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SEMICONDUCTOR 
 

By 

WAN NORAILIANA BT WAN AB RAHMAN 

November 2016 

 

Chair: Professor Azmi Zakaria, PhD 

Faculty: Institute of Advanced Technology 

 

Zinc oxide (ZnO) semiconductor is a polycrystalline ceramic exhibiting highly 

nonlinear (I-V) behavior. In polycrystalline ZnO materials, understanding and 

controlling the microstructure is very important since the electrical and optical 

band gap properties are directly influenced by the microstructure effect. The 

question about how the microstructural properties evolve with the electrical and 

optical properties in nanometer-to-micrometer grain-size region and what is the 

relationship of evolving microstructure properties with the physical properties of 

the ZnO has not been studied in depth. Hence, this research intend to explore the 

systematic study on parallel evolution from nanometere up to micrometer grain 

size between microstructure and material properties and the fundamental 

knowledge behind these parallel properties. Although there is numerous studies 

on the ZnO materials but the composition-microstructure relationship with the 

parallel evolution of the electrical and optical properties in nanometer-to-

micrometer grain-size region have not yet been clarified. Doped-ZnO powders 

were milled using High Energy Ball Milling (HEBM) with different milling 

time. The doped-ZnO samples were sintered at two different ranges of sintering 

temperatures. The first range is from 500 until 1300 °C sintering temperatures 

with 100 °C increment for Batches A, C, D1, D2 and D3 samples.  The second 

range is at lower sintering temperatures from 500 to 800 °C with 25 °C 

increment for Batch E samples. The phase purity of the samples were examined 

by XRD and the particle size distribution of the powder were observed using 

TEM.  The surface morphology of the samples was examined using FESEM 

while the EDX measurement used to identify the elemental of the samples.  The 

samples were characterized for the nonlinear coefficient (α) at room temperature 

using source measurement unit and for optical band gap energy, measurement 

was carried out by using UV-Visible spectrometer. 
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Decreasing particle size would lead to improved grain growth control and 

homogeneity for better electrical and optical band gap characteristics.  The α 

value increased as the grain size increased while the optical band gap decreased 

with increasing grain size.  The HEBM technique has succesfully produced 

good electrical properties due to the well-formed microstructure even at low-

sintering temperature and improved grain boundary characteristics. The 

nonlinear I-V characteristic of doped-ZnO sample is a grain-boundary 

phenomenon, and the electrical characteristics of the samples are directly related 

to the size of the ZnO grain.  The highest value of α was found is 8 at 1100 °C 

sintering temperature for Co-doped sample while for Mn-doped sample the α 

value was found to be 7 at 1100 °C sintering temperature. The increment of α 

value with grain size was due to the larger potential barrier at the grain 

boundaries as the sintering temperature increased from 500 until 1100 °C.  At 

1200 and 1300 °C sintering temperature the α value decreased due to the 

decrement of potential barrier at the grain boundaries.  The decrement was due 

to the diminished of Bi-rich phase at high sintering temperature.  The HEBM 

technique also produced samples with smaller particle size, giving rise to a 

systematic decrease of band gap value associated with quantum confinement.  

The band gap value for Co-doped sample were vary from 3.2 to 2.5 eV at 

nanograin size below 1µm. Higher value of band gap at nanograin size 

contributes by this confinement and as the grain size increased, the variation of 

band gap value was decreased due to the growth of interface states at the grain 

boundaries. 
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KOLERASI ANTARA MIKROSTRUKTUR DENGAN SIFAT-SIFAT 

ELEKTRIKAL DAN OPTIKAL SEMIKONDUKTOR SERAMIK DI 

DALAM ZINK OKSIDA. 

 

Oleh 

WAN NORAILIANA BT WAN AB RAHMAN 

November 2016 

 

Pengerusi : Profesor Azmi Zakaria, PhD 

Fakulti : Institut Teknologi Maju 

 

