3 dan 4 tahun, dengan berat badan

vii
35.0 ± 2.7 kg dan skor median 3 bagi keadaan badan digunakan untuk kajian ini. Kambing tersebut dibahagi sama kepada 3 kumpulan: PGF₂α (A), CIDR (B) dan berkitaran semulajadi/kawalan (C). Kumpulan A diselaraskan dengan dua kali suntikan 125μg cloprostenol melalui intraotot dengan jarak 11 hari, manakala Kumpulan B diselaraskan dengan CIDR yang diletakkan ke dalam faraj selama 17 hari. Kumpulan C tidak diselaraskan estrusnya. Perkembangan folikel 3-gelombang paling kerap dicerap (58%), diikuti oleh 4 gelombang (31.6%). Tiada perbezaan signifikan (P>0.05) di antara kumpulan yang dikaji bagi parameter yang berkaitan dengan perkembangan folikel. Suatu korelasi positif rendah (r = 0.14) dicerap antara kepekatan IGF-1 dan bilangan 3 mm folikel dan antara kepekatan IGF-1 dan purata bilangan folikel (r = 0.13). Korelasi yang rendah antara kepekatan IGF-1 dan populasi folikel mencadangkan perhubungan lemah antara kepekatan plasma IGF-1 dan perkembangan folikel pada kambing.

Objektif eksperimen kedua adalah untuk menganalisis kesan kaedah penyelarasan estrus menggunakan PGF₂α dan P₄ dengan atau tanpa eCG dan FSH terhadap gerakbalas estrus dan kadar pengovulanan pada kambing. Kepekatan serum kortisol juga disukat untuk menentukan jikalau stress berlaku semasa pengendalian untuk ultrasonografi di kalangan kambing yang dibelajinak di bawah persekitaran tropik panas dan melengas. Terdapat 9 kumpulan kambing dan setiap kumpulan diselaras dengan protokol yang berbeza menggunakan PGF₂α, FGA serta kombinasi mereka dan 5 mg FSH atau 300 IU eCG. Semua kambing terselaras dan diberikan eCG mempamerkan oestrus (100%). Walau bagaimanapun, bilangan folikel adalah lebih
tinggi (P<0.05) dalam kumpulan FSH daripada kumpulan eCG. Kesimpulannya ialah kaedah PGF$_{2\alpha}$ + FGA + FSH merupakan alternatif harapan terhadap penyelarasan estrus menggunakan eCG pada kambing. Kepekatan serum kortisol tidak memberi perbezaan signifikan (P>0.05) antara kambing yang dikendalikan untuk ultrasonografi dan kumpulan kawalan.

Eksperimen ketiga dijalankan untuk meneliti kesan eCG terhadap pertumbuhan folikel praovulatori dan masa pengovulanan. Bilangan folikel, saiz maksimum folikel ovulatori dan masa pengovulanan pada 51 ekor kambing yang diselaraskan dengan FGA + PGF$_{2\alpha}$ + eCG dan tanpa eCG ditentukan. Didapati bahawa eCG meningkatkan dengan signifikan (P<0.05) jumlah bilangan folikel, garispusat folikel maksimum dan mengurangkan masa pengovulanan ovulasi sebanyak 20 jam.

Kesimpulannya, ini merupakan laporan pertama terhadap corak perkembangan folikel semasa kitaran estrus semulajadi dan estrus terselaras di kalangan kambing poliestrus tidak bermusim yang dibelahajinak di tropik melengas panas. Kesan penyelarasan estrus menggunakan PGF$_{2\alpha}$ dan P$_4$ terhadap perkembangan folikel adalah sama, dan kedua-dua hormon telah meningkatkan bilangan folikel dan kepekatan IGF-1 pada kitaran estrus yang diselaraskan dan kitaran estrus berikutnya berbanding kumpulan kitaran semulajadi. Dari protokol penyelarasan estrus berdasarkan FSH, kumpulan PGF$_{2\alpha}$ + FGA + FSH menghasilkan bilangan folikel yang tinggi berbanding penyelarasan estrus berasaskan eCG dan ia merupakan alternatif harapan terhadap penyelarasan estrus menggunakan eCG pada kambing.
ACKNOWLEDGEMENTS

