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This research has employed CVD to obtain high quality and large surface area 

MLG films on Co-Ni/Al2O3 substrate for gas sensing applications. The effect of 

process conditions on the yield of the MLG films grown on the Co-Ni/Al2O3 

substrate was investigated using RSM. The employed parameters were reaction 

temperature (700-800oC), nominal catalyst (Co/Ni) composition (0.3-0.7), and 

ethanol flowrate (9-11ml/min) at a constant pressure. A total of 20 experimental 

runs were performed for the optimum growth condition of 77% yield of the MLG 

film. The optimal results show that the 800°C reaction temperature, a catalyst ratio 

of 0.3/0.7 with an ethanol flow rate of 11 ml/min were the best conditions for a 

scalable yield of large-area and high-quality MLG for gas sensing applications. The 

experimental test results show a correlation between the RSM predicted and 

experimental responses. The obtained MLG films was systematically characterized 

by using FESEM, EDX, HRTEM, RS, XRD, TGA and DTG, TEM analysis, FT-IR 

analysis and XPS analysis. All these characterizations confirm the excellent quality 

and number of layers of the MLG. 

 

 

Furthermore, the growth kinetics of MLG was investigated by varying the reaction 

temperature and monitoring the partial pressure of the ethanol (C2H5OH) as well as 

that of hydrogen. The data obtained were fitted to the Langmuir-Hinshelwood 

kinetic model for the estimation of the reaction rate constants at different 

temperatures. The results showed that the reaction rate constant increased with 

temperature and the apparent activation energy of 13.72 kJ mol-1 was obtained 

indicating a relatively fast rate of MLG growth. The parity plot obtained for the 

comparison of the predicted and observed rate of C2H5OH consumptions showed 

an excellent agreement. This study is important for understanding the growth 
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kinetics of MLG in order to develop appropriate measures that can control the 

production of MLG thin films for use in the electronic industries. 

 

 

Finally, the use of MLG thin films as a sensor material for gas sensing device has 

been demonstrated. The gas sensing characteristics of MLG films was investigated 

by measuring the resistance across the MLG film at different time while passing 

the gas mixtures. When different gases are introduced to the test chamber at a 

steady flowrate, the resistance increased and reached to a saturation level. The 

findings showed that the MLG-based sensor device was most sensitive to NH3 gas 

and H2 gases whereas it shows the least sensitivity to CH4 gas. This study has 

demonstrated the suitability of the MLG as a material that can be employed as 

sensor device for gas sensing applications most especially NH3 and H2.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

SIFAT FIZIKOKIMIA DAN KINETIK PERTUMBUHAN 
LAPISAN GRAFIN OLEH PEMENDAPAN WAP KIMIA BAGI 

APLIKASI PENGESANAN GAS

Oleh 

MAY ALI MUSLIM 

Oktober 2017 

Pengerusi :  Profesor Madya Suraya Abdul Rashid, PhD 

Fakulti :  Kejuruteraan 

Penyelidikan ini telah menggunakan CVD untuk menghasilkan kawasan 

permukaan yang luas dan berkualiti tinggi filem MLG di atas substrat Co-Ni/Al2O3 

untuk aplikasi penderiaan gas. Kesan keadaan proses terhadap hasil filem MLG 

yang tumbuh di atas substrat Co-Ni/Al2O3 diselidik menggunakan RSM. Parameter 

yang digunakan ialah suhu tindak balas (700-800oC), komposisi pemangkin 

nominal (Co/Ni) (0.3-0.7), dan kadar aliran etanol (9-11ml/min) pada tekanan 

malar. Sebanyak 20 eksperimen telah dilakukan untuk mendapatkan keadaan 

pertumbuhan optimum bagi hasil 77% filem MLG. Hasil optimum menunjukkan 

yang suhu tindak balas 800 °C, nisbah pemangkin 0.3/0.7 dengan kadar alir etanol 

11ml/min adalah kombinasi terbaik bagi hasil berskala permukaan-luas dan 

berkualiti tinggi MLG untuk aplikasi penderiaan gas. Ujian eksperimen 

menunjukkan terdapat korelasi antara tindak balas yang diramal dengan 

eksperimen. Filem MLG yang diperolehi telah dianalisis menggunakan FESEM, 

EDX, HRTEM, RS, XRD, TGA dan DTG, TEM, analisis FT-IR dan analisis XPS. 

