

UNIVERSITI PUTRA MALAYSIA

SULFONATED POLYMERIC ZINC OXIDE-BASED NANOCATALYSTS FOR METHYL ESTER PRODUCTION

SOROUSH SOLTANI

ITMA 2016 22

SULFONATED POLYMERIC ZINC OXIDE-BASED NANOCATALYSTS FOR METHYL ESTER PRODUCTION

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2016

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

Special dedicated to my dear mother for her emotional support and endless pure love.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

SULFONATED POLYMERIC ZINC OXIDE-BASED NANOCATALYSTS FOR METHYL ESTER PRODUCTION

By

SOROUSH SOLTANI

December 2016

Chairman : Umer Rashid, PhD Institute : Advanced Technology

The increasing production growth and economic developments have increased not only the consumption of energy but also increased the level of pollutants. It is assumed that fossil fuels would be eliminated in years to come, which alerted an urgent need to switch to the renewable energy sources (RESs). In this research work, high free fatty acid feedstock, palm fatty acid distillate (PFAD), has been explored as non-edible feedstock for biodiesel production using efficient mesoporous zinc oxide (ZnO) based nanocatalysts.

The main purpose was to develop the mesoporous ZnO based catalysts to enhance the conversion rate of biodiesel production for PFAD. An efficient mesoporous ZnO based nanocatalysts were hydrothermally fabricated, using the polyethylen glycol (PEG) as a surfactant and D-glucose as a template. The effects of different zinc nitrate concentration and different calcination temperature were determined on the structural and textural properties. Surface functionalization is a beneficial approach which improves the adsorption capacity and surface activity of the parent materials. One route is the doping of the metal nanoparticles as support into pre-fabricated materials. In this project, ZnO has been functionalized with Al and Cu in order to improve its textural properties. Zinc aluminate (ZnAl₂O₄) and zinc-cupper (CuO-ZnO) mixed metal oxides possess superior advantages such as high surface area and high thermal stability. Post-sulfonation treatment is another approach which was done in order to modify the hydrophobicity via attaching of -SO₃H groups on the active sites. Furthermore, the effect of sulfonation conditions on catalytic activity was also examined. It was observed that sulfonation under severe conditions led to the reduction of the textural properties.

The palm fatty acid distillate (PFAD) was chosen as feedstock for biodiesel production, containing high FFA (around 80-90%). In order to improve the esterification process for PFAD production, a comparison study was also carried out

between two efficient autoclave and microwave heating systems over synthesized mesoporous ZnO based nanocatalysts.

The influences of esterification reaction conditions (methanol to oil molar ratio, catalyst concentration, reaction temperature and reaction time) towards the catalytic performance of the synthesized nanocatalysts were also investigated to optimize the higher biodiesel yield. It was found that the functionalized mesoporous ZnO based SO₃H-ZnO, SO₃H-ZnAl₂O₄, SO₃H-CuO-ZnO nanocatalysts had high catalytic activity for esterifying PFAD, giving FAME yield of 91.20%, 94.65%, and 95.76%, respectively. The recyclability of the synthesized catalysts was further evaluated. According to the recyclability results, the mesoporous ZnO based nanocatalysts were able to remain active for at least eight consecutive runs without using further treatment.

Furthermore, the physico-chemical characteristics of the biodiesel produced from PFAD were tested with compliance to EN14214 and ASTM D6751 standards. The key fuel properties of the produced PFAD biodiesel were all within range of the mentioned standards.

As a conclusion, from all the results, it was found that the synthesized sulfonated mesoporous ZnO based nanocatalysts had great potential to catalyze high FFA feedstock (PFAD) for biodiesel production with high recyclability. The excellent activity and recyclability of the catalyst may be assigned to the combination of unique textural properties and polymeric attachment of the –SO₃H functional group to the surface of the catalyst. The esterification reaction under solvo-thermal methods resulted in high biodiesel yield in shorter reaction rate, especially using microwave heating system.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

SULFONATE POLIMER ZINC OKSIDA NANOCATALYSTS BERASASKAN UNTUK METIL ESTER PENGELUARAN

Oleh

SOROUSH SOLTANI

Disember 2016

Pengerusi: Umer Rashid, PhDInstitut: Teknologi Maju

Pertumbuhan pengeluaran yang semakin meningkat dan perkembangan ekonomi telah meningkat bukan sahaja penggunaan tenaga tetapi juga meningkatkan tahap pencemaran. Adalah diandaikan bahawa bahan api fosil akan dihapuskan pada tahun-tahun akan datang, yang memberi amaran keperluan yang mendesak untuk beralih kepada sumber tenaga boleh baharu (RESs). Dalam kajian ini, asid lemak bebas suapan tinggi, Asid lemak sawit sulingan (PFAD), telah diterokai sebagai suapan bukan makanan untuk pengeluaran biodiesel menggunakan pemangkin nano berasaskan mesoporous zink oksida (ZnO) berkesan.

Objektif utama kajian ini adalah untuk membangunkan pemangkin berasaskan mesoporous zink oksida untuk meningkatkan kadar penukaran pengeluaran biodiesel untuk PFAD. pemangkin nano berasaskan mesoporous ZnO berkesan direka secara hidroterma, menggunakan polietilena glikol (PEG) sebagai surfaktan dan D-glukosa sebagai ejen pembentukan liang (templat). Kesan kepekatan zinc nitrat yang berbeza dan suhu pengkalsinan yang berbeza ditentukan pada sifat-sifat struktur dan tekstur. Pemfungsian permukaan adalah satu pendekatan berfaedah yang meningkatkan kapasiti penjerapan dan aktiviti permukaan bahan induk. Satu laluan adalah pemendapan nano zarah logam sebagai penyokong ke dalam bahan-bahan prafabrikasi. Dalam kajian ini, ZnO telah difungsikan dengan Al dan Cu dalam usaha untuk memperbaiki sifat teksturnya. Zink aluminat (ZnAl2O4) dan zink-tembaga (CuO-ZnO) oksida logam campuran memiliki kelebihan yang lebih baik seperti kawasan permukaan tinggi dan kestabilan haba tinggi. Rawatan pasca sulfonasi merupakan kaedah lain yang telah dilakukan bagi mengubah suai kehidrofobikan melalui melekatkan kumpulan -SO3H pada tapak aktif. Tambahan pula, kesan kondisi sulfonasi terhadap aktiviti pemangkin telah dikaji. Diperhatikan bahawa sulfonasi di bawah keadaan yang tidak baik membawa kepada pengurangan sifat tekstur.

Asid lemak sawit sulingan (PFAD) telah dipilih sebagai suapan bagi pengeluaran biodiesel, mengandungi FFA tinggi (sekitar 80-90%). Dalam usaha untuk meningkatkan proses pengesteran bagi pengeluaran PFAD, satu kajian perbandingan

telah dijalankan antara dua sistem pemanasan autoklaf dan gelombang mikro cekap ke atas pemangkin nano berasaskan mesoporous ZnO disintesis.

