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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
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By

IZYANI BINTI MAT RUSNI 

July 2017 

Chair�����: Assoc���� Prof�		
��Alyani Ismail, PhD 
Faculty�������: Engineering 

Recently, the interest of microwave signals for biological detection applications using 
metamaterial structure as a biosensor element is tremendously increased due to high Q
factor value and stronger electric field compared to the conventional microwave sensor. 
This research refers to a proof-of-concept study concerning the development of a 
metamaterial based sensor for biomolecule detection. 

The first part of this thesis is focusing on the design and characterisation of two novel 
planar μ-negative metamaterial structure, called Aligned Gap Split Ring Resonator 
(AGSRR) and Centered-Gap Split Ring Resonator (CGSRR). AGSRR is a multi-ring split 
ring resonator that differs from conventional split ring resonator (SRR) where the split 
gaps of all rings are aligned towards the same directions to obtain stronger localization of 
electric field at particular spots. Furthermore, Centered-Gap SRR (CGSRR) is proposed as 
a second design, where it combines multiple SRRs in a compact design, thus being able to 
miniaturize the whole structure by 64% from AGSRR structure. An investigation of the 
electric field distribution is conducted for AGSRR and CGSRR at resonance frequency to 
identify the suitable location for sensing application. The simulation results show both 
structures are able to obtain approximately around 400 Q factor value which lead to a better 
sensitivity of a sensor.  

In the second parts of the thesis, the proposed metamaterial structures are exploited in the 
designs of novel microwave sensors using Computer Simulation Technology (CST) 
Microwave Studio. All dimensions of the sensors are in miliscale and the operating 
resonance frequency is within C band. The sensing mechanism is based on perturbing the 
electromagnetic field around the spots, thus initiating a shift in resonance frequency that 
is used as an indicator of the sensor sensitivity. Sample loading with dielectric samples at 
these local spots is simulated and investigated in detail. By comparing to existing research 
works, the electric field at the occupied sensing area is strong and localized, yet required 
only small size of 1 mm2 sample to induce a measureable frequency shift. 
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In the final part of this thesis, both sensors are fabricated and the sensitivity is characterised 
by loading several sample in solid and liquid form as well as biomolecules material with 
different concentrations. Both sensors demonstrate a maximum of 500 MHz frequency 
shift for liquid and solid sample compared to existing works by Wiwatcharagoses et al., 
which is around 350 MHz for maximum value of dielectric sample. Furthermore, the 
maximum values of frequency shifts obtained for these sensors are 70 MHz for ssDNA 
and 150 MHz for dsDNA compared to the reported literature by Lee et al., 20 MHz for 
ssDNA and 60 MHz for dsDNA. It can be concluded that, the sensitivity of these 
biosensors are up to 10 MHz/µMolar with the detection limit of 1µMolar are conducted 
during this experiment. 

The experiments have demonstrated that the presence of DNA can be detected at 
microwave frequency. Due to its simplicity of fabrication, it is expected that the proposed 
microwave biosensor could be a candidate for exploring cost competitive, reusable or 
disposable bioanalysis system. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah  

PENDERIA BERASASKAN METAMATERIAL UNTUK PENGESANAN 
BIOMOLEKUL 

Oleh 

IZYANI MAT RUSNI 

Julai 2017 

Pengerusi�: Prof�	
� Madya Alyani ismail, PhD 
Fakulti������: Kejuruteraan 

Dewasa kini, minat terhadap isyarat gelombang mikro untuk aplikasi pengesanan biologi 
menggunakan struktur metamaterial sebagai elemen penderia bio semakin mendapat 
perhatian kerana mempunyai nilai faktor Q yang tinggi dan juga medan elektrik yang 
kuat berbanding dengan kebiasaan penderia gelombang mikro yang sedia ada. Oleh itu, 
penyelidikan ini adalah berkaitan bukti kajian pembinaan penderia berasaskan 
metamaterial untuk pengesanan biomolekul. 

