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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

 

NON-FIDUCIAL BASED ELECTROCARDIOGRAM BIOMETRICS WITH 
KERNEL METHODS 

 

By 

MARYAMSADAT HEJAZI 

June 2017 

Chair: Syed Abdul Rahman Al-Haddad Bin Syed Mohamed, PhD  
Faculty: Engineering 
 

Electrocardiogram (ECG) biometrics is a relatively novel trend in the field of biometric 
recognition. ECG is a new generation of biometric modality which presents a number of 
notable problems in signal processing, extraction of significant features from the ECG 
signals and construction of an accurate subject recognition system. These notable 
problems are due to time-varying nature of ECG signals implying cardiac conditions and 
the type of ECG signal acquisition. This thesis considers all the inherent processes to an 
ECG biometric system involving pre-processing, feature extraction and classification. 
The thesis proposes a novel ECG verification technique based on non-fiducial approach 
which explores waveform itself using kernel methods for feature extraction and 
classification after preprocessing (denoising ECG signals) one lead ECG signals of 52 
subjects. For ECG signal processing, Coiflet3 wavelet and Rigrsure rule of hard 
threshold is proposed after evaluating different discrete wavelets based on statistical 
measuring criteria which include cross-correlation, signal-to-noise ratio, reconstruction 
error, root-mean-square error, and others. A new non-fiducial approach is proposed for 
feature extraction. This approach constructs an algorithm by combining autocorrelation 
(AC) and Kernel Principal Component Analysis (KPCA) techniques. The effectiveness 
of this algorithm is investigated by comparing with other AC based feature extraction 
algorithms involving AC/LDA (Linear Discriminant Analysis) and AC/PCA (Principal 
Component Analysis). At classification level, Gaussian multi-class Support Vector 
Machine (SVM) with the One-Against-All (OAA) approach is proposed to evaluate 
verification performance rates of the feature extraction algorithms. The results of 
analysis demonstrate that the AC/KPCA has a maximum effect on achieving high subject 
and window recognition rates in different operational conditions. The highest window 
and subject predictive accuracies achieved are approximately 92% and 77% on KPCA 
data set with the lowest biometric error and overfitting. The lowest biometric errors of 
false non-match rate and false match rate are decreased to about 6.19% and 1.79%, 
respectively on the KPCA data set. 
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BIOMETRIK ELEKTROKARDIOGRAM BERASASKAN BUKAN FIDUSIAL 
DENGAN KAEDAH KERNEL  

 

Oleh 

MARYAMSADAT HEJAZI 

Jun 2017 

Pengerusi: Syed Abdul Rahman Al-Haddad Bin Syed Mohamed, PhD 
Fakulti: Kejuruteraan 
 

Elektrokardiogram (ECG) biometrik adalah satu arah aliran yang agak baru dalam 
bidang pengiktirafan biometrik. ECG adalah generasi baru modaliti biometrik yang 
membentangkan beberapa masalah yang ketara dalam pemprosesan isyarat, 
pengekstrakan ciri-ciri penting dari isyarat ECG dan pembinaan sistem pengiktirafan 
subjek yang tepat. Masalah-masalah ketara ini adalah disebabkan oleh masa yang 
berbeza-beza sifat isyarat ECG membayangkan keadaan jantung dan jenis pemerolehan 
isyarat ECG. Tesis ini mengambilkira semua proses bawaan yang wujud dalam sistem 
biometrik ECG yang melibatkan pra-pemprosesan, pengekstrakan ciri dan klasifikasi. 
Tesis ini mencadangkan satu teknik novel pengesahan ECG berdasarkan pendekatan 
bukan fidusial yang meneroka gelombang itu sendiri menggunakan kaedah kernel 
untuk pengekstrakan ciri dan klasifikasi selepas pra-pemprosesan (membuang hingar 
isyarat ECG) isyarat ECG satu led daripada 52 orang. Untuk pemprosesan isyarat ECG, 
gelombang Coiflet3 dan peraturan Rigrsure ambang keras adalah dicadangkan selepas 
menilai riak diskret yang berbeza berdasarkan kriteria pengukur statistik termasuk 
silang korelasi, nisbah isyarat-kepada-hingar, pembinaan semula ralat, punca min kuasa 
dua ralat, dan lain-lain. Pendekatan bukan fidusial baru adalah dicadangkan untuk 
pengekstrakan ciri. Pendekatan ini membina algoritma dengan menggabungkan 
autokolerasi (AC) dan teknik analisis komponen utama kernel (KPCA). Keberkesanan 
algoritma ini disiasat dengan membandingkan dengan algoritma ciri pengekstrakan lain 
AC yang melibatkan AC/LDA (analisis beza layan linear) dan AC/PCA (analisis 
komponen utama). Pada peringkat klasifikasi, mesin vektor sokongan (SVM) pelbagai 
kelas dengan pendekatan Satu-Terhadap-Semua (OAA) dicadangkan untuk menilai 
kadar prestasi pengesahan algoritma ciri pengekstrakan. Keputusan analisis 
menunjukkan bahawa AC/KPCA mempunyai kesan maksimum kepada pencapaian 
kadar pengiktirafan subjek dan tetingkap yang tinggi dalam keadaan operasi yang 
berbeza. Tetingkap tertinggi dan ketepatan ramalan subjek mencapai kira-kira 92% dan 
77% ke atas data KPCA dengan ralat biometrik yang paling rendah dan berlebihan. 
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Ralat biometrik terendah untuk kadar tidak-padan palsu dan kadar padan palsu 
menurun kepada kira-kira 6.19% dan 1.79% masing-masing pada set data KPCA. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Overview on Biometrics 
 