Pengaruh keadaan tindak balas pengesteran (nisbah molar metanol kepada minyak, kepekatan pemangkin, tindak balas suhu dan tindak balas masa) ke atas prestasi pemangkin nano disintesis juga telah disiasat untuk mengoptimumkan hasil biodiesel lebih tinggi. Ia telah mendapati bahawa pemangkin mesoporous ZnO berasaskan SO₃H-ZnO, SO₃H-ZnAl₂O₄, SO₃H-CuO-ZnO mempunyai aktiviti pemangkin tinggi untuk pengesteran PFAD, memberikan hasil FAME iaitu 91.20%, 94.65%, dan 95.76% masing-masing. Kebolehan kitar semula pemangkin disintesis telah dinilai selanjutnya. Menurut hasil kebolehan kitar semula, pemangkin nano berasaskan mesoporous ZnO dapat kekal aktif sekurang-kurangnya lapan kali berturut-turut tanpa menggunakan rawatan lanjut.

Tambahan pula, ciri-ciri fizikokimia biodiesel dihasilkan daripada PFAD telah diuji dengan pematuhan EN14214 dan piawaian ASTM D6751. Sifat-sifat bahan api utama yang dihasilkan biodiesel PFAD semuanya adalah dalam julat piawaian yang dinyatakan.

Kesimpulan, dari kesemua keputusan yang diperlukan, didapati bahawa pemangkin nano berasaskan mesoporous sulfonasi ZnO disintesis mempunyai potensi tinggi untuk menjadi pemangkin suapan FFA tinggi (PFAD) bagi pengeluaran biodiesel dengan kitar semula yang tinggi. Aktiviti dan kebolehan kitar semula pemangkin yang sangat baik mungkin disebabkan kepada gabungan ciri-ciri tekstur yang unik dan pelekatan polimer kumpulan kefungsian SO₃H dengan permukaan pemangkin. Tindak balas pengesteran di bawah kaedah solvothermal menyebabkan hasil biodiesel tinggi dalam kadar tindak balas yang lebih pendek, terutama sekali apabila menggunakan sistem pemanasan gelombang mikro.

ACKNOWLEDGEMENTS

First and foremost, I thank to God for giving me his blessing and strength throughout this research work.

I would like to convey deepest gratitude and appreciation to my respected supervisor Dr. Umer Rashid. Without his constant help, the completion of this thesis was not possible. Beside my supervisor, I am extremely grateful to my supervisory committee members: Prof. Dr. Robiah Yunus and Prof. Dr. Taufiq Yap Yun Hin for their support.

I would like to appreciate the help from the technical staffs in Institute of Advanced Technology and Center of Excellence for Catalysis Science & Technology (PutraCat).

Special thanks to my wife Nasrin who her continuous love always rejuvenates my spirit. Besides, special thanks to my daughter Silvana for creating wonderful memories in our life. My deepest gratitude goes to my sister Ms. Roshanak and my grandma Ms. Beti for their everlasting love and support that helped me to overcome obstacles during the course of my Ph.D study. I am truly owed my success to my beloved friends Mr. Anoosh, Mr Ali, Mr Mojtaba, and Mr Mortsa due to their endless support.

Last but not the least, I gratefully acknowledge the financial supports from Ministry of Science, Technology and Innovation (MOSTI) project (Vot. No. 5450746) under Special Graduate Research Assistance (SGRA) Universiti Putra Malaysia (UPM).

I certify that a Thesis Examination Committee has met on 30 December 2016 to conduct the final examination of Soroush Soltani on his thesis entitled "Sulfonated Polymeric Zinc Oxide-Based Nanocatalysts for Methyl Ester Production" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Luqman Chuah Abdullah, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Thomas Choong Shean Yaw, PhD Professor Ir. Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Tan Yen Ping, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Didik Prasetyoko, PhD Professor Institut Teknologi Sepuluh Nopember Indonesia (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 28 February 2017

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Umer Rashid, PhD

Fellow Researcher Institute of Advanced Technology Universiti Putra Malaysia (Chairman)

Robiah Yunus, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Taufiq Yap Yun Hin, PhD Professor

Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies

Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:	Date:
Name and Matric No: <u>Soroush Soltani / GS37521</u>	

Declaration by Members of Supervisory Committee

This to confirm that:

- the research conducted and the writing of this thesis was under or supervision.
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to

Signature: Name of Chairman	
Committee:	Dr. Umer Rashid
Signature: Name of Member of Supervisory Committee:	Professor Dr. Robiah Yunus
Signature:	helandy
Name of Member of Supervisory	Professor Dr. Taufiq Yap Yun Hin
committee.	received by running rup running

TABLE OF CONTENTS

Page

ABSTR ABSTR ACKNO APPRO DECLA LIST O LIST O LIST O	ACT AK OWLH OVAL ARAT OF TA OF FIG OF AB	EDGEMENTS ION BLES GURES BREVIATIONS	i iii v vi viii xvi xviii xviii xxiv
CHAPT	ГER		
1	INTF 1.1 1.2 1.3 1.4 1.5 1.6	RODUCTION Green technology and alternative fuels Biodiesel Approaches to reduce the cost of biodiesel production 1.3.1 Selecting an appropriate feedstock 1.3.2 Employing a fast solvo-thermal technique 1.3.3 Selecting a proper catalyst 1.3.3.1 Surface modification Problem statement Objective Scope of the research Scope of the research	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \end{array} $
	1.7	Thesis outline	6
2	LITE 2.1 2.2 2.3	CRATURE REVIEW Introduction Current scenario of conventional energy and biodiesel Biodiesel 2.3.1 Financial cost of biodiesel 2.3.1.1 Selecting an appropriate feedstock 2.3.1.2 Selecting a suitable catalyst 2.3.1.3 Employing a fast solvo-thermal technique	7 7 8 9 9 10 10
	2.42.52.6	Biodiesel production process2.4.1Direct mixing and dilution2.4.2Micro-emulsion2.4.3Thermal cracking2.4.4Transesterification process2.4.5Esterification process2.4.5Esterification processEffect of different parameters on the esterification reaction2.5.1Effect of reactant ratio to oil2.5.2Effect of catalyst concentration2.5.3Effects of the reaction time2.5.4Effect of the reaction temperature2.5.5Effect of stirring speedCatalyst in biodiesel production	12 13 13 13 13 13 13 13 14 14 14 14 15 15 15 15
		2.6.1 Classification of catalysts	15