Zink oksida (ZnO) semikonduktor adalah polihabluran seramik mempamerkan 

sifat arus-voltan dengan nilai tak linear yang tinggi.  Dalam bahan polihabluran 

ZnO, memahami dan mengawal mikrostruktur adalah sangat penting kerana 

sifat elektrik dan jurang jalur optik yang dipengaruhi secara terus oleh kesan 

mikrostruktur. Persoalan mengenai bagaimana sifat mikrostruktur berkembang 

dengan sifat elektrik dan optik dalam kawasan saiz butiran antara nanometer-

kepada-mikrometer dan apakah hubungan yang melibatkan sifat mikrostruktur 

dengan sifat fizikal bahan ZnO masih belum lagi dikaji secara 

mendalam.Walaupun terdapat banyak kajian mengenai bahan ZnO namun 

hubungan antara komposisi-mikrostruktur dengan penjelasan evolusi selari sifat-

sifat elektrik dan optik dalam kawasan saiz nanometer-kepada-mikrometer 

masih belum lagi dapat dijelaskan sepenuhnya. Serbuk ZnO yang didopkan 

telah dikisar menggunakan pengisar bebola berkuasa tinggi dengan masa 

pengisaran yang berbeza (HEBM). Sampel ZnO yang didopkan telah dibakar 

pada dua julat suhu pembakaran yang berlainan. Julat suhu pembakaran yang 

pertama adalah daripada 500 hingga 1300 °C dengan kenaikan suhu 100 °C 

untuk sampel kumpulan-kumpulan A, C, D1, D2 dan D3. Julat kedua ialah pada 

suhu pembakaran rendah, dari 500 hingga 800 °C dengan kenaikan suhu 25 °C 

untuk sampel kumpulan E. Ketulenan fasa sampel telah diperiksa oleh  XRD 

manakala taburan saiz zarah serbuk diperhatikan menggunakan TEM. Morfologi 

permukaan sampel telah diperiksa menggunakan FESEM dan EDX digunakan 

untuk mengenal-pasti unsur  di dalam sampel. Sampel tersebut telah dicirikan 

untuk pekali tak linear (α) pada suhu bilik menggunakan sumber unit 

pengukuran dan UV-Vis spektrometer digunakan bagi pengukuran tenaga jurang 

jalur optik. Pengurangan saiz zarah akan membawa kepada kawalan 

pertumbuhan butiran yang lebih baik dan homogen untuk ciri-ciri elektrik dan 

jalur jurang optik yang lebih baik. Nilai α meningkat apabila saiz butiran 
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meningkat manakala jalur jurang optik menurun dengan peningkatan saiz 

butiran. Teknik HEBM menghasilkan sifat elektrik yang baik kerana 

mikrostruktur telah dibentuk dengan baik walaupun pada suhu pembakaran yang 

rendah dan penambahbaikan pada ciri-ciri sempadan butiran. Ciri-ciri I-V tak 

linear oleh sampel ZnO yang didopkan adalah satu fenomena sempadan butiran, 

dan ciri-ciri elektrik sampel berkait secara langsung dengan saiz bijian ZnO itu. 
Bagi bahan yang didopkan-dengan Co, nilai tertinggi α ditemui adalah 8 pada 

suhu pembakaran 1100 °C manakala bagi bahan yang didopkan-dengan Mn, 

nilai α yang diperolehi ialah 7 pada suhu pembakaran 1100 °C. Peningkatan 

nilai α dengan saiz butiran adalah disebabkan oleh potensi halangan yang besar 

di sempadan butiran dengan peningkatan suhu pembakaran dari 500 sehingga 

1100 °C. Pada suhu pembakaran 1200 dan 1300 °C nilai α menurun disebabkan 

oleh susutan potensi halangan di sempadan butiran. Kesusutan ini adalah 

disebabkan oleh berkurangan fasa yang kaya dengan Bi pada suhu pembakaran 

yang lebih tinggi. Teknik HEBM menghasilkan sampel dengan saiz zarah yang 

lebih kecil, yang membawa kepada penurunan nilai jurang jalur secara 

sistematik berkait rapat dengan pengurungan kuantum. Nilai jurang jalur bagi 

bahan yang didopkan-dengan Co adalah dalam linkungan antara 3.2 kepada 2.5 

eV pada butiran-nano yang bersaiz bawah 1μm. Nilai jurang jalur yang lebih 

tinggi pada butiran bersaiz nano disumbangkan oleh pengurungan kuantum dan 

apabila saiz butiran meningkat, perubahan nilai jalur jurang telah berkurangan 

disebabkan oleh pertumbuhan keadaan antara muka di sempadan butiran. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Research Background 

 

Zinc oxide (ZnO) semiconductor is a polycrystalline ceramic exhibiting highly 

nonlinear current-voltage (I-V) behavior. In polycrystalline ZnO materials, 

understanding and controlling the microstructure is very important since the 

electrical and optical band gap properties are directly influenced by the 

microstructure effect. The electrical and optical properties of ZnO are also 

influenced by the materials composition, addition of dopant and porosity. Grain 

growth mechanism is directly related to the microstructure and one of the 

fundamental subjects in material science and processing that has been studied for 

more than 50 years. However, the produce of this study is more on final products 

properties which mainly benefit the demand of the commercial applications, thus 

abandoned the understanding of the parallel evolution of the microstructural and 

physical properties of the ZnO. The evolution of the microstructural, electrical and 

optical properties mainly on nano or submicron scales starting materials which are 

important as well has been neglected in past year. In the processing of ZnO-based 

varistor ceramics, control of the grain growth is crucial for the successful application 

in overvoltage protection in a broad range, from a few volts up to several kilovolts. 