Automatic and reliable personal identity recognition is becoming considerably 
important in many aspects of daily life including financial transactions, traveling and 
healthcare monitoring systems and many other applications. Traditional techniques of 
token-based (e.g. passport, ID card) and knowledge-based (e.g. password) have been 
extensively utilized to automatic identity recognition. However, despite of their wide 
use, these approaches are not able to differentiate between an authorized person and 
imposters, lost card, forgotten password, and others (Agrafioti et al., 2011, Jain et al., 
2004). 
 

Biometric recognition technology provides a reliable security system through identity 
recognition of individuals based on their inherent characteristics to resolve the security 
gaps of traditional techniques. These inherent features include physiological or 
behavioral traits associated with the person. Physiological features include face, iris, 
and fingerprints whereas keystroke dynamics, gait, and voice/speech are behavioral 
features. Each biometric trait has unique properties with its own weakness and 
strengths which are applied based on the characteristics of applicant environments (Jain 
et al., 2004). 
 

Circumvention is an important issue to determine whether a practical biometric system 
is robust to falsification using fraudulent techniques. Some instances of attacks in the 
biometrics security system involve the use of latex for recreation of a fingerprint, voice 
imitation and the application of contact lenses copied from original iris features. So, 
these biometric modalities are not robust enough against falsification (Wang et al., 
2008). In addition, obfuscation is another important biometric attack that a person 
attempts to evade true subject’s recognition through the use of different ways such as 
use of glasses or plastic surgery in face recognition, cutting or burning fingerprints, and 
iris transplants (Jain et al., 2011). 
 

A new generation of biometric identity recognition modalities has been introduced 
extensively during the last decades, which is inherently robust to the circumvention and 
obfuscation attacks of the traditional biometrics. It includes bio-signals which are 
typically utilized for clinical diagnostic purposes such as Electrocardiogram (ECG), 
Phonocardiogram (PCG), Electroencephalogram (EEG), and many others. Since the 
medical modalities are one-dimensional physiological signals, their processing needs a 
low computational and storage resources. Additionally, the continuous authentication is 
a unique property for medical based biometrics, which enables to use in real-time 
platforms (Agrafioti et al., 2011; Biel et al., 2001). This thesis focuses on the ECG 
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signal based techniques for identity recognition; however, these techniques and 
concepts can be extended to other medical biometric traits. 
ECG is a non-invasive diagnostic method which is effective, simple and involves a 
low-cost procedure to gather information on structural and functional heart muscle 
activity and other body tissues over time. A normal heartbeat of ECG waveform 
consists of a series of positive and negative waves: P wave, QRS complex wave, and T 
wave. The P wave corresponds to atrial contraction, and the QRS complex wave is 
generated when contraction of the ventricles occurs. Finally, the T wave reflects 
relaxation of the ventricles that depends on heart rate. Any conditions including 
physical and psychological changes increase cardiac function and make different 
deflections in each heartbeat of ECG signal. ECG biometric systems were first 
proposed in 2001 by Biel et al. and Kyoso and Uchiyama. The ECG signal has highly 
discriminative attributes which enables developing identity recognition applications for 
a population based on the following characteristics (Agrafioti et al., 2011, Carreiras et 
al. 2014; Jain et al., 2011; Odinaka et al., 2012; Silva et al., 2013a): 
 

a) Universality: since the ECG is a vital signal, the biometric samples can be collected 
from only general living population. 
 