Firstly, in all humility, I wish to extend my profound gratitude to Al-Rahman, the All Knowing, Lord of the worlds for all that I am and have done. Secondly, my most sincere appreciation to the chairperson of my Supervisory Committee, Associate Professor Dr. Rosnina Yusoff for her diligent supervision of my research work and her sincere concern for my welfare. I also wish to express my appreciation to members of my Supervisory Committee; Professor Dr. Mohammed Ariff Omar, Professor Dr. Abd Wahid Haron, Associate Professor Dr. Gurmeet K. Dhaliwal and Associate Professor Dr. Mohammed Azam Khan for their constructive criticisms and support throughout my PhD candidature. I am very grateful to Professors Ariff and Wahid for their concern and purchase of immunoassay kits to enable me to complete my analyses. Dr. Azam’s assistance and encouragement during my stay at ar-Raudhah farm is most appreciated.

My most sincere appreciation also goes to Mr. K.C.Yap of the Theriogenology and Cytogenetics unit, for his technical support and advice. I am also grateful to Mr. P. Ganesamurthi, Mohammed Fahmi of Theriogenology and Cytogenetics Unit, and Mr. Mohammed Azri of and Molecular Biology Laboratory, respectively for their technical assistance. It was my privilege to have as my laboratory colleagues, Drs. Nur Husien Yimer, Abdul Malik, Aqeel Memon, Soe Win Naing, Mojgan Nazari, Kajal Sarsaifi, Khumran Mada, and Hadi Hajarian. I would always remember their camaraderie. Other
fellow students at the Faculty of Veterinary Medicine were also very helpful during the course of my studies; Drs Ibrahim Abdulazeez, Ibrahim Anka, Lawan Adamu, Hassan Ismail and Abubakar Mustapha.

I wish to acknowledge the assistance of the staff of ar-Raudhah Biotech farm, Kuang for their assistance. I also wish to thank my friends in Nigeria for their support and encouragement. These friends include Drs. Bukar Goni, Ali Adamu, Maryam Yachilla.. Other friends were Ahmadu Abatcha, Abdullahi Bukar and Mansur Mohammed.

I thank my Professors, Abdullahi Ribadu, Jibrilla Amin, Abdullahi Mohammed and Abdullahi Mani who encouraged me to venture out to further my studies. I value their confidence and career advice. My appreciation also goes to my senior colleagues, Prof. U.K. Sandabe, Drs M. A. Waziri, H. Kumshe, U. Tijjani, Y. Geidam, Umar Isa and D. El yuguda who constantly sent me words of encouragement. I wish to thank Universiti Putra Malaysia for providing me the opportunity to undergo the PhD programme and for the graduate research fellowship which facilitated my research. Finally, I wish to express my appreciation to University of Maiduguri, Nigeria for granting me the study leave to pursue my PhD at the Faculty of Veterinary Medicine, Universiti Putra Malaysia.
I certify that a Thesis Examination Committee has met on 16th December 2011 to conduct the final examination of Muhammad Modu Bukar on his thesis entitled “Antral Follicular Development and Oestrous Response in Oestrous Synchronized and Naturally Cycling Goats” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the examination committee were as follows:

Jasni Sabri, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohammed Ali Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Muhammad Azam Kakar, PhD
Professor
Balochistan University of Information, Technology,
Pakistan
(External Examiner)

SEOW HENG FONG, PHD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rosnina Bt Haji Yusoff, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abd Wahid Haron, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohamed Ariff Bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Gurmeet Kaur Dhaliwal, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohammed Azam Khan, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Malaysia Kelantan
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MUHAMMAD MODU BUKAR

Date: 16th December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1 Origin of the domestic goat</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.2 Distribution of the goat</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3 Breeds and breed types</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4 Socio-economic significance</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.5 Seasonality of reproduction in goats</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.6 Breeding, growth and attainment of puberty</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.7 Oestrous cycle of goats</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Neuroendocrine control of the oestrous cycle</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.8 Follicular development</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.8.1 Follicular wave pattern</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.8.2 Steroidogenesis</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.8.3 Follicular deviation and ovulation</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.8.4 Corpus luteum formation</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.9 Manipulation of the oestrous cycle in goats</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.9.1 Use of prostaglandin F$_2$a for oestrus synchronisation</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.9.2 Use of progesterone for oestrus synchronisation</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.9.3 Stimulation of follicular development with gonadotrophins</td>
<td>24</td>
</tr>
</tbody>
</table>