The nonlinear I-V of the doped-ZnO sample is a grain boundary mechanism with an 

ideal breakdown voltage (VB) of the grain boundary at about 3.2 eV. The VB  of the 

varistor is a sum of the VB of all the nonlinear grain boundaries between the 

electrodes, it depends on the number of grain boundaries per unit volume of the 

varistor ceramic which is inversely proportional to the ZnO grain size. Smaller grain 

size gives higher breakdown voltage and larger grain size results in lower breakdown 

voltages. This is why the influence of grain size and grain boundary on the electrical 

characteristics is straightforward in the case of nonlinear I-V of doped-ZnO 

ceramics. The optical properties of the ZnO depend closely on the microstructures of 

the materials, including crystallite size, orientation, and morphology, defects, lattice 

strain and others. In the optical band gap case, a majority of the previous studies has 

focused on the optical properties of ZnO nanostructures and a few studies have been 

carried out to understand the microstructure of ZnO nanoparticles. Hence, doped-

ZnO with nanoparticles size and structure are needed to study their size-dependent 

properties where quantum confinement effect and surface effects may be prominent.  

 

 

1.2 Introduction to Zinc Oxide Semiconductor 

 

ZnO is an II-VI semiconductor compound because zinc and oxygen belong to 2nd 

and 6th groups of the periodic table respectively. ZnO occurs as a white powder with 

common name zinc white and nearly soluble in water but soluble in acids and 
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alkalis. ZnO will change colour from white to yellow when it is heated. ZnO has a 

density of 5.60.g/cm3 and with a melting point of 1975 °C. The resistivity of ZnO 

ranges from 1 to 100 Ω.m, which corresponds to the electron concentration of the 

order of 1021-1023 m-3. 

 

 

Pure ZnO is an n-type intrinsic with a wide band gap of 3.37 eV at room 

temperature. The largest exciton binding energy of 60 meV is the most desirable 

features of ZnO as compared to 24 meV for GaN, which is the key parameter that 

enables the UV laser diode and other exciton related light emitting devices to be 

operated at room temperature and makes ZnO a brighter emitter. ZnO is one of the 

“hardest” materials in II-VI compound semiconductors due to the higher melting 

point and large cohesive energy. The constituent elements of ZnO are abundant and 

of low cost. Also, the material is nontoxic, which is an important consideration for 

the environment. It is also a potential candidate for development of electronic and 

optoelectronic devices. The advantages of the wide band gap are higher breakdown 

voltage, ability to sustain large electric field, lower electronic noise and high power 

operation that make ZnO as one of the most promising materials for electronic 

applications. An intrinsic semiconductor is an undoped semiconductor in which the 

intrinsic defects originate from the semiconductor material itself and there should not 

be any impurity atom that can affect the electrical characteristics. For ZnO, the 

intrinsic defects exist in the form of excess zinc atom that acts as donor n-type 

conductivity (Clarke, 1999; Pierret, 1996; Mahan, 1983). 

 

 

ZnO has several favorable properties such as good transparency, high electron 

mobility, wide band gap and strong room temperature luminescence where those 

properties already used in heat protecting window and electronic applications as thin 

film transistors and light emitting diodes. One of the common use of ZnO used until 

now is varistor which is also called as voltage dependent (or variable) resistor known 

since 1934. 

 

 

1.3 Introduction to Varistor  

 

ZnO materials have been used widely as the ZnO-based varistor. A varistor is a type 

of resistor with significantly has nonlinear behavior with resistivity value dependent 

on the applied voltage. A good varistor should have a very low leakage current, a 

high value of the nonlinear coefficient (α) and high value of the current at the 

beginning of the switched region. In normal use, they are subject to a voltage below 

their characteristics switch voltage and pass only leakage current. A commercial 

varistor is formed by adding a number of oxides such as bismuth (Bi), cobalt (Co), 

antimony (Sb), manganese (Mn) and others to ZnO through standard ceramic 

processing techniques. 