Bahagian pertama tesis ini memfokuskan tentang rekabentuk dan pencirian dua novel 
struktur metamaterial µ-negatif yang dinamakan sebagai ‘Aligned Gap Split Ring 
Resonator’ (AGSRR) and ‘Centered-Gap Split Ring Resonator’ (CGSRR). AGSRR 
merupakan pengalun berbilang gelang terpisah dan ia berbeza dari rekabentuk 
konvensional di mana sela pada setiap gelang disusun secara berjajar mengikut arah yang 
sama, bertujuan untuk mendapatkan medan elektrik yang kuat pada lokasi yang 
setempat. Tambahan pula, Centered-Gap Split Ring Resonator (CGSRR) dicadangkan 
sebagai rekabentuk yang kedua, di mana ia menggabungkan gelung berbilang menjadi 
rekabentuk yang padat, bertujuan mengecilkan keseluruhan struktur sebanyak 64% 
berbanding struktur AGSRR. Pemerhatian terhadap taburan medan elektrik dijalankan 
untuk AGSRR dan CGSRR pada frekuensi terayun bertujuan untuk mengenalpasti lokasi 
yang sesuai pengesanan bahan. Seterusnya, keputusan simulasi menunjukkan kedua-dua 
struktur berjaya mendapatkan nilai faktor Q sebanyak 400 untuk lebih kepekaan kepada 
penderia.  

Dalam bahagian kedua tesis ini, struktur metamaterial yang dicadangkan sebelum ini 
telah digunakan dalam rekabentuk novel penderia gelombang mikro. Dimensi penderia 
ini adalah dalam skala mili dan ayunan frekuensi pengendalian adalah dalam jalur C. 
Mekanisma penderiaan adalah berdasarkan gangguan terhadap medan elektromagnet di 
kawasan tertentu dan seterusnya mengakibatkan anjakan pada frekuensi pengayun dan 
ia boleh digunakan sebagai penanda aras kepekaan sesebuah penderia. Simulasi terhadap 
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kehadiran sampel dielektrik di kawasan yang memiliki medan elektrik yang tinggi 
disiasat dengan lebih terperinci. Dengan membandingkan aktiviti penyelidikan yang 
sedia ada, didapati, medan elektromagnet di kawasan penderia yang dicadangkan ini 
adalah kuat dan setempat, jesteru hanya memerlukan saiz sampel yang sedikit untuk 
menghasilkan keputusan anjakan frekuensi yang agak jelas dan ketara. 

Di bahagian terakhir tesis ini, kedua dua penderia telah terbikin dan kepekaan penderia 
dicirikan menggunakan beberapa sampel samada dalam bentuk pepejal mahupun cecair 
dan bahan biomolekul dengan kepekatan yang berbeza-beza. Kedua-dua penderia 
menunjukkan nilai maksimum anjakan frekuensi sebanyak 500 MHz untuk sampel 
pepejal dan cecair berbanding hanya  sekitar 350 Mhz untuk kerja penyelidikan oleh 
Wiwatcharagoses et al,  terhadap sampel yang memiliki nilai dielektrik yang tertinggi. 
Didapati untuk ujikaji penderiaan biomolekul, anjakan frekuensi yang maksima 
diperolehi sebanyak 70 MHz untuk ssDNA dan 150 MHz untuk dsDNA, dimana nilai 
tersebut agak tinggi berbanding dengan nilai yang telah dilaporkan oleh Lee et al, iaitu 
sebanyak 20 MHz untuk ssDNA dan 60 MHz untuk dsDNA. Dapat disimpulkan bahawa, 
kepekaan untuk kedua dua penderia ini adalah sehingga 10 MHz/µMolar bagi had 
pengesanan sebanyak 1µMolar sepanjang ujikaji ini dijalankan. 

Walaupun dimensi dan saiz penderia yang dicadangkan adalah besar berbanding dengan 
saiz bahan biomolekul yang berskala nano, hasil ujikaji menunjukkan bahawa kehadiran 
DNA dapat dikenalpasti pada frekuensi gelombang mikro. Oleh kerana pembikinan 
penderia yang mudah, maka, adalah diharapkan penderia bio yang dicadangakan ini, 
mampu menjadi calon yang sesuai untuk mengasilkan penderia yang murah, boleh 
digunakan semula atau dibuang pakai untuk sistem analisis bio. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background
 
 
In general, every material is a mixture of different sized molecules, where the 
permittivity of a material is determined by its molecular structure.  Permittivity is an 
important material property to describe the characteristics of materials with respect to 
high frequency applications (Rabih et al., 2014). For microwave sensors, the permittivity 
of a material depends on the response of molecules towards electrical signals.  Thus, 
studying the interaction of a material with applied electromagnetic fields provides 
valuable information of a material that has undergone physical or chemical changes. 
Therefore, the measurements of permittivity have gained importance in many 
applications such as in the biomedical field, military applications, agricultural and food 
industry. 