Kesemua karakteristik ini mengesahkan kualiti dan bilangan lapisan MLG yang 

cemerlang.  

Sebagai tambahan, pertumbuhan kinetik MLG diselidik dengan mempelbagaikan 

suhu tindak balas dan pemantauan tekanan separa etanol (C2H5OH) dan juga gas 

hidrogen. Data yang diperolehi disesuaikan dengan model kinetik Langmuir-

Hinshelwood untuk menganggarkan kadar reaksi yang malar pada suhu yang 

berbeza. Keputusan menunjukkan bahawa kadar tindak balas malar meningkat 

mengikut suhu dan tenaga pengaktifan ketara 13.72 kJ mol-1 diperolehi yang 

menunjukkan kadar pertumbuhan MLG yang pesat secara relatif. Plot pariti yang 

diperoleh untuk perbandingan kadar yang diramal dengan yang diperhatikan bagi 

penggunaan C2H5OH menunjukkan kaitan yang sangat baik. Kajian ini penting 

untuk memahami kinetik pertumbuhan MLG untuk membangunkan langkah-
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langkah yang sesuai yang dapat mengawal pengeluaran filem tipis MLG bagi 

kegunaan dalam industri elektronik.  

 

 

Akhirnya, penggunaan filem tipis MLG sebagai bahan pengesan untuk peranti 

penderia gas telah dapat ditunjukkan. Karakteristik penderiaan gas filem MLG 

telah diselidik dengan mengukur rintangan pada filem MLG pada masa yang 

berbeza-beza sementara ia melepasi campuran gas. Apabila gas yang berbeza-beza 

digunakan di dalam kebuk uji pada kadar aliran yang tetap, rintangan meningkat 

dan mencapai tahap tepu. Hasil kajian menunjukkan bahawa peranti penderia yang 

berasaskan MLG sangat sensitif terhadap gas NH3 dan gas H2 tetapi kurang sensitif 

terhadap gas CH4. Kajian ini menunjukkan kesesuaian MLG sebagai bahan yang 

boleh digunakan sebagai peranti penderia untuk aplikasi penderiaan gas 

terutamanya NH3 dan H2. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

The interest in graphene as an important material began in 1947 with the work of 

Wallace on the band structure of graphene (Wallace, 1947). Wallace’s discoveries 

showed that graphene was a potential starting material for understanding the 

electronic properties of three-dimensional graphite. This discovery lead to the 

publication of the first TEM images of few-layer graphite by Ruess and Vogt in 

1948 (Ruess and Vogt, 1948). As a follow up to this publication, the formation of 

single graphene layers was observed directly using electron microscope, as 

reported by Boehm et al. (Boehm et al., 1962). Two decades later, advancements in 

technology lead to the synthesis of single-layer graphene grown epitaxially on top 

of other materials. The synthesized epitaxial graphene was reported to consist of a 

single-atom-thick hexagonal lattice of sp2-bonded carbon. It was not until 2004 that 

Novoselov and Geim managed to produce graphene flakes through mechanical 

exfoliation. There has been growing interest in the synthesis of graphene since the 

first published article in 2004 by Novoselov et al. (2011). 

 

 

Graphene, a two-dimensional form of carbon with a honeycomb-like lattice 

arrangement, has been reported as the main building block for all categories of 

graphitic materials (G. Wang et al., 2008). Graphene exhibits a two-dimensional 

structure with distinct atomic and electronic properties, which justify its application 

in electronics and photonics (V. Singh et al., 2011). The growing interest in 

graphene applications as semiconductors in electronics can be attributed to its high 

carrier mobility (>100,000 cm2 V-1 s-1) as well as saturation velocity (the maximum 

attainable velocity for a charge carrier in a semiconductor in the presence of a very 

strong electric field, i.e., 5 107 cm s-1) (Lightcap, Kosel, and Kamat, 2010; Moon 

et al., 2012; Williams and Kamat, 2009). Furthermore, graphene has been reported 

to display excellent mechanical properties (stiffness and tensile strength), high 

thermal conductivity and high current carrying capacity (Lian et al., 2010; J. Yu, 

Liu, Sumant, Goyal, and Balandin, 2012). Similarly, the application of graphene in 

photonics is primarily due to its excellent optical properties over a wide range of 

wavelengths without constraints such as local defects (Bao and Loh, 2012; M. Liu, 