 

 

After sintering, the resulting product shows highly nonlinear I-V characteristics with 

a microstructure consisting of semiconducting grain and insulating grain boundaries. 
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Such nonlinear I-V characteristics are explained on the basis of formation of the 

Schottky-type potential barriers at the grain boundaries where a number of free 

charges are trapped by the defects states. Therefore, improvement in the varistor 

action requires the understanding of the formation of potential barriers with different 

additives oxides and subsequent formation of defects states at the grain boundary 

regions. 

Varistor devices are used mainly as the voltage-limiting elements to limit or clamp 

transient overvoltage which means the transient peak is reduced or limited to a safe 

level as illustrated in Figure 1.1. The “safe level” refers to the voltage value that the 

electrical circuit can handle without being damaged. The phrase “clamping and 

limiting transients” refers to the electrical action of the varistor to absorb the excess 

energy carried by the transient and to attenuate or reduce the excess voltage of the 

transient. These excess energy and over-voltage are hazardous to all electrical 

circuits considering that these transients could happen a few thousand times a year 

for a typical household of office premise. 

When the voltage exceeds the switch voltage, for instance during a voltage transient 

or surge, the varistor becomes highly conducting and draws the current through it, 

usually to ground. When the voltage returns to normal, the varistor returns to its 

highly resistive state. The switch is reversible and the resistance of varistor is 

depending upon the applied voltages. Under normal operating condition the 

resistance of the varistor is very high but when the voltage applied across the varistor 

is larger than the breakdown voltage value, the resistance of the varistor falls 

drastically and it continues to decrease as the voltage applied increase as shown in 

Figure 1.2.  

Figure 1.1: Varistor action to limit or clamp over voltage transient 

(Source: http://www.electronics-tutorials.ws/resistor/varistor.html) 
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Varistor is used to protect circuits by voltage clamping method over a wide range of 

voltages from a few volts for low voltage varistor in semiconductor circuits to tens 

of kilovolts for electrical power distribution networks and a wide range of currents 

from microampere to kiloampere. The varistor also has the additional property of 

high-energy absorption capability ranging from a few joules to many megajoules. 

They also very fast switch in a nanosecond from their resistive to highly conductive 

state. Their I-V characteristics are similar to a Zener diode. But unlike a diode, 

varistor can limit overvoltage equally in both polarities, thus giving rise to I-V 

characteristics, which is analogous to two back-to-back Zener diodes. Varistor is 

normally connected in parallel with an electric device and located at the incoming 

power line before the power supply to protect electrical circuit from voltage surges 

shown in Figure 1.3. 

 

Ω 

V 
Voltage 

R
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Figure 1.2: Resistance of varistor with respect to its applied voltage 

(Source: http://www.electronics-tutorials.ws/resistor/varistor.html) 
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.  

 

Since the early 1970s the ZnO varistor has been the dominant surge protection 

device and attract more attention compared to silicon carbide in the electronic 

appliances due to the excellent nonlinear I-V characteristics and their large withstand 

capabilities. The main properties of ZnO-based varistor are described as follows; 

1. ZnO-based varistor has a super-fast response to overvoltage transients 

where they can sense and clamp transients in nanoseconds speed. 

2. ZnO-based varistor can sense and clamp over-voltage transients repeat 

and in thousands of time without being damaged. 

3. ZnO-based varistor has high α which is important for fast response and 

better protection function 

4. ZnO-based varistor has high energy-handling capability ranging from a 

few joules to thousands of kilojoules. 

5. ZnO-based varistor can be used in alternating current and direct current 

over wide range of voltage 

6. ZnO-based varistor has sharp switching voltage where the IV 

characteristics are reversible. 

 

1.4 Selection of Materials 

 

The distinctive composition in doped-ZnO samples consists of ZnO and other oxides 

dopants such as Bi2O3, TiO2, Sb2O3, MnO2 and CO3O4. The characteristics of varistor 

ceramics are closely related to the microstructure (Bernik and Daneu, 2007) where 

each dopant plays an important role to improve the α property of ZnO varistor. An 

addition of dopant in this research based on several important criteria such as 

selected dopants should be accepted and extensively applied by other researchers and 

the selected dopant also should give good properties of doped-ZnO samples. Thus, 

judicious choice of dopant is very important from the beginning of this research 

Figure 1.3:  Metal oxide varistor protecting electrical circuit 

(Source: http://www.electronicshub.org/varistor/) 
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because our primary in this research is to unravel the relationship between the 

microstructure and physical properties in doped-ZnO samples and the addition of 

dopant is an indispensable because based on previous literature, undoped ZnO 

sample unable to show good properties of ZnO samples. From the numerous 

literature, dopants of Bi2O3, CoO and MnO are chosen and added to ZnO system 

respectively where these additives are the main tools that used to improve the 

stability of ZnO varistor. 