Commonly, microwave biosensor can be employed in many scenarios where dielectric 
properties of a certain object are important. Several factors contribute towards sensing 
implementation such as sensitivity, selectivity, fast response time, and cost. A biosensor 
is defined as a compact analytical tool that integrates a biological sensing element with 
a transducer that converts the sensing event into a recordable signal (Solanki et al., 2011).

Figure 1.1 illustrates three major components in a biosensor that consist of an analyte, a 
bio-element, a detecting element, and a signal-processing element. Most biosensors are 
affinity-based, by using an immobilised capture probe to bind with the bio-molecule 
target or analyte (Jonathan S. Daniels and Pourmand, 2008). The bio-element directly 
interfaces to detecting element to transduce a signal which respond to the analyte 
variation and produce a measurable response. The common function of a biosensor is to 
produce either a digital or analog signal which is proportional to the amount of detected 
analyte.  By choosing an appropriate bioreceptor and transducer, a sensitive biosensor 
could be developed. Therefore, a key part of the biosensor is the transducer and it is 
critical in determining the sensitivity of the biosensor.  



© C
OPYRIG

HT U
PM

2 
 

Figure 1.1:  Block diagram of a Biosensor (Source:Zhou et al., 2012)

Recently, biosensors play an importance role in several aspects such as detection of 
disease, infectious agents, and monitoring of environmental toxins and many more 
(Mello and Kubota, 2002). Two categories that currently used in bio-sensing methods 
direct-labelling and  label-free techniques (Iramnaaz et al., 2011). Direct-labeling 
technique involves attaching a special molecule to the bio elements such as radioactive, 
fluorescent, chemiluminescence and colormetric (Iramnaaz et al., 2011). The advantage 
of this method is it improves signal generation and ease distinguishing new targets. 
However, the disadvantages of this method are it involves lot of cost and additional time 
in preparing the sample (Jonathan S. Daniels and Pourmand, 2008). Therefore, label-free 
method is more tolerable and recognised due to the cost reduction and accuracy 
improvement. By implementing this method, the complexity in sample preparation is 
reduced and let to the platform of real-time measurement. 

Recently, microwave biosensor based on metamaterials has been widely used for the 
characterization of biological matters because of their capability to provide cost efficient 
and label free detection. Furthermore, microwave biosensors do not need the bio samples 
to be optically or chemically altered, which is a huge advantage compared to optical and 
chemical biosensors. The detection of biological materials is because they have a distinct 
difference in their permittivity characteristics. In addition, most materials, either organic 
or inorganic will have their own specific frequency behaviour which can be related to 
the information about their structure and function. 

To date, the use of metamaterial design has gained significant interest in the design of 
portable microwave biosensors due to several advantages such as label free and compact 
size. Metamaterial are artificial materials with structures that are smaller than the 
wavelength of incident electromagnetic wave.  Therefore, the size of metamaterial 
sensors can be reduced compared to the conventional resonant structures, which is 
suitable for miniaturisation purposes. They are also very flexible in terms of operating 
frequency and geometry of the structures. Since the metamaterial structure can be 
modelled by an LC circuit, thus, the resonance frequency are sensitive to any value of  
capacitive and inductive. The capacitive effects are basically determined by the 
substrates parameters as well as the gap of the structure, while, the inductive effects are 
mainly determined by the dimension of metallic inclusions and their positions to each 
other. Another special behaviour of metamaterials is the ability to exhibit a strong 
localisation and enhancement of electric fields, which can be used to improve the sensor 
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selectivity of detecting nonlinear substances and to enable the detection of extremely 
small amounts of analytes. These special properties make metamaterial a potential 
candidate for metamaterial sensor application.  

1.2  Problem Statements 

A biosensor is a device comprising an immobilised biological sensitive material 
(enzyme, antibody, antigen, DNA, cells, tissues) integrated within a transducer which 
ultimately translates a biological signal into a measurable electrical signal. An 
inexpensive and portable biosensor would be beneficial for on-site screening tests. 
However, most conventional biosensing techniques used to detect and analyse 
biomolecular binding, requires the usage of specific labels to enhance signal 
discrimination, such as fluorescent molecules (Tjong et al., 2013) , magnetic or gold 
particles (Csáki et al., 2001)(Park et al., 2009), or other surface treatments for antibodies 
attachment (Rissner et al., 2010)(Vahlberg et al., 2005).  However, these specific 
labelling techniques induce some drawbacks such as the need for sophisticated 
equipment, rigorous sample preparation, off-site verification, and excessive time 
consumption. In response to these issues, metamaterial based biosensor is introduced for 
the characterisation of biological matters because of their cost efficient and label free 
biomolecule detection. 