х

	2.7 2.8 2.9	2.6.2 2.6.3 Porous Genera 2.8.1 Surface	Problems with homogeneous base and acid catalysts Problems with heterogeneous base and acid catalysts material 1 pathways to fabricate mesoporous materials Some important synthetic process to fabricate mesoporous materials 2.8.1.1 Sol-gel processing 2.8.1.2 Polymeric processing 2.8.1.3 Sonochemical processing 2.8.1.4 Microwave-assisted processing 2.8.1.5 Hydrothermal processing modification	16 16 17 19 20 21 21 21 21 21 22
		2.9.1	Physical treatment	22
		2.9.2	 2.9.1.1 Surfactant 2.9.1.2 Dispersant Chemical modification 2.9.2.1 Metal modification 	22 23 23 23
			2.9.2.2 Metal-free modification	23
	2.10 2.11 2.12	2.9.3 Role of Mesopo Fuel pro 2.12.1	Thermal stability modification S mesoporous catalyst for biodiesel production prous catalytic esterification operties and quality standards Fuel properties 2.12.1.1 Specific gravity 2.12.1.2 Kinematic viscosity 2.12.1.3 Acid value 2.12.1.4 Cold flow properties 2.12.1.5 Flash point 2.12.1.6 Water content Quality standards	24 25 26 30 30 30 30 30 30 31 31 31
3	MET	HODOI	LOGY	33
3	3.1 3.2 3.3	Introdu Researc Feedsto 3.3.1 3.3.2	ction ch design ock, materials and equipment Palm fatty acid distillate (PFAD) Pre-treatment of PFAD	 33 33 33 34 34 34 34
	3.4	 3.3.3 3.3.4 Catalys 3.4.1 3.4.2 	Characterization of PFAD 3.3.3.1 Saponification value 3.3.3.2 Acid value 3.3.3.3 Molecular weight Materials t preparation Preparation of polymeric mesoporous ZnO nanocatalyst using hydrothermal method Surface modification 3.4.2.1 Metal modification	35 35 36 36 37 38 38 38 39
	3.5	Catalys 3.5.1	3.4.2.2 Post-sulfonation treatment at characterization X-ray diffraction analysis	40 40 41

	3.5.2	Brunaue	r emmet and teller analysis	42
	3.5.3	Thermog	gravimetric analysis	43
	3.5.4	Tempera	ture programmed desorption analysis	43
	3.5.5	Fourier	transform infrared spectroscopy analysis	44
	3.5.6	Field em	ission scanning electron microscopy analysis	44
	3.5.7	Transmi	ssion electron microscopy	44
	3.5.8	CHNS e	lemental analysis	45
3.6	Evalua	ation of the	e mesoporous catalysts performance	45
3.7	Analys	sis of the P	FAD methyl ester	47
	3.7.1	FFA cor	version determination	48
	3.7.2	FAME y	vield determination via EN 14103	48
		3.7.2.1	Gas chromatography analysis	48
3.8	Recyc	lability of	the mesoporous catalyst	50
3.9	FAME	E qualitativ	e analysis	50
4 RE	SULTS A	AND DISC	CUSSION	51
4.1	Introdu	uction		51
4.2	Charac	cterization	of mesoporous ZnO nanomaterials	51
	4.2.1	Determi	nation of structural characteristics of the	51
		mesopor	ous ZnO nanomaterials	
		4.2.1.1	Crystallinity evaluation of the mesoporous	52
			ZnO nanomaterials under various	
			calcination temperatures	
		4.2.1.2	Crystallinity evaluation of the mesoporous	53
			ZnO nanomaterials using various zinc	
			nitrate concentrations	
	4.2.2	Determi	nation of textural properties of mesoporous	54
		ZnO nar	nomaterials	
		4.2.2.1	Effect of various zinc nitrate nitrate	54
			concentrations on textural properties of	
			mesoporous ZnO nanomaterials	
		4.2.2.2	Effect of various calcination temperatures	56
			on textural properties of mesoporous ZnO	
			nanomaterials	
4.3	Propos	sed mechai	nism of metal oxide solid spheres formation	58
	4.3.1	Creation	of carbonaceous spheres	58
	4.3.2	Zinc nit	rate decomposition	58
	4.3.3	Aggrega	tion of Zn(OH)2-PEG chains	59
	4.3.4	Binding	the ZnO nanoparticles to the formed	59
		carbona	ceous spheres	
	4.3.5	Formatio	on of the mesoporous carbon-zinc spheres	59
4.4	Charac	eterization	of mesoporous SO3H-ZnO nanocatalysts	60
	4.4.1	Crystalli	nity evaluation of mesoporous SO3H-ZnO	60
		nanocata	lysts	
	4.4.2	FT-IR cl	naracterization of mesoporous SO3H-ZnO	61
		nanocata	llysts	
	4.4.3	TGA and	alysis of mesoporous ZnO nanocatalysts	62
	4.4.4	BET ana	llysis of mesoporous SO3H-ZnO	63
		nanocata	ılysts	

			4.4.4.1	Effect of various sulfonation time on textural properties of mesoporous SO3H- ZnO nanocatalysts	63
		4.4.5	TPD ana	lysis of mesoporous SO3H-ZnO	66
			nanocata	lysts	
	4.5	Charac	terization	of mesoporous SO3H-ZnAl2O4	67
		nanoca	talysts		
		4.5.1	Crystalli	nity evaluation of the nanocrystalline	67
			mesopor	ous SO ₃ H-ZnAl ₂ O ₄ nanocatalysts using	
			various A	Al concentrations	
		4.5.2	FT-IR cl	naracterization of mesoporous SO ₃ H-	69
			ZnAl ₂ O ₄	nanocatalysts	
		4.5.3	TGA ana	alysis of mesoporous SO ₃ H-ZnAl ₂ O ₄	70
			nanocata	llysts	-1
		4.5.4	BET ana	lysis of mesoporous SO ₃ H-ZnAl ₂ O ₄	71
			nanocata	llysts	71
			4.5.4.1	Effect of different Al molar ratio on	71
				textural properties of mesoporous	
			1512	ZnAl ₂ O ₄ materials	72
			4.3.4.2	en the textural properties of mesonerous	13
				SO2H ZnAlaO, papagatalysta	
		155	TPD ana	lysis of mesonorous SO2H-ZnAl2O4	76
		т.Э.Э	nanocata	lysts	70
	4.6	Charac	terization	of mesoporous SO ₃ H-CuO-ZnO	77
		nanoca	talvsts		
		4.6.1	Crystalli	nity evaluation of mesoporous SO ₃ H-CuO-	77
			ZnO nan	ocatalysts	
		4.6.2	BET ana	lysis of mesoporous SO ₃ H-CuO-ZnO	78
			nanocata	lysts	
			4.6.2.1	Effect of different Cu molar ratio on the	78
				textural properties of CuO-ZnO materials	
			4.6.2.2	Effect of post-sulfonation treatment on the	80
				textural properties of mesoporous SO ₃ H-	
		1.6.2	TDD	CuO-ZnO nanocatalysts	0.1
		4.6.3	IPD ana	lysis of mesoporous SO ₃ H-CuO-ZnO	81
		161		llysis	01
		4.0.4	TOA alla	lysis of mesoporous SO3n-CuO-ZhO	01
	47	Determ	ination of	morphology of synthesized mixed metal	82
	т./	oxides		morphology of synthesized mixed metal	02
		4.7.1	TEM and	d FE-SEM analysis of mesoporous	82
		,	nanocata	lysts	02
		4.7.2	Proposed	l mechanism of polymeric mesoporous	86
			SO ₃ H-Z ₁	nAl ₂ O ₄ formation	
	4.8	Produc	tion of bic	diesel over synthesized mesoporous mixed	89
		metal o	xide nano	catalysts	
		4.8.1	Proposed	l mechanism of biodiesel production	89
			through	esterification reaction	
		4.8.2	Catalytic	performance during esterification reaction	90