Yin, and Zhang, 2012; Zhipei Sun et al., 2010). Graphene, as a non-silicon-based 

material, has the potential to be a driving force in nanotechnology (Soldano, 

Mahmood, and Dujardin, 2010). Its applications will help develop integrated 

circuits at a smaller scale, comparable with that of silicon-based complementary 

metal-oxide-semiconductor (CMOS) technology (Xiangyu Chen et al., 2010; 

Lemme, Echtermeyer, Baus, and Kurz, 2007). In addition, graphene is 

characterized by excellent physicochemical properties, such as a theoretically large 

surface area, high intrinsic mobility, high Young’s modulus and thermal 

conductivity as well as high optical transmittance (Terrones et al., 2010). Its high 

specific surface area makes it appealing as a support for the synthesis of metal-



© C
OPYRIG

HT U
PM

2 

 

based catalysts. Graphene-supported catalysts have been reported in reactions such 

as biomimetic oxidation, photocatalysis, hydrous hydrazine decomposition, 

hydrogen production from a silicon photocathode and the enhanced electrocatalytic 

oxidation of methanol (Kaminska et al., 2012; Khalid et al., 2012; Zhao, Zhan, 

Tian, Nie, and Ning, 2011). 

 

 

In most of the reported work on graphene synthesis, methods such as exfoliation 

and cleavage, chemical reduction of exfoliated graphite oxide and chemical vapor 

deposition (CVD) have been employed (Mattevi, Kim, and Chhowalla, 2011; 

Stankovich et al., 2007; Wang et al., 2009). The exfoliation mechanism entails a 

process whereby graphene can be peeled from bulk graphite, layer by layer (Yi and 

Shen, 2015). To achieve this, resistance from van der Waals attraction between 

adjacent sheets must be overcome. The application of mechanical exfoliation 

pioneers the discoveries of the excellent electronic and mechanical properties of 

graphene (Chen, Duan, and Chen, 2012). However, one major challenge of the 

exfoliation technique is the low graphene yield obtained from this process (Qian et 

al., 2009). Graphitic materials can also be obtained from the chemical reduction of 

graphene oxide (Gilje et al., 2007; Stankovich et al., 2007). Reducing agents, such 

as hydrazine hydrate, are usually employed at a controlled temperature (Robinson 

et al., 2008). Often times, the reducing agent is very toxic and hence poses health 

risks to the environment (Marcano et al., 2010).  

 

 

In addition, the use of extremely strong reducing agents (e.g., lithium aluminum 

hydride) has been problematic due to side reactions with dispersing solvents for 

graphene oxide (Dreyer et al., 2015). Among the several methods reported in the 

literature, the CVD synthesis of graphene is a promising method for the large-scale 

production of graphitic materials (Mattevi et al., 2011). Reports have shown that 

the diffusion of the carbon into the metal thin film is the main growth mechanism 

(Wei et al., 2009). Although graphene (also known as single-layer graphene) has 

excellent properties for several applications, there is growing interest in 

applications of multi-layer graphene (MLG) in the field of materials science and 

engineering. MLG can best be defined based on its applications and physical 

properties. According to its electrical properties, a material is considered to be 

MLG if it is thin enough for its carrier density to be tuned by the electrostatic 

gating. Additionally, based on its thermal properties, if the material has a Raman 

spectrum distinct from that of the bulk graphite, such material is considered to be 

MLG (Shahil and Balandin, 2012). Finally, MLG is a graphene thin film with weak 

van der Waals interactions between its layers that shows superb electronic 

properties with high potential for sensing applications.   

 

 

CVD is one of the most suitable methods for the formation of MLG films for gas 

sensing applications. Since the use of a catalyst is essential for MLG growth by 

CVD, the choice of the catalyst to be used is crucial. Previous studies have 

investigated MLG film growth on metal catalysts such as Co, Ni, W, Ti and Ru 

(Seah, Chai, and Mohamed, 2014). The results from these studies showed that Co 

and Ni displayed suitable growth with improved film qualities (in terms of 
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crystallinity) under high-temperature conditions. Nevertheless, in the temperature 

range of 600-700 °C, the surface morphology of the Ni catalyst was found to be 

severely degraded due to agglomeration during CVD. To prevent this 

agglomeration, the use of bimetallic catalysts has been proposed. Ueno et al. (2013) 

employed a Co-W bimetallic catalyst for MLG growth by CVD. An MLG film 

with high crystallinity and without any agglomeration was obtained using C2H5OH 

as the carbon source. The use of C2H5OH as the carbon source for graphene 

synthesis is advantageous compared to other carbon sources, such as CH4 and 

C2H4. C2H5OH is less expensive, readily available and less flammable than CH4 or 

C2H2. Moreover, C2H5OH is a good hydrogen carrier candidate, which implies that 

H2 is not required when using C2H5OH as the carbon source in CVD (Jiang et al., 

2013).  