Another issue that needs to be considered in sensor design is the coupling technique of 
the electric field with the test material. Some of the existing sensor design requires bigger 
sample to uniformly cover the sensing area during measurement (Boybay and Ramahi, 
2012a)(Faktorova et al., 2012). Efficient coupling of electric field with the material under 
test is therefore needed by utilising a region, which most electric field is concentrated. 
Thus, only a small volume of sample is required for detection purposes. 

Furthermore, the biomolecular size is just a few nano-metres, the frequency deviation 
due to biomolecular binding is too small for detection (Lee et al., 2009)(Mason et al., 
2013), thus a high sensitivity transducer needs to be designed by providing high Quality 
factor for better sensor selectivity and sensitivity towards material under test. In the 
detection area, finding a good method for molecule detection has become a hot issue. It 
is believed that sensitivity enhancement can be achieved by producing a strong and 
measurable read out signal with a sharp resonant behaviour to distinguish various types 
of material under test. In addition, none of these earlier studies have characterised the 
material electric permittivity, despite the fact that the exhibited resonance contains 
complete information on the dielectric constant of the material under test 
(Wiwatcharagoses, 2012) (Labidi et al., 2011)(Al-Naib et al., 2008). 

Several types of microwave based sensor device (Cismaru et al., 2012)(Dragoman et al., 
2011)(Iramnaaz et al., 2011)(H.-S. Lee et al., 2008) that exhibit the detection of the DNA 
sample have been proposed. However, the proposed designs faced complexities in the 
fabrication procedure with the introduction of nanomaterial such as graphene and carbon 
nanotube. In addition, the biomolecule sample is made to bind with the copper trace of 
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the sensor where it needs to be immersed in a specific substance for a few hours in order 
to allow immobilisation and hybridisation of biomolecule to occur (Lee et al., 2009)(Lee 
et al., 2010) (Lee and Yook, 2008) (H.-J. Lee et al., 2012).  Therefore, those activities 
will result in the oxidisation of metal traces and lead to the performance decrement of 
the sensor itself. Thus, the biomolecule sample should be dried because the resonant 
frequency is greatly influenced by the effect of solution.  

1.3  Research Aim and Objectives 
 
 
In recent activities of research, metamaterial structures have not been adequately 
exploited for microwave sensing applications. Therefore, the primary aim of this research 
is to develop a microwave planar biosensor using metamaterial as a transducer for 
chemical and biological detection. The aim can be broken down into three main 
objectives that comprised : 

1. Developing two novel compact unit cells metamaterial structures that is efficiently 
capable in localising electric fields between the selected areas, which in turn can be used 
in the interrogation of small volumes of materials under test as well as providing a label 
free method for biomolecule detection as the sample is directly probed by the electric 
fields. 

2. Proposing, simulating, evaluating and analysing metamaterials structure as a high 
sensitivity transducer in microwave planar sensor to provide an analysis of material 
under test with a single read out system.  

3. Measuring the performance of fabricated sensors and characterised with various
material under test such as liquids, solids and biomolecule sample to verify the function 
of the proposed sensor. An extraction technique by using the measured results of S-
parameter; is  proposed to derive the dielectric properties of material under test.  

1.4  Research Scope 
 
 
The scope of this research is to develop and analyse a novel unit of metamaterial structure 
to be used as a sensing element in microwave sensor. The use of miu negatives structures 
as the main elements for the development of planar microwave sensors provide 
sensitivity and specificity by having narrower and deeper resonance dip. The unit cell is 
designed to be easily fabricated on a single planar metal layer. For the unit cells that will 
be presented, a modified Split Ring Resonators (SRRs) were used as resonant structures 
coupled to the microstrip line. Microwave field region is chosen because it can provide 
label free operation by probing the electric field to the material under test. The principle 
operation is based on relative frequencies and magnitude shift of transmission 
coefficients. The S21 parameter is used in discriminating signal for material under test 
due to its resonant frequencies.  The scope of this study is depicted in Figure 1.2. The 
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scope to achieve the objectives of this study is indicated by continuous lines while the 
dashed lines represent the other research areas that are not discussed in this study. 