		4.8.2.1	Effect of different sulfonation times on	90
			the catalytic activity	
		4.8.2.2	Effect of different sulfonation	91
			temperatures on the catalytic activity	
	4.8.3	Esterifica	ation reaction using reflux system	92
	4.8.4	Effect of	reaction parameters on PFAD methyl ester	93
		production	on over mesoporous SO ₃ H-ZnO	
		nanocata	lyst using autoclave-assisted technique	
		4.8.4.1	Effect of methanol to PFAD molar ratio	93
		4.8.4.2	Effect of the mesoporous SO ₃ H-ZnO	94
			nanocatalyst concentration	
		4.8.4.3	Effect of reaction temperature	95
		4.8.4.4	Effect of reaction time	96
	4.8.5	Effect of	reaction parameters on PFAD methyl ester	97
		vield in r	presence of mesoporous SO ₃ H-ZnO catalyst	
		using mi	crowave-assisted technique	
		4.8.5.1	Effect of MeOH to PFAD molar ratio	97
		4.8.5.2	Effect of the mesoporous SO ₃ H-ZnO	98
			nanocatalyst concentration	20
		4853	Effect of reaction temperature	99
		4854	Effect of reaction time	100
	486	Effect of	reaction parameters on PFAD methyl ester	101
	1.0.0	vield in r	resence of mesonorous SO ₃ H-ZnAl ₂ O ₄	101
		nanocata	lyst using autoclaye-assisted technique	
		4861	Effect of MeOH to PEAD molar ratio	101
		4.8.6.2	Effect of the mesoporous $SO_2H_7nAl_2O_4$	101
		4.0.0.2	nanocatalyst	102
		1863	Effect of reaction temperature	103
		4.8.0.5	Effect of reaction time	103
	187	Fffoot of	reaction noremators on PEAD mothyl aster	104
	4.0./	viold in r	reaction parameters on TFAD methyl ester	105
		yield in p	lust using microwaya assisted technique	
			Effect of mean arous SO-IL Zr AlsO	105
		4.8./.1	Effect of mesoporous SO ₃ H-ZnAl ₂ O ₄	105
		1077	Effect of McOII to DEAD molor notion	106
		4.8.7.2	Effect of MeOH to PFAD molar ratio	100
		4.8.7.3	Effect of reaction temperature	10/
	4.0.0	4.8./.4	Effect of mixing intensity	108
	4.8.8	Effect of	reaction parameters on PFAD methyl ester	109
		yield in p	presence of mesoporous SO ₃ H-CuO-ZnO	
		nanocata	lyst using autoclave reactor	4.0.0
		4.8.8.1	Effect of Cu-to-Zn ratio	109
		4.8.8.2	Effect of mesoporous SO ₃ H-CuO-ZnO	110
			nanocatalyst concentration	
4.9	Catalys	st stability	and reusability	111
	4.9.1	Reusabil	ity of the mesoporous SO ₃ H-ZnO	111
		nanocata	lyst	
	4.9.2	Reusabil	ity of the mesoporous SO ₃ H-ZnAl ₂ O ₃	114
		nanocata	lyst	
	4.9.3	Reusabil	ity of the mesoporous SO ₃ H-CuO-ZnO	115
		nanocata	lyst	

6

	4.10	Quality assessment of the PFAD methyl ester	116
	4.11	Fuel characteristic of PFAD methyl ester	117
		4.11.1 Specific gravity	117
		4.11.2 Kinematic viscosity	117
		4.11.3 Acid value	118
		4.11.4 Cold flow properties	118
		4.11.5 Flash point	118
		4.11.6 Water content	118
		4.11.7 Sulfur content	118
5	CON	NCLUSIONS AND RECOMMENDATIONS	120
	5.1	Conclusions	120
	5.2	Recommendations for future research	123
REF	ERENC		124
APP	ENDICI	ES	143
BIOI	DATA C	OF STUDENT	147
LIST	OF PU	BLICATIONS	148

 \bigcirc

LIST OF TABLES

Table		Page
2.1	Summary of research work carried out on the FAME production, using NaOCH ₃ and NaOH catalysts under both conventional and microwave heating systems	11
2.2	Summary of research work carried out on the FAME production in presence of different catalysts, using autoclave-assisted reactor	12
2.3	Some major approaches to produce biodiesel	12
2.4	Summarization of some the research works carried out on the FAME production using different type of mesoporous solid acid catalysts	27
2.5	Comparison of standards between biodiesel and diesel according to ASTM and EN standards	32
3.1	Fatty acid profile of PFAD feedstock	35
3.2	Physico-chemical characteristics of PFAD	36
3.3	List of used materials through whole research study	37
3.4	Summary of the catalysts characterization methods and analysis instrumentation	41
3.5	The equipment employed for biodiesel characterization	47
3.6	Summary of all the apparatus aspects and GC conditions for the methyl ester analysis	49
3.7	FAME qualitative analysis	50
4.1	Average crystallite size evaluation of the synthesized mesoporous ZnO nanocrystals by different calcination temperatures	52
4.2	Average crystallite size evaluation of the synthesized mesoporous ZnO nanocrystals by different zinc nitrate concentrations	54
4.3	Effect of various zinc nitrate concentrations on the textural properties of the mesoporous ZnO nanocrystals	56
4.4	Effect of various calcination temperatures on the textural properties of the mesoporous ZnO nanocrystals	58

4.5	Effect of various sulfonation times on the textural properties of the mesoporous ZnO nanocatalysts	64
4.6	Effect of various sulfonation times on textural properties and acid sites density of the mesoporous ZnO nanocatalyst	66
4.7	Average crystallite size evaluation of the synthesized mesoporous ZnAl ₂ O ₄ nanocrystals using different metal ratios	68
4.8	Effect of various Al ratios on the textural properties of the mesoporous ZnAl ₂ O ₄ materials	73
4.9	Effect of various sulfonation temperatures on the textural properties of the mesoporous SO ₃ H-ZnAl ₂ O ₄ nanocatalysts	73
4.1	Effect of various sulfonation temperatures the on textural properties and acid sites density of the mesoporous SO ₃ H-ZnAl ₂ O ₄ nanocatalysts	77
4.1	1 Textural characteristics of prepared mesoporous nanocatalyst	80
4.1	2 Effect of various Cu concentration on the textural properties of SO ₃ H-CuO-ZnO nanocatalysts	80
4.1	3 The shell thickness of synthesized samples under various zinc nitrate concentrations	83
4.1	4 Effect of various sulfonation times on the catalytic activity	91
4.1	5 Effect of various sulfonation temperature on the catalytic activity	92
4.1	6 Effect of various Cu concentrations on the catalytic activity of mesoporous SO ₃ H-CuO-ZnO nanocatalysts	110
4.1	Fuel properties of PFAD methyl ester over mesoporous catalyst, according to ASTM D6751 and EN 14214 standards	119