b) Uniqueness: there is large inter-subject variability (the variability between feature 
sets originating from two different individuals) in ECG signals of a population 
because of the different electrophysiological factors which controls this waveform 
generation. However, Carreiras et al. (2014) has proposed a preliminary study on 
the uniqueness property (inter-subject variability) with different number of subjects. 
They showed that it is necessary to study further on uniqueness characteristics 
before ECG-based biometric system can be utilized in practice. 
 

c) Liveness detection: while ECG signal is independent of any other process to present 
liveness detection, other modalities such as face, iris, signature and fingerprint need 
additional traits to address it. 

 
d) Robustness to attacks: due to the ECG waveform’s inherent properties, it is 

extremely difficult to manipulate its features. So, the best of our knowledge, there 
are no fraudulent techniques to falsify ECG-based biometric systems. 

 
e) Usability: it refers to the concept that a biometric identifier can be used 

conveniently in people daily lives. Most studies in ECG biometric field have used 
signals captured traditionally from the chest area and limbs using stationary and 
clinical grade devices (clinical setups). Recently, some research has been done to 
design the ECG biometric systems involving on on-the-person and off-the-person 
sensing techniques (non-clinical setups), which can make the ECG acceptability 
comparable with other traditional biometric traits such as iris, face, fingerprint. 
Indeed, usability level of an ECG device must be similar to other traditional 
biometric modalities, which could be simply integrated into daily use equipment 
without any effect on the users’ usual activities and potentiating its use in a 
continuous biometric recognition system. For instance, sensors are embedded in 
wearable form factors including t-shirt, necklace, mobile phones, and others to 
acquire ECG signals continuously (Carreiras et al. 2014; Silva et al., 2013a). 
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However, despite many advantages, the ECG biometric technique faces a number of 
notable difficulties as given below (Agrafioti et al., 2011, Carreiras et al. 2014; Jain et 
al., 2011; Odinaka et al., 2012; Silva et al., 2013b): 
 
a) Permanence over time: intra-subject variability (the variability observed in the 

feature set of an individual) is a universal challenge in the biometric modalities due 
to appearance of physiological, psychological, and environmental changes. Time-
varying (time dependency) nature of the ECG signal can cause difficulties in 
biometric security. The physical and mental activities and diseases can greatly 
impact change of the ECG waveform or even its morphology. So, the central 
consideration of the ECG biometric systems is often minimizing the effect of intra-
subject variability on the recognition processor investigation of the sources of the 
changes. A useful feature set exhibits small intra-subject variation and large inter-
subject variation. 
 

b) Heartbeat collection: while the biometric samples in other modalities such as face 
and fingerprint can be captured at any moment in time, along waiting period is 
required for a second acquisition of each heartbeat. This challenge can affect 
adversely in processing time and recognition when many samples are needed. 

 
c) Heart conditions: irregular conditions of cardiac disorders are another limiting 

factor in ECG biometric systems. However, these disorders do not occur frequently 
as it happens with injuries in other conventional biometric systems (face, fingerprint 
and many others). 

 

1.2  Research Problem Statements 
 

Performance and accuracy is the most important and significant criteria to evaluate a 
biometric recognition system (Jain et al., 2004; Sufi et al., 2010a). As the ECG is not 
periodic and highly repetitive dynamic signal (Wang et al., 2008), the ECG biometric 
systems encounter a number of challenges in building an accurate identity recognition 
system. The main research problems addressed in this thesis are: 
 
a) The ECG recordings acquired from hands and/or fingers based on off-the-person 

approach (non-clinical source data) are nosier than the standard ECG signals 
captured from on the chest area with clinical grade equipment (clinical source data). 
So, it becomes more difficult to do subsequence processing including signal 
processing. A few research has been dealt with the efficiency of signal processing 
on recognition performance of ECG biometrics (Carreiras et al., 2013a), and hence 
a further investigation is needed to select proper denoising technique with several 
statistical measures which could significantly impact identity verification efficacy. 
 