 

 

Moreover, dielectric substrates, such as alumina (Al2O3), are good choices for use 

in CVD because of their strong chemical reactivity with carbon atoms and their 

applicability to high-temperature-demand applications (Chai et al., 2011; 

Villacampa et al., 2003). This dielectric substrate can be used in combination with 

metal substrates, such as Ni and Co, that are known to have high carbon solubility. 

Due to the high solubility of carbon on these metal substrates, these substrates play 

significant roles in the formation of epitaxial or MLG growth, which are required 

for gas sensing applications due to the production of a large surface area for gas 

adsorption (Chai et al., 2011; Villacampa et al., 2003). Thus, the similar lattice 

structure of Ni and Co to that of graphene, along with their high carbon solubility, 

is extremely favorable, and these atoms play a significant role in controlling defect 

generation during graphene growth by reconstructing graphene sheets using 

annealing defects (Jiang et al., 2014; Yu et al., 2008; Villacampa et al., 2003). 

However, the growth of MLG using a bimetallic Co-Ni catalyst on an Al2O3 

substrate via CVD has not been reported to the best of the author’s knowledge. In 

the present study, the Al2O3 substrate serves as a support for the Co-Ni bimetallic 

catalyst. One important feature of the Co-Ni catalyst for MLG synthesis is it 

tendency to facilitate high carbon solubilization. Moreover, the kinetics of MLG 

growth on the Co-Ni/Al2O3 catalyst via CVD has also not been investigated. 

Therefore, this study aims to investigate the synthesis, characterization, 

optimization and kinetics of MLG growth on the Co-Ni/Al2O3 catalyst via CVD. 

The synthesized MLG was employed in gas sensing applications. 

 

 

1.2 Problem statement 

 

Recently, MLG growth on metals and alloys has been the main focus of studies 

involving gas sensing applications (Liu et al., 2010; Shahil and Balandin, 2012). 

However, in depth analysis on the effect of the process conditions, such as CVD 

temperature, catalyst ratio and hydrocarbon flowrate, on the MLG synthesis has not 

be given full attention in literature. Research has shown that these parameters play 

significant roles in the MLG growth. Hence, the investigation of these process 

conditions viz. their interaction effects on the MLG growth will enable the control 

of MLG yields and quality.  
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Moreover, reports have shown that the growth of graphene on metallic substrates 

by CVD is usually dominated by crystallization from the substrate surface, which is 

initially supersaturated with carbon adatoms (Celebi et al., 2013). This implies that 

growth is independent of hydrocarbon addition after the nucleation phase. In the 

present study, it is postulated that MLG growth can be controlled via the 

adsorption-desorption dynamics and the kinetic processes of the catalytic 

dissociation and dehydrogenation of the carbon source (ethanol) on the bimetallic 

Co-Ni catalysts. To date, kinetic studies on the synthesis of graphene have been 

performed using metal catalysts such as Cu (Celebi et al., 2013; Nano, Shu, Chen, 

and Academy, 2012), SiC (Tromp and Hannon, 2009) and Ru (Dong and Frenken, 

2013). It is therefore important to investigate the kinetics of MLG growth on a Co-

Ni catalyst by CVD in order to determine the rate controlling mechanism that 

govern the MLG growth. 

 

 

This study proposed the use of the synthesized MLG films as a sensor material for 

gas-detecting applications towards ammonia (NH3), hydrogen (H2) and methane 

(CH4) gases. Although, there is a well-established method of gas detection such as 

the electrochemical detection techniques. However, the electrochemical detection 

technique has the disadvantage of narrow or limited temperature range, short or 

limited shelf life, cross sensitivity of other gases, and shorter life span compared to 

the solid-state resistive-type metal oxides sensors which is the focus of this study. 