LIST OF FIGURES

Figure		Page
1.1	General Esterification Process	1
2.1	World Energy Consumption by Major Economic Sectors, 2012 (U.S Energy Information administration, 2012)	7
2.2	World Energy Consumption Ratio by Energy Sources, 2012 (U.S Energy Information administration, 2012)	8
2.3	General Esterification Equation	14
2.4	Classification of Catalyst	16
2.5	Schematic Representation of Porous Materials Classification	18
2.6	Ordered Mesoporous Carbon Material Preparation, using Nanocasting and Direct Synthesis Methods (Ma et al., 2013)	20
3.1	Summary Chart of the Research Study	34
3.2	Summary Chart of the Mesoporous Solid Acid Catalyst Preparation	38
3.3	Schematic Design of Autoclave Reactor	39
3.4	Schematic Considerations for Biodiesel Production and Recyclability Test through Esterification Reaction	45
3.5	Schematic Design of Microwave-Plus Width Modulation Reactor	46
3.6	The Process of Biodiesel Production using Fast Solvo-thermal Method	47
4.1	XRD Patterns of Samples Prepared at Various Post-Calcination Temperatures: (a) 600 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C	53
4.2	XRD Patterns of Calcined Samples at 600 °C Prepared with Various Zinc Nitrate Concentrations: (a) 2 mmol, (b) 4 mmol, (c) 6 mmol, and (d) 8 mmol	54
4.3	(a) Nitrogen Adsorption/Desorption Isotherms and (b) BJH Pore Size Distributions of Synthesized Mesoporous ZnO Nanocrystals with Variety of Zinc Nitrate Concentrations	55

4.4	(a) Nitrogen Adsorption/Desorption Isotherms and (b) BJH Pore Size Distributions of the Synthesized Mesoporous ZnO Nanocrystals under Various Calcination Temperatures	57
4.5	Schematic Representation of Carbon-Zinc Core-Shell Solid Spheres Formation	60
4.6	XRD Patterns of Nanocrystalline Mesoporous (a) ZnO and (b) SO ₃ H-ZnO Catalysts	61
4.7	FT-IR Spectra of (a) Fresh Mesoporous ZnO and (b) SO ₃ H-ZnO Samples	62
4.8	Thermal Analysis of Fresh Mesoporous ZnO and SO ₃ H-ZnO Catalysts	63
4.9	(a) Nitrogen Adsorption/Desorption Isotherms of Fresh and Sulfonated ZnO Samples and (b) Pore Size Distribution Determined by BJH Method under Various Sulfonation Times	65
4.10	NH ₃ -TPD Patterns of un-Sulfonated Mesoporous ZnO and Sulfonated Mesoporous ZnO Samples under Various Sulfonation Times	67
4.11	XRD Patterns of Mesoporous Nanocrystalline ZnAl ₂ O ₄ Materials with Metal Ratio of (a) 0.5, (b) 0.75 and (c) 1.0	68
4.12	XRD Patterns of (a) un-Sulfonated and Sulfonated Mesoporous ZnAl ₂ O ₄ Samples	69
4.13	FT-IR Spectra of (a) Fresh Mesoporous ZnAl ₂ O ₄ and (b) SO ₃ H-ZnAl2O4 Samples	70
4.14	Thermal Analysis of the Mesoporous SO ₃ H-ZnO and SO ₃ H-ZnAl ₂ O ₄ Catalysts	71
4.15	(a) Nitrogen Adsorption/Desorption Isotherms of the Mesoporous ZnAl ₂ O ₄ Materials with Different Metal Ratio and (b) BJH Pore Size Distributions of the Mesoporous ZnAl ₂ O ₄ Materials with Different Metal Ratios	72
4.16	Nitrogen Adsorption/Desorption Isotherms of the Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalysts with Various Sulfonation Temperatures and (b) BJH Pore Size Distributions of SO ₃ H-ZnAl ₂ O ₄ Catalysts with Various Sulfonation Temperatures	75
4.17	NH ₃ -TPD Patterns of the Fresh Mesoporous ZnAl ₂ O ₄ and SO ₃ H-ZnAl ₂ O ₄ Samples with Different Sulfonation Temperatures	76

	4.18	XRD Patterns of (a) un-Sulfonated and (b) Sulfonated Mesoporous CuO-ZnO Materials	78
	4.19	(A) Nitrogen Adsorption/Desorption Isotherms of Synthesized Mesoporous Materials under Various Mixed Metal Ratios and (B) Pore Size Distribution Determined by BJH Method	79
	4.20	NH ₃ -TPD Pattern of Sulfonated Mesoporous CuO-ZnO (0.75) Catalyst	81
	4.21	Thermal Analysis of Mesoporous SO3H-CuO-ZnO Nanocatalysts	82
	4.22	Low Magnification TEM Image of Carbon-Zinc Solid-Spheres	83
	4.23	High Magnification TEM Image of Carbon-Zinc Solid-Spheres	84
	4.24	FE-SEM Images of (a) Carbonaceous Spheres, (b) CuO-ZnO Solid-Spheres and (c) EDX Spectrum of Synthesized Mesoporous CuO-ZnO Nanocatalyst	85
	4.25	High Magnification TEM Image of Mesoporous SO ₃ H-ZnAl ₂ O ₄ Nanocatalyst	86
	4.26	Schematic Representation of the Polymeric Mesoporous Mixed Metal Oxides Formation	88
	4.27	Schematic Representation of the Post-sulfonation Treatment of the Polymeric and Non-polymeric Mesoporous Catalysts	89
	4.28	Schematic Representation of Methyl Ester Formation	90
	4.29	The Effect of MeOH:PFAD Molar Ratio on the FFA Conversion over Mesoporous SO ₃ H-ZnO Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: Catalyst Concentration of 1.0 wt%; Reaction Temperature of 100 °C; Reaction Time of 120 min	94
	4.30	The Effect of SO3H-ZnO Concentration on the FFA Conversion over Mesoporous SO ₃ H-ZnO Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Reaction Temperature of 100 °C; Reaction Time of 120 min	95
	4.31	The Effect of Reaction Temperature on the FFA Conversion over Mesoporous SO ₃ H-ZnO Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 2.0 wt%; Reaction Temperature of 100 °C; Reaction Time of 120 min	96