b) Overall, two types of feature extraction approaches have been applied which are 
based on fiducial points’ detection (P, QRS complex, T waves) and without these 
points (Non-fiducial). Feature extraction based on non-fiducial approach is still 
open problem in ECG-based biometric system. Generally, the non-fiducial based 
approaches are able to independentlyextract discriminative features within ECG 
trace without having any information about locations of fiducial points in heartbeat 
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cycles. The non-fiducial approaches involve the challenge of high-dimensionality 
and so analysis or processing in this case is a computationally demanding task 
(Agrafioti et al., 2011; Sufi et al., 2010a). Autocorrelation (AC) based feature 
extraction is among the earliest research in non-fiducial approach (Plataniotis et al., 
2006). At present, in order to generate a significant ECG feature set, a combination 
of AC and linear dimension reduction methods has been applied earlier. However, 
the linear dimension reduction methods are unable to find adequate structures 
(feature set) in nonlinear real-world dataset. Kernel-based dimensionality reduction 
techniques have been developed to handle nonlinear dimension reduction problem 
by mapping implicitly input observations into higher dimensional feature space. 
Although kernel-based feature extraction has been extensively evaluated in other 
modalities like face, voice, and speech, it was almost unheard of in ECG-based 
biometric system. Therefore, an investigation is carried out to evaluate the effects of 
linear and non-linear based feature extraction on system performance in non-
fiducial approach along with autocorrelation method. 
 

c) Training optimal recognition (classification) model can be effective on the highest 
match between the ECG test signals and a collection of training feature vectors. The 
proper selection of robust classification methods can increase generalization 
property and enhance ECG biometric recognition accuracy (Odone et al., 2009); 
however, this issue has been almost ignored in ECG-based biometrics. General 
recognition algorithms have been frequently in the use of the ECG biometrics 
including supervised classifiers such as Linear Discriminant Analysis (LDA) (Israel 
et al., 2005), �-Nearest Neighbours (�-NN) (Agrafioti et al., 2008a; Agrafioti et al., 
200c), and a few researches on Support Vector Machines (SVMs) (Gutta et al., 
2016; Lin et al., 2014). SVM is a kernel-based classifier that can attain predictive 
accuracy with reduced generalization errors in object detection and classification 
problems. Additionally, a few researches have recently shown where SVM for 
classification outperforms Nearest Neighbour and Neural Networks for ECG 
biometrics (Gutta et al., 2016; Lourenço et al., 2012a, Silva et al., 2013b). Despite 
of many advantages of SVM techniques, a few non-fiducial based studies have been 
done with SVM classifier involving only a limited number of subjects and 
operational condition settings for identity recognition, and their recognition 
performance have not been achieved any significant results for its practical 
applications (Lin et al., 2014). The operational condition settings are related to 
short- and long term recordings, different session recordings, postures, and lead 
configurations. Recently, Lin et al. at (2014) has proposed a non-fiducial based 
methodology with the use of SVM method on a population of 26 healthy subjects in 
rest and exercise conditions. The system respectively achieved 71.79 and 81.73% 
accuracies in resting and exercise conditions for one session recordings. Therefore, 
this thesis proposes to study further the effects of influential factors, such as feature 
extraction and denoising techniques, model-parameters, window lengths, and others 
on SVM’s accuracies which can determine whether the learning algorithm is robust 
and reliable for identity verification in the different operational settings. 
 

d) The most of researches have been commonly evaluated on number of subjects less 
than 50 in only normal rest condition from one lead configuration undergoing short-
term changes (Odinaka et al., 2012). For instance, the studies of Agrafioti et al. 
(2008b), Chen et al. (2014), Coutinho et al. (2013), Gutta et al. (2016), Loong et al. 
(2010), and Plataniotis et al. (2006) have conducted experiments on one lead ECG 
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signals over a different number of healthy subjects ranging from 26, 19, 26, 18, 15, 
and 14, respectively. The recognition performances of these systems were obtained 
as 96.6, ≥ 90, >99, >80, >91, and >92. The performance results achieved by these 
studies seem to be significant. However, several factors have to be considered in 
order to control intra-subject variability and inter-subject variability problems for 
achieving robust and reliable biometric system for practical applications (Carreiras 
et al. 2014; Odinaka et al., 2012). Indeed, the permanence (time-varying) and 
uniqueness characteristics of ECG signal are still open issues in the biometric 
systems. The different parameters (including posture, session, recording length, 
lead configuration, and number of subjects) and also changing ECG morphology 
(heart diseases or cardiac irregular conditions) can affect significantly system 
performance (Agrafioti et al., 2008a; Ye et al., 2010). Therefore, it is necessary to 
evaluate each methodology in different operational settings to determine whether it 
is robust and reliable for identity recognition for practical applications. 