                                                               Metamaterial 

Figure 1.2: Scope of Research 

1.5  Research Methodology 
 
 
In general, the overall methodologies for this research comprised seven steps as shown 
in Figure 1.3 and briefly discussed as follows: 

1. Literature Review of suitable unit cell of Metamaterial
A review of metamaterial structure type that can be operated in near field region as well 
as can be used as a microwave probe will be conducted. 
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2. Unit cell Design using full- wave EM simulator
Initially, the unit cell will be designed and analysed using full- wave EM simulator to be 
operated in microwave frequencies. A modified Split Ring Resonator may be considered 
in the design to enhance sensitivity and selectivity as well as to increase the localisation 
of electric field at selected area for the purpose of sample interrogation.

3. Metamaterial Sensor Fabrication
To validate the simulations that has been conducted in full- wave EM simulator, the 
sensor will be fabricated and the return loss, insertion loss, Q-factor and resonant 
frequency will be measured in comparison to the simulated ones. 

4. Sample Preparation and Detection
A number  of  materials under test  in the form of liquids and solid will be prepared in 
measuring the dielectric properties of the given sample. Therefore, a study will be 
conducted in identifying the interaction of material with electric field and in addition to 
that an approach to determine the  permittivity of the sample will be suggested. 
Furthermore, a biomolecule detection through hybridisation activity of DNA will be 
conducted by measuring the transmission coefficient and the resonant frequency shift of 
the sensor using network analyser.
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Figure 1.3: Methodology Design of Metamaterial based Sensor 
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 1.6  Thesis Organisation 

This thesis is organised into six chapters, which discussed topics as follows: 

Chapter 1 introduces the research area, and identifies the current problems in designing 
metamaterial sensor that motivate this research. This chapter introduces the goal, 
objectives, methodology, scope of research as well as the organisation of the thesis 
writing. 

Chapter 2 introduces the fundamentals of metamaterial structures. It provides a 
background and history of metamaterials. Furthermore, a few types of existing 
metamaterial structures were presented and discussed. In the same chapter, a few types 
of microwave sensor inspired by metamaterial structure were highlighted. 

Chapter 3 presents a new design of metamaterial structures by using CST Microwave 
Studio 2014, which increased field confinement and thereby higher sensitivity for the 
sensing purposes. A calculation for parameter extraction of permeability value of both 
structures was presented to validate the µ-negative characteristics. Details of preliminary 
studies were performed to understand the dependence of proposed metamaterial structure 
parameters on the magnetic resonance frequency.  

Chapter 4 covers the design and analysis of a metamaterial based sensor for detecting the 
presence of dielectric materials. The novel metamaterial unit cells that have been 
proposed in Chapter 3 were used in the construction of metamaterial based sensors. The 
design of the sensors were based on planar metamaterial inspired by modified split ring 
resonator. Comprehensive analyses were done throughout the chapter to validate the 
function of the sensor through simulation using Computer Simulation Technology (CST) 
Microwave studio software.

Chapter 5 presents and demonstrates two novel fabricated microwave sensors based 
metamaterial. The comparison between simulated and measured result of fabricated 
sensor is detailed out. Both sensors are characterised by examining the resonant shift and 
Q-factor of the sensor for different dielectric material such as solid, liquid and DNA 
sample. Measurement results of different materials tested by both sensors are presented 
and discussed in this Chapter. In addition, this chapter describe the methods used for 
attaching the DNA molecule to the electrode surface for immobilisation and 
hybridisation purposes. At the end of the chapter, results of Atomic Force 
Microscopy (AFM) are discussed to validate the presence of DNA sample in the sensor. 

In Chapter 6, the entire thesis is summarised and concluded, followed by discussion of 
the major contributions of the work. Eventually, potential ideas for future work are also 
suggested. 
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The structure of this thesis is summarized as in Figure 1.4. 

Figure 1.4: Structure of the Research and Thesis 
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 1.7 Summary 

This chapter introduced the background and motivation towards the development of 
metamaterial based sensor. Problem statements are discussed and the objectives of this 
research are formulated based on the statements. The research scope is identified as a 
guide for the research works. Furthermore, the methodology, which comprises the major 
works of this research, is thoroughly described in this Chapter. The novelty in the 
research works presented in this thesis is based on the designs of metamaterial unit cell 
that is capable to produce high Q factor and strong electric field for better sensitivity in 
sensing approach compared to the existing literature. Furthermore, a simple extraction 
techniques used to characterise several samples of material under test are proposed.  
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