The choice of the NH3, H2, and CH4 gases used in this study is hinged on the risks 

associated with the usage of the gases as well as their health hazards when exposed 

in little concentration. NH3 which is extensively used as feed stock for the 

production of fertilizer and other valuable chemicals can cause serious health risk 

in a long-term exposure greater than 7 h.  Moreover, H2 and CH4 gases are 

classified as highly flammable gases when they come in contact with a source of 

ignition. It is therefore desirable to develop a selective and sensitive NH3, H2, and 

CH4 gas sensor which is one of the main focus of this study.  

 

 

Furthermore, studies have shown that gas sensing plays significant role in several 

applications, such as, environmental monitoring, medical diagnosis, industrial 

production and safety. Even though solid-state gas sensors possess advantages such 

as small size, low power, high sensitivity and low cost for detecting very low 

concentrations of a wide range of gases in the range of parts-per-million (ppm), one 

of the major constraints of their applications is their instability and limited 

measurement accuracy. Hence, this study is positioned to tackle these challenges 

by employing high-quality MLG synthesized on a Co-Ni/Al2O3 substrate via CVD 

as a potential material for gas sensing applications.  

 

 

1.3 Objectives of the Study 

 

The objectives of this study are as follows: 

 

i. To investigate the physicochemical properties of MLG grown on a Co-

Ni/Al2O3 substrate.  
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ii. To investigate the effect of CVD process parameters such as the 

temperature, catalyst ratio and ethanol flowrate on the MLG yield as well as 

obtain the optimum conditions for maximum MLG yield using RSM. 

iii. To investigate the kinetics and mechanism of MLG thin film growth by the 

tail-gas-based CVD process. 

iv. To determine the performance of MLG in gas sensing applications. 

 

 

1.4 Scope of the Study 

 

i. Synthesis of Co-Ni/Al2O3 substrates with varying Co: Ni ratios using the 

drop casting method. 

ii. The growth of MLG on the Co-Ni/Al2O3 substrate by CVD and subsequent 

characterization by X-ray powder diffraction (XRD), X-ray photoelectron 

spectroscopy (XPS) Raman spectroscopy (RS), Thermogravimetric analysis 

(TGA), Fourier transform infrared spectroscopy (FTIR), Field emission 

scanning electron microscope (FESEM), High-resolution transmission 

electron microscopy (HRTEM), selected area electron diffraction (SAED) 

and N2-physisorption analysis. 

iii. Parameters such as the CVD temperature, catalyst ratio and ethanol flow 

rate were investigated at 700-800 oC, 0.3-0.7 and 9-11 ml/min, respectively 

using RSM and DoE to determine the optimum conditions that gave the 

maximum MLG yield. 

iv. The kinetic measurements were performed over the temperature ranged of 

700-800 oC under atmospheric condition. 

v. The Langmuir-Hinshelwood kinetic model was employed to estimate 

parameters such as activation energy and the rate constants.  

vi. The suitability of the as-synthesized MLG for gas sensing applications was 

evaluated using NH3 CH4, and H2 gasses.  

vii. The dynamic response of the MLG to different concentration of the NH3 

(0.06-1%), CH4 (0.06-1%), and H2 (1%-2%) gasses was measured as a 

function of resistance and current.  

 

 

1.5 Thesis layout 

 

This thesis is divided into seven chapters. Chapter 1 is the introduction of the thesis 

and gives background on the study of graphene and multi-layer graphene synthesis 

and their applications. Additionally, the problem statement, objectives and scope of 

the study are also presented. In chapter 2, a detailed literature review on graphene, 

multi-layer graphene, synthetic methods, applications, kinetics and optimizations is 

reported to identify knowledge gaps and the novelty of this study. In chapter 3, the 

detailed materials and experimental methods for synthesis and characterization of 

the catalyst and MLG are presented. Additionally, the results obtained from the 

experimental procedures are discussed. In chapter 4, the method, results and 

discussion of MLG optimization by RSM are discussed in detail. Chapter 5 

presents the methods, results and discussion on the growths kinetics and 

mechanism of MLG. In chapter 6, the methods, results and discussion on the 

application of MLG for gas sensing applications using NH3, CH4 and H2 are 
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presented. Finally, chapter 7 includes a summary, the general conclusions and 

recommendations for future research. 
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