 

1.3  Objectives 
 

The main aim of this thesis is to develop a methodology for designing ECG-based 
biometric system based on non-fiducial approach through kernel-based methods. The 
basic concept in kernel-based learning is to apply the so-called kernel trick to formulate 
nonlinear extensions of classical linear methods by implicitly mapping the data to a 
high-dimensional kernel induced feature space. This leads to forming a framework 
where nonlinearities are easily introduced as long as the data only appear as inner 
products in the model formulation. To achieve this aim, the solutions related to four 
problems in Section 1.2 are described respectively as follows: 
 
a) Developing preprocessing technique for ECG denoising: as the ECG is a non-

stationary signal, time-frequency representation methods are typically suited for its 
signal processing. Wavelet transform is a non-stationary signal processing 
technique that can be applied to denoising a signal without appreciable degradation. 
Based on advantages of wavelet transform, this thesis proposes wavelet-based 
signal processing technique for ECG denoising after evaluating different discrete 
wavelet functions involving statistical measuring criteria which include cross-
correlation, signal-to-noise ratio, reconstruction error, root-mean-square error, and 
others. The effect of wavelet transforms is also evaluated on the identity recognition 
performance rates. 
 

b) Developing non-fiducial based feature extraction algorithm: To avoid fiducial 
point detection, this thesis proposes a new non-fiducial based approach involving an 
autocorrelation (AC) method in conjunction with Kernel Principal Component 
Analysis (KPCA) as nonlinear dimension reduction technique. Also, the 
effectiveness of this algorithm is evaluated by comparing with other AC based 
feature extraction algorithms involving AC/LDA (Linear Discriminant Analysis) 
and AC/PCA (Principal Component Analysis). 

 
 
c) eveloping pattern classification method for subject recognition: Gaussian multi-

class SVM classification with One-Against-All (OAA) on random unknown 
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population is proposed for biometric recognition (classification) problem. The 
robustness of the learning algorithm is evaluated by a set of influential parameters 
such as denoising, windowing length, feature extractors, data set size, model-
selection techniques, model-parameters, operational setting conditions, and others. 
 

d) Validating proposed framework under different ECG variability conditions:  the 
robustness of proposed methodology is validated and on one-lead ECG recordings 
captured at different sessions (one-session, two-session recordings), and different 
posture conditions (rest and exercise). Also, different feature level fusion models 
have been proposed on long- and short-term two-lead ECGs of a combination set of 
arrhythmia and normal signals to evaluate intra-subject variability problem by 
designing various recording and window lengths. 

 

1.4  Thesis Outline 
 

The remainder of this thesis is organized as follows: 

Chapter 2 presents an overview of the basic fundamental concepts of ECG signal along 
with signal processing and also considers comprehensive schemes and lack of studies 
in the ECG biometric literature for data acquisition, operational setting conditions, 
signal processing methods, feature extraction approaches, and classification techniques. 
Additionally, a general comparative analysis of most of ECG-based biometric systems 
is also summarized according to the effective parameters on recognition performance. 
Chapter 3 describes the proposed models for ECG-based biometric system with more 
details in three main levels of processing: denoising, feature extraction, and recognition 
(classification). Additionally, the design of all experiments corresponding to proposed 
methods are described in details. 
 

Chapter 4 provides simulation results and discussion on the proposed models which are 
designed in Chapter 3. In this chapter, the different kind of analysis and their results 
related to each processing level such as effects of different mother wavelets and non-
fiducial feature extraction algorithms on performance recognition rates are evaluated 
for the proposed framework. Then the results of validation of different ECG recordings 
under different setting are discussed. Finally, the proposed framework is compared 
with other available studies and published results. 
 

The thesis concludes with Chapter 5 providing main findings presented in the thesis, 
and suggests for future works. 
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