	4.32	The Effect of Reaction Time on the FFA Conversion over Mesoporous SO ₃ H-ZnO Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 2.0 wt%; and Reaction Temperature of 120 °C	97
	4.33	The Effect of MeOH:Oil Molar Ratio on the Methyl Ester Content over Mesoporous SO ₃ H-ZnO Catalyst using Microwave Reactor. The Experiment was Carried out under Esterification Conditions: Catalyst Concentration of 1.5 wt%; Reaction Temperature of 80 °C; Reaction Time of 20 min	98
	4.34	The Effect of the Mesoporous SO3H-ZnO Concentration on the Methyl Ester Content over Mesoporous SO ₃ H-ZnO Catalyst using Microwave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Reaction Temperature of 80 °C; Reaction Time of 20 min	99
	4.35	The Effect of Reaction Temperature on the Methyl Ester Content over Mesoporous SO ₃ H-ZnO Catalyst using Microwave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.5 wt%; Reaction Time of 20 min	100
	4.36	The Effect of Reaction Time on the Methyl Ester Content over Mesoporous SO ₃ H-ZnO Catalyst using Microwave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.5 wt%; and Reaction Temperature of 90 °C	101
	4.37	The Effect of Methanol to Oil Molar Ratio on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: Catalyst Concentration of 2.0 wt%; Reaction Temperature of 100 °C; Reaction Time of 90 min	102
	4.38	The Effect of Mesoporous SO3H-ZnAl2O4 Concentration on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Reaction Temperature of 100 °C; Reaction Time of 90 min	103
	4.39	The Effect of Reaction Temperature on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.0 wt%; Reaction Time of 90 min	104

2	4.40	The Effect of Reaction Time on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Autoclave Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.0 wt%; and Reaction Temperature of 120 °C	105
2	4.41	The Effect of Catalyst Concentration on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Microwave-assisted Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Reaction Temperature of 55 °C; and Stirring Intensity of 300 rpm	106
	4.42	The Effect of Methanol to PFAD Molar Ratio on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Microwave-assisted Reactor. The Experiment was Carried out under Esterification Conditions: Catalyst Concentration of 1.5 wt%; Reaction Temperature of 55 °C; and Stirring Intensity of 300 rpm	107
2	4.43	The Effect of Reaction Temperature on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Microwave-assisted Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.5 wt%; Reaction Temperature of 55 °C; and Stirring Intensity of 300 rpm	108
2	4.44	The Effect of Mixing Intensity on the FAME Yield over Mesoporous SO ₃ H-ZnAl ₂ O ₄ Catalyst using Microwave-assisted Reactor. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Catalyst Concentration of 1.5 wt%; and Reaction Temperature of 60 °C	109
	4.45	Effect of Mesoporous SO ₃ H-CuO-ZnO (0.75) Concentrations on the PFAD Methyl Ester Yield. The Experiment was Carried out under Esterification Conditions: MeOH:PFAD Molar Ratio of 9:1; Reaction Time of 90 min; and Stirring Intensity of 300 rpm	111
6	4.46	The Reusability of the Mesoporous SO ₃ H-ZnO Catalyst. The Recyclability Experiments were Carried out under Optimum Conditions: Catalyst Concentration of 2 wt.%, MeOH:PFAD Molar Ratio of 9:1, Reaction Temperature of 120 °C, and Reaction Time of 90 min	112
	4.47	NH ₃ -TPD Patterns of (a) the Fresh SO ₃ H-ZnO Catalyst and (b) Recycled SO3H-ZnO Catalyst after Seventh Run	113
2	4.48	The FT-IR Spectra of (a) the Fresh SO ₃ H-ZnO and (b) Recycled Catalyst after Seventh Run	114

- 4.49 The Recyclability of the SO₃H-ZnAl2O4 Catalyst. The Recyclability Experiments were Carried out under Optimum Conditions: Catalyst Concentration of 1 wt.%, MeOH:PFAD Molar Ratio of 9:1, Reaction Temperature of 120 °C, and Reaction Time of 60 min
- 4.50 The Recyclability of the Mesoporous SO₃H-CuO-ZnO Catalyst. 116 The Recyclability Experiments were Carried out under Optimum Conditions: Catalyst Concentration of 1.5 wt.%, Molar Ratio of 9:1, Reaction Temperature of 100 °C, and Reaction Time of 90 min
- 4.51 GC-MS Chromatogram of the PFAD Methyl Ester Profile

117

115

LIST OF ABBREVIATIONS

	AOCS	American oil chemists society			
	ASTM	American society for testing and materials			
	AV	Acid value			
	BET	Brunauer-Emmett-Teller			
	BDDT	Brunauer, Deming, Deming, and Teller			
	СР	Cloud point			
	D _P	Pore diameter			
	DTA	Differential thermal analysis			
	DW	Distilled water			
	EN	European standard			
	EtOH	Ethanol			
	Eq	Equation			
	FA	Fatty acid			
	FAME	Fatty acid methyl ester			
	FE-SEM	Field emission scanning electron microscopy			
	FFA	Free fatty acid			
	FID	Flam ionization detector			
	FP	Flash point			
	FT-IR	Fourier transform infrared spectroscopy			
	FWHM	Full width at half maximum			
	GC	Gas chromatography			
	GHG	Greenhouse gas			
	GHz	Giga hertz			
	НМО	Household microwave oven			

	НРНТ	High pressure high temperature			
	HC1	hydrochloric acid			
	IUPAC	International union of pure and applied chemistry			
	JCPDS	Joint committee on powder diffraction standard			
	kHz	Kilo hertz			
	KV	Kinematic viscosity			
	М	Molar weight			
	ME	Methyl ester			
	MeOH	Methanol			
	MHz	Mega hertz			
	MOx	Metal Oxide			
	MPWM	Microwave-plus width modulation			
	MW	Microwave			
	N2	Nitrogen			
	NH3	Ammonia			
	NOx	Nitrogen dioxide			
	ОМ	Ordered mesoporous			
	OMC	Ordered mesoporous carbon			
	OMM	Ordered mesoporous material			
	OMS	Ordered mesoporous silica			
	PFAD	Palm fatty acid distillate			
	РР	Pour point			
	RES	Renewable energy source			
	Sbet	Specific surface area			
	SDA	Structure direction agent			

SFA	Saturated fatty acid
SG	Specific gravity
TCD	Thermal conductivity detector
TEM	Transmission electron microscopy
TG	Triglyceride
TGA	Thermogravimetric analysis
V	Volume
VP	Pore volume
XRD	X-ray diffraction

C

CHAPTER 1

INTRODUCTION

1.1 Green technology and alternative fuels

Human existence fundamentally depends on the energy sources. Currently, the fossil fuel reserves are depleting at a rapid rate as a result of both worldwide population growth and the global economy growth. This issue should be urgently tackled to eliminate the shortage of the energy sources in the future. Another challenge is to reduce the risk to the public health by decreasing the level of greenhouse gases (GHGs) emission. It is noteworthy that the global energy consumption should be green. This scenario is sadly not possible with mineral fuels that are the most dominant source of the globe's energy.