xv
2.9.4 Effects of PGF$_{2\alpha}$ and progesterone on follicular development 24
2.9.5 Follicular development in goats 26
2.1 Principles of ultrasonography 30
2.10.1 Method of ovarian ultrasonography 31
2.10.2 Echotextural characteristics of ovarian structures 32
2.11 Insulin-like growth factor-I 33
2.11.1 Role of IGF-1 in folliculogenesis 34
2.11.2 Clinical applications of IGF-1 35
2.12 Stress and cortisol concentration 37

3 GENERAL MATERIALS AND METHODS 41
3.1 Introduction 41
3.2 Study area 41
3.3 Experimental animals 42
3.4 Housing 43
3.5 Feeding 44
3.6 Ultrasonography 44
3.7 Hormonal assays 46
3.7.1 Progesterone 46
3.7.2 Cortisol 47
3.7.3 IGF-1 47
3.8 Statistical analyses 48

4 ANTRAL FOLLICULAR DEVELOPMENT AND PLASMA IGF-1 CONCENTRATION PATTERN IN INDUCED AND NATURAL OESTROUS CYCLES IN GOATS 49
4.1 Introduction 49
4.2 Materials and Methods 52
4.2.1 Experimental animals and design 52
4.2.2 Ultrasonographic evaluation of follicular development 53
4.2.3 Blood collection and hormone analysis 54
4.2.4 Statistical analyses 54
4.3 Results 56
4.4 Discussion 70
4.5 Conclusions 77
5 OESTRUS RESPONSE, FOLLICULAR DEVELOPMENT AND CORTISOL LEVELS IN INTENSIVELY MANAGED BOER DOES SYNCHRONISED WITH FGA AND PGF$_{2\alpha}$ OR THEIR COMBINATIONS WITH eCG OR FSH 78
 5.1 Introduction 78
 5.2 Materials and Methods 79
 5.2.1 Oestrus response 81
 5.2.3 Ultrasonography 81
 5.2.4 Cortisol concentration 82
 5.2.5 Statistical analysis 82
 5.3 Results 83
 5.4 Discussion 88

6 EFFECT OF eCG ON FOLLICLE GROWTH AND TIME OF OVULATION IN FGA PLUS PGF$_{2\alpha}$ SYNCHRONISED GOATS 93
 6.1 Introduction 93
 6.2 Materials and Methods 94
 6.3 Results 95
 6.4 Discussion 96
 6.5 Conclusion 97