 

 

Bismuth oxide, Bi2O3 has a purity of 99.99% and ionic radii of 1.20 Å. During 

liquid-phase sintering, Bi2O3 will melt and form a second phase segregated at ZnO 

grain boundaries allowing a significant fraction of ZnO-ZnO grain contact and thus, 

produces the interface states. The existence of Bi2O3 at the grain boundaries and 

grain junction controlled the densification and grain growth of ZnO (Wong, 1980; 

Asokan et al., 1987). Bi2O3 also has high oxygen diffusion coefficient (Haifeng and 

Chiang, 1998). The improvement of α and prevention of Bi2O3 to evaporate during 

the heat treatments can achieve by the addition of MnO2 or Co3O4. 

 

Cobalt (II) oxide, CoO has a purity of 99.998% and ionic radii of 0.74 Å. The 

addition of transition metal elements such as cobalt that act as a donor and produces 

interfaces state, thus, improves the nonlinear (I-V) characteristics. Due to its radius, 

Co ions can substitute Zn2+ or interstitials (Bahadur and Rao, 1992). The substitution 

of Co2+ in an interstitial position would affect the concentration of the interstitial Zn, 

oxygen, and Zn vacancies (Vijayaprasath et al., 2014). 

 

Manganese oxide, MnO has a purity of 99.99% with ionic radii of 0.80 Å acts as a 

grain enhancer (Han et al., 2002) and donors that produce the interface states (Eda, 

1978; Bui et al., 1995) and consequently contributed to the physical properties of 

doped-ZnO samples.  

 

1.5 Problem Statement 

 

Doped-ZnO samples are among the most widely used for varistor application 

including voltage stabilization and transient surge suppression in electronic devices. 

The development of ZnO semiconductor for electrical and optical application had 

been studying for many years ago by other researchers but in previous literature, 

they focused mainly on yielding the final outcome only. For an example the effect of 

variation addition of dopants to electrical properties of the doped-ZnO samples. 

Until now, many researchers keep investigating the properties of doped-ZnO 

samples with complexed dopants and cause them to neglect the fundamental line of 

scientific enquiry: what would be the composition-microstructure relationship with 

the parallel evolution of the electrical and optical properties in nanometer-to-

micrometer grain size region? Doped-ZnO samples are obtained by the addition of 

small amounts of oxide of bismuth (Bi), antimony (Sb), cobalt (Co), manganese 

(Mn) and others to ZnO powder, and then sinter from 1100 to 1300 °C, usually at 
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1200 °C sintering temperature. A few investigations have been done about studies on 

microstructure development at low temperatures, where the grain growth kinetics is 

still slow. Hence in this research, we intend to study the microstructure-electrical and 

optical properties relationship during the parallel evolution of the microstructure and 

the semiconductor ZnO properties from low sintering temperature until high 

sintering temperature. 

 

1.6 Research Objectives 

 

In the present research work, the main aim is to track down the parallel evolution of 

microstructural and electrical, optical properties from low sintering temperature to 

high sintering temperature. 

The objectives of this research are: 

1. To study the parallel evolution of the electrical and optical properties with 

microstructure changes and their relationship from an amorphous-

crystalline mixture state to a complete polycrystalline zinc oxide in 

nanometer-to-micrometer grain-size regime. 

2. To investigate the development of parallel evolving microstructure, electrical 

and optical properties of the material. 

3. To study the effect of the dopant on the evolving electrical, optical   

                  properties and microstructure of ZnO ceramic. 

 

1.7 Scope of the Study 

 

This research is involved of fabrication of nanoparticle starting powder doped-ZnO 

(98 mol% ZnO + 1 mol% Bi2O3 + 1 mol% CoO and 98 mol% ZnO + 1 mol% Bi2O3 

+ 1 mol% MnO) samples via high energy ball milling (HEBM) method. There are 

divided of six batches with different parameters and analysis on the effect of 

minimum addition of dopant, varying milling time and different sintering 

temperatures  to the doped-ZnO samples are observed. The particle size of doped-

ZnO powders were measured using (TEM) and the phase formation of the doped-

ZnO samples using XRD. The parallel evolution of the electrical and optical 

properties with microstructure changes is investigated by using FESEM, nonlinear I-

V and UV-Vis Spectrophotometer. Investigation of the relationship between the 

evolution of electrical and optical properties to the microstructural changes are 

critically done. 
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