1.2 Biodiesel

The renewable energy sources (RESs), such as solar cell, wind turbines, geothermal power and biofuel have attracted scientist's attention which are less harmful to the human life. Among all RESs, biodiesel could be the best substitute to replace the fossil fuels in the near future. Biodiesel is a sulfur free liquid fuel which generated using a verity of feedstocks. It is considered as a non-toxic and environmental friendly source of energy which can substantially reduce the disease possibility due to eliminating of the carbon dioxide (CO₂) footprint by 78% (Cantrell et al., 2005).

Biodiesel can be derived from animal fats and vegetable oils via transesterification and esterification reactions. Typically, esterification is a chemical reaction by which a FFA molecule reacts with an alcohol to produce a methyl ester plus a water molecule. The reaction is directly taking place between the alcohol and the FFAs. The following equation (Figure 1-1) represents the general chemical reaction for all industrial esterification reaction with methanol:

Catalyst						
R-COOH	+	CH₃OH	≠	R-COO-CH₃	+	H ₂ O
Free Fatty Acid		Methanol		Methyl Ester		Water

1.3 Approaches to reduce the cost of biodiesel production

High cost is the main barrier to commercialize the production of biodiesel. It is assessed the cost of biodiesel production above 1.5 times more expensive than mineral fuels production. There are three important approaches to reduce the cost of biodiesel production: (i) selecting an appropriate cheap feedstock, (ii) employing a fast solvothermal technique and (iii) selecting a suitable catalyst.

1.3.1 Selecting an appropriate feedstock

Choosing a right feedstock plays a prominent part to achieve the high yield with lower cost; because 60-80% of the cost of biodiesel production counts from the price of the feedstocks (Gui et al., 2008; Singh and Singh, 2010). Currently, above 95% of biodiesel production are being derived from edible vegetable oils (Gui et al., 2008). Furthermore, increasing the demand on vegetable oils, subsequently increases the cost of both biodiesel and edible oil markets (Kansedo et al., 2009).

One approach to reduce the cost of production is to use non-edible oils (Canakci, 2007; Murugesan et al., 2009). Non-edible oils are classified into two groups: waste plant oils (WPOs) and waste cooking oils (WCOs). Being unfit for human consumption is the most important aspect of non-edible oils that ridiculously reduces the price of these feedstocks. In the current research, a high FFA content of non-edible byproduct from refinery of palm oil known as palm fatty acid distillate (PFAD) was chosen as feedstock for the production of fatty acid methyl ester (FAME) which is known as biodiesel (Top, 2010; Hosseini et al., 2015). In our investigation, we found that the using of PFAD can simultaneously maximize the FAME yield productivity and minimize the manufacturing cost.

1.3.2 Employing a fast solvo-thermal technique

Typically, biodiesel operates with the conventional heating systems which consume a huge amount of power and time. The major problem to conventional heating is that the heat energy can only transmit to the surface of the materials. In contrast, using a fast solvo-thermal method such as microwave equipment, conveys the heat power directly to the center of the reactants. Recently, the microwave-assisted method has been attracted vast interest in biodiesel synthesis because of its desirable properties such as shorter synthesis time, energy transferring (instead of heat transferring), selectivity in the heating of different materials, and lower manufacturing cost (Hernando et al., 2007; Azcan and Danisman, 2007; Groisman and Gedanken, 2008; Chen et al., 2012). Autoclave-assisted reactor method is another type of solvo-thermal method which provides high yield under high pressure and high temperature (HPHT) condition at a short reaction time (Byrappa, 2013). The HPHT condition inside the autoclave reactor results in cleavage between hydrogen atoms on the surface of the catalyst. The separated hydrogen atoms bond with FFAs, follows with catalyzing into methyl ester (ME) (Gao et al., 2015). Autoclave-assisted method is considered as one of the most eco-friendly method due to a sealed system condition (Yoshimura and Byrappa, 2008). To the best of our knowledge, using solvo-thermal method can highly

enhance the biodiesel productivity by enhancing the production yield in a shorter reaction rate with a cheaper production cost.

1.3.3 Selecting a proper catalyst

Another approach to speed up the process of biodiesel production is applying an appropriate catalyst in order to enhance the conversion at a shorter reaction time by increasing the number of active sites (Fukuda et al., 2001; Dmytryshyn et al., 2004; Vicente et al., 2004). An appropriate catalyst requires high considerations for biodiesel production, which consists of a large number of saturated fatty acids (SFAs) and long carbon-chains.

Generally, catalysts are categorized into three major groups; homogeneous catalyst, heterogeneous catalyst and biocatalyst. Conventionally, homogeneous base and acid catalysts are using for biodiesel production. Although, the hygroscopic nature, water and soap formation, oil losses and difficulty in separation are some undesired drawbacks of the homogenous catalysts during catalyzing reaction. Thereby, research efforts have been switched onto heterogeneous catalysts (Granados et al., 2007; Xie and Li, 2006). A number of heterogeneous solid acid catalysts have been used to catalyze the transesterification of triglycerides (TGs) and esterification of FFAs. However, the synthesized catalysts have their individual drawbacks such as complicated preparation steps, less activity and stability, less surface area and less porosity which decline the performance of synthesized heterogeneous catalysts (Jiang et al., 2008).

In this regard, mesoporous catalyst is considered as a perfect candidate to enhance the catalytic activity of biodiesel production due to unique textural properties such as high surface area and uniform and flexible pores diameter which lead to absorb long chain of FFAs (Kao et al., 2005; Kim and Park, 2007; Liu et al., 2008). Thereby, combination of higher surface area and higher porosity facilitates mass transfer or multiple scattering of the reactants through the porous framework (Yu, 2003; Zhang et al., 2013).

1.3.3.1 Surface modification

Surface functionalization is an efficient approach which improves the adsorption capacity and increases the surface activity of the parent materials. It is believed that doping a proper support element is an efficient route which leads to the breaking of the formed phase and increases the surface area of the materials (Carmo et al., 2009; Zhao et al., 2011a).

Post-sulfonation treatment is another important approach which modify the hydrophobicity of the as-prepared samples via attaching of the SO_3H to the active sites. Through catalytic reaction, hydrophobic surface plays a prominent part which firstly, increases the adsorption of long chain of FFAs and secondly, inhibits the

existence of molecule of water near the active sites (Liu et al., 2008; Mumtaz et al., 2013; Anand et al., 2013; Drelinkiewicz et al., 2014; Fraile et al., 2015). Therefore, post-sulfonation of the polymeric mesoporous catalyst is expected to provide a strong attachment of the SO₃H functional group to the active sites which significantly prohibits the leaching of sulfonic acid groups through esterification reaction (Shu et al., 2009; Wang et al., 2012; Istadi et al., 2015; Fraile et al., 2015).