7 GENERAL DISCUSSION 98

8 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 109

REFERENCES 114
APPENDICES 135
BIODATA OF STUDENT 169
LIST OF PUBLICATIONS 170
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some common world goat breeds.</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of number of follicular waves in treated (A, B) and naturally cycling (C) groups.</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Time to ovulation, and follicular characteristics among PGF<sub>2α</sub> (A), CIDR (B) and natural (C) oestrous cycles.</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Number (percentages) of CL in synchronised, subsequent and natural oestrous cycles in goats.</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean diameter of CL and plasma progesterone concentrations in PGF<sub>2α</sub>, CIDR synchronised and subsequent oestrous cycles and the natural group.</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Day of emergence and duration of follicular waves in the two different synchronised oestrous cycle groups (A and B) and in the natural (C) group.</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Maximum diameter attained by the largest follicle from the three follicular waves in the 3 experimental groups (A, B and C).</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Frequency distribution of the number of antral follicles in the follicular and luteal phases of synchronised and subsequent oestrous cycles of treated (A, B) and naturally cycling (C) goats.</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Mean number of follicles, plasma IGF-1 and progesterone concentration during the follicular and luteal phases in the synchronised and natural groups.</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Treatment groups and type of gonadotrophin used for oestrus synchronisation in Boer x feral goats.</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Number of follicles of different size categories, the number of new follicles and the maximum size attained by the follicles in goats treated with different synchronisation methods.</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage of goats that display oestrus, time to oestrus onset, duration of oestrus, proportion of goats that ovulated and the mean plasma cortisol levels at oestrus in goats with different methods of oestrus synchronisation.</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Number of follicles, maximum diameter attained and time from sponge removal to ovulation in goats synchronised with FGA + PGF<sub>2α</sub> with and without eCG.</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oestrous cycle in the non-seasonal polyoestrous goat.</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Histologic section of goat ovary at birth showing the cortex (C). Secondary (S) and antral or tertiary (T) follicles.</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Average daily ambient temperature (°C) from 1st January to 30th April 2009 in Selangor, Malaysia.</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Raised goat pens with slatted floor. The roof is raised high with open sides of the building to facilitate ventilation</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Transrectal ultrasonographic scanning in a restrained goat (A). The lubricated transducer is introduced into the rectum (B) and the real-time image is viewed on the monitor (C)</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean number of follicles in PGF$_{2\alpha}$ and CIDR synchronised groups, their respective subsequent oestrous cycles, and the naturally cycling group.</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean plasma IGF-1 concentration in PGF$_{2\alpha}$ and CIDR synchronised groups, their respective subsequent oestrous cycles and the naturally cycling group. The arrow indicates the time of second ovulation.</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>adrenocorticotrophic hormone</td>
</tr>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BCS</td>
<td>body condition score</td>
</tr>
<tr>
<td>CIDR</td>
<td>controlled internal drug release</td>
</tr>
<tr>
<td>CL</td>
<td>corpus luteum</td>
</tr>
<tr>
<td>DF</td>
<td>dominant follicle</td>
</tr>
<tr>
<td>eCG</td>
<td>equine chorionic gonadotrophin</td>
</tr>
<tr>
<td>EIA</td>
<td>enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FGA</td>
<td>flugestone acetate</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>food and agriculture organization of the united nations</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotropin releasing hormone</td>
</tr>
<tr>
<td>HPA</td>
<td>hypothalamic-pituitary axis</td>
</tr>
<tr>
<td>125I</td>
<td>Iodine 125</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
</tbody>
</table>
IGF-1 insulin-like growth factor 1
IGF-2 insulin-like growth factor 2
IGFR-1 insulin-like growth factor receptor 1
IGFR-2 insulin-like growth factor receptor 2
IU international unit
kDa kilodalton
LH luteinizing hormone
MAP medroxyprogesterone acetate
MHz megahertz
P_4 progesterone
P450scc cytochrome P450 side chain cleavage
PBS phosphate buffer saline
PGF_{2\alpha} prostaglandin F2 alpha
RIA radioimmunoassay
SEM standard error of mean
CHAPTER 1

GENERAL INTRODUCTION

In 2009, the world goat population was estimated at 879 million (Dubeuf and Boyazoglu, 2009; FAOSTAT, 2011). Out of this total, the largest population is found in Asia (524 million), followed by Africa (298 million). When these two populations are combined, they make up 94% of the world goat population (FAOSTAT, 2011). The world-wide appeal of goats is due to their small manageable size, prolificacy, superior adaptive characteristics and their ability to thrive in adverse conditions and limited feed resources of arid, semi arid or tropical environment (Silanikove, 2000a; Lebbie, 2004). Overall goat productivity depends on genotype, environment and husbandry factors, thus the intensive management system is used to mitigate the negative effects of these factors in order to improve the efficiency of goat reproduction (Alexandre and Mandonnet, 2005).

In tropical countries like Indonesia and Malaysia, goats breed throughout the year from January to December (Devendra and Burns, 1983; Sodiq et al., 2003). This provides an opportunity for a greater control of their reproductive cycle to exploit the naturally high prolificay of the goats. Manipulation of the oestrous cycle through oestrus synchronisation is an effective tool to improve reproduction in food animals (Greyling, 2010). Exogenous hormones are used to control the oestrous cycle so that a large number of females exhibit oestrus behaviour within a short period of time. In goats, the treatments used for oestrus synchronisation include the
administration of prostaglandin F$_{2\alpha}$ (PGF$_{2\alpha}$), or progesterone (P_4) and their combination (Adams et al., 1992a; Wildeus, 2000; Whitley and Jackson, 2004).

In earlier studies, oestrus synchronisation gave better results when PGF$_{2\alpha}$ or P_4 was co-treated with gonadotrophins (Oliveira et al., 2001; Husein et al., 2007). Equine chorionic gonadotrophin (eCG) and follicle stimulating hormone (FSH) are the common gonadotrophins in oestrus synchronisation of domestic animals (Wildeus, 2000). However, eCG is more commonly used than FSH despite previous reports of the development of antibodies against eCG which adversely affects subsequent fertility (Baril et al., 1996). On the other hand, there are no reports of similar effects associated with the use of FSH (Viudes De Castro et al., 2009). Thus, there is a need to evaluate the use of FSH in oestrus synchronisation in goats.

Most research on oestrus synchronisation had been conducted in the developed temperate countries such as France and USA, in seasonally polyoestrous goat breeds and in temperate climates (Baril et al., 1993; Wildeus, 2000; Whitley and Jackson, 2004). However, it is necessary to observe the oestrus response in oestrus synchronised goats under the conditions they are raised. Consequently, many previous oestrus synchronisation studies in goats have been carried out in many countries under different management and environmental conditions (Ahmed et al., 1998; Amarantidis et al., 2004; De Santiago-Miramontes et al., 2009; Zhao et al., 2010).
Further studies could also be aided by serial ultrasonography which was introduced as a safe tool to monitor the growth and regression of ovarian antral follicles, repeatedly in the same animal regardless of their depth within the ovary (Bartlewski et al., 2000a; Bartlewski et al., 2002; Filho et al., 2007). This has made ultrasonography the preferred technique for the study of follicular development in domestic animals. However, ultrasonography has not been used to monitor follicular development in naturally cycling or oestrus synchronised non-seasonal polyoestrous goats in the humid tropics. Thus, an accurate depiction of the relationship between follicle development and plasma reproductive hormones concentrations could provide valuable information which could be used as a tool to control reproductive cycles in tropical goat breeds.

Follicular dynamics is closely associated with ovarian factors, which include insulin-like growth factor-1 (IGF-1), their binding proteins, and proteases (Hwa et al., 1999; Monget and Bondy, 2000; Monget et al., 2002). The positive effects of IGF-1 on ovarian physiology and follicular development has been reported in sheep (Scaramuzzi et al., 1999). In cattle, close association was found between endocrine IGF-1 concentration and some reproductive traits such as early age at first calving and first service to conception (Yilmaz et al., 2006). These associations led to the suggestion that endocrine IGF-I levels could be used as a selection tool for reproductively high performing sheep and cattle (Roberts et al., 1990; Taylor et al., 2004). However, in this study, the focus was to determine the correlation between endocrine IGF-1 and ovarian follicular development during induced and natural oestrous cycle as a more reliable indicator of the relationship between them. Thus, a
better understanding of the effects of oestrus synchronisation on endocrine IGF-1 concentration would also aid in the assessment of the actual clinical significance and usefulness of the measurement of circulating IGF-1 concentration.

It was hypothesized that oestrus synchronisation with PGF$_{2\alpha}$ and P$_4$ increased antral follicular development and plasma IGF-1 concentration and gonadotrophins stimulate the follicular development, increased the percentage oestrus response and the ovulation rate in goats. Thus, the aim of this study was to examine the relationship between plasma IGF-1 concentrations and antral follicular development during the oestrous cycles of PGF$_{2\alpha}$ or P$_4$ synchronised and naturally cycling goats. The efficiency of oestrus synchronisation with prostaglandin F$_{2\alpha}$ and P$_4$ with and without gonadotrophins was also evaluated.

The specific objectives were:

1. To determine the effects of PGF$_{2\alpha}$ or P$_4$ on follicular dynamics in oestrus synchronised and naturally cycling goats.

2. To determine the relationship between follicular development and plasma IGF-1 concentration in oestrus synchronised and naturally cycling goats.

3. To determine the effects of eCG on preovulatory follicle growth and time of ovulation in non-seasonal, polyoestrous goats.

4. To determine the effects of PGF$_{2\alpha}$ and P$_4$ with or without eCG and FSH treatments on oestrus response and ovulation rates in non-seasonal polyoestrous goats raised under hot and humid condition.
REFERENCES

Yu, Y. S., Luo, M. J., Han, Z. B., Li, W., Sui, H. S. and Tan, J. H. 2005. Serum and follicular fluid steroid levels as related to follicular development and granulosa cell apoptosis during the estrous cycle of goats. *Small Ruminant Research* 57: 57-65.