In this study, a number of sulfonated mesoporous mixed metal oxides catalysts were fabricated using surfactant assisted method. The main objective was to enhance the surface area of the parent materials as high as possible in order to provide a better opportunity for the SO₃H species to be entrapped into the pores channels of the parent materials. Then, the performance and reusability of each catalyst was investigated via esterification of PFAD in presence of methanol under different reaction condition and different type of reactors.

1.4 Problem statement

The energy crisis has become the main concern for the human beings. This concern is strongly associated to the availability of natural sources of power (*i.e.*, coal, natural gases and fossil fuels) which are depleting at rapid rates. However, the world's most energy needs are met mainly by petrochemical sources; the depletion of these sources has warned human communities to discover alternative sources of energy. The increasing trend on the number of researches on biodiesel production might be a true evidence that biodiesel would be the best substitute for petroleum-based diesel. Biodiesel is a sulfur free liquid fuel, which can enhance the world's energy security. Biodiesel is generated from various feedstocks which has comparable physical and chemical characteristics to petroleum.

However, biodiesel carries a high cost in industry scale due to the expensive edible feedstocks. The use of non-edible waste material helps in reducing the cost of biodiesel production. In the current research, PFAD oil was used as starting material, which was believed to have a significant potential to reduce the cost of production and maximize the FAME yield productivity. Indirectly, the waste management from palm oil factory could be improved.

In the process of biodiesel production, a catalyst plays a prominent part to enhance the efficiency of the conversion. Recently, classical homogeneous catalysts lost their place in inorganic synthesis due to some drawbacks including the hygroscopic nature, water and soap formation, oil losses and difficulty in separation. In this work, heterogeneous catalyst was used instead of homogeneous catalyst in order to avoid these obstacles. The functionalized mesoporous mixed metal oxide catalysts were fabricated in this research, possessed unique textural properties such high surface area and uniform pore diameters. The high catalytic activity and excellent recyclability of the synthesized catalysts were attributed to the structural and textural characteristics of mesostructured catalysts.

The extended reaction time by current conventional heating systems reduces the efficiency of the process of biodiesel production. Furthermore, a large amount of heat energy is required to heat up the reaction mixture. In this work, autoclave and microwave-assisted methods were used as solvo-thermal method in order to heat up the reaction mixture. It is known that using solvo-thermal method can highly enhance the yield of production in a shorter reaction rate. In this regard, a comparison study was carried out between two different heating systems in order to find out the efficient heating reactors.

1.5 Objective

The main aim of this study is to examine the effect of surface functionalization on structural, textural, morphological, physico-chemical, and thermal characteristics of the prepared mesoporous catalysts, and further examine the catalytic activity and stability of the optimized catalysts through esterification of PFAD via fast solvo-thermal methods. The achieved results from this research work can be used to improve the new general mechanism on parallel evaluation of mesostructure and various properties of advanced materials in further studies.

Here, in this research work, the work-step objectives are elaborated in four distinctive parts as follows:

- 1. To synthesize and functionalize the polymeric mesoporous ZnO based material via (i) one-situ metal modification and (ii) post-acid treatment for mesoporous acidic catalyst development.
- 2. To investigate the structural, textural, morphological, physico-chemical, and thermal properties of the polymeric ZnO based nanocatalysts.
- 3. To evaluate the catalytic activity of different reaction conditions through esterification of PFAD via polymeric ZnO based nanocatalysts using autoclave and microwave system and recyclability of the synthesized catalysts.
- 4. To determine some key fuel qualities of the produced PFAD methyl ester using polymeric ZnO based nanocatalysts and comparison with EN14214 and ASTM D6751 standards.

1.6 Scope of the research

The scope of this research was to fabricate a polymeric mesoporous nanomaterials and then functionalize it with proper metal oxides in order to enhance the textural properties. Furthermore, the post-sulfonation treatment was applied in order to improve the acidity of active sites and catalytic activity, simultaneously. Moreover, the physico-chemical, structural, textural, morphological, and thermal characteristics of the synthesized mesoporous catalysts were investigated. The catalytic activity of the synthesized polymeric mesoporous solid acid nanocatalysts have been assessed through esterification of the PFAD. A comparison study was carried out between two different heating systems to find out the efficient heating reactors. The key fuel properties of the optimized PFAD methyl ester was further assessed with compliance to EN14214 and ASTM D6751 standards.

1.7 Thesis outline

This chapter briefly describes the general introduction of the current scenario on conventional energy and biodiesel, fundamental properties of the mesoporous nanocatalyst, surface functionalization process, and the problem statement as well as the research objectives. In chapter two, it reports the overview of previous literatures about the preformed synthesis methodology, surface optimization and the progress of the biodiesel production over functionalized mesoporous catalysts. Chapter three presents the methodology of the catalysts and biodiesel preparation and the equipment that were used to characterize the occurred changes in the products; such as structural, textural, morphological, physico-chemical, and thermal properties under various conditions. Chapter four is about the obtained results from the current research work and discussion. The summery of the concluded results is presented in chapter five which followed by feature research suggested recommendations. Finally, the references, appendix and the list of publications are attached, accordingly.

REFERENCES

- Abdullah, Z. A., Razali, N., Lee, T. K. (2009). Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. *Fuel Processing Technology*, 90:(7-8), 958–964.
- Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J., Navarro, A. (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. *Biomass and Bioenergy*, 18:(6), 515–527.
- Ali, M. E., Lamprecht, A. (2013). Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. *International Journal of Pharmaceutics*, 456:(1), 135–142.
- Alves, C. T., de Oliveira, A. S., Carneiro, S. A. V., Santos, R. C. D., Vieira de Melo, S. A. B., Andrade, H. M. C., Marques, F. C., Torres, E. A. (2012). Transesterification of waste frying oils using ZnAl₂O₄ as heterogeneous catalyst. *Procedia Engineering*, 42: 1928–1945.
- American Society for Testing and Materials (2011). ASTM D6751-11a, Standard specification for biodiesel fuel blend stack (B100) for middle distillate fuels, 1–10.
- Anand, C., Priya, S. V., Lawrence, G., Mane, G. P., Dhawale, D. S., Prasad, K. S., Balasubramanian, V. V., Wahab, M. A., Vinu, A. (2013). Transesterification of ethylacetoacetate catalysed by metal free mesoporous carbon nitride. *Catalysis Today*, 204: 164–169.
- Antonelli, D. M., Ying, J. Y. (1995). Synthesis of hexagonally packed mesoporous TiO₂ by a modified sol-gel method. *Angewandte Chemie International Edition in English*, 34:(18), 2014–2017.
- Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. *Renewable and Sustainable Energy Reviews*, 16:(5), 3275–3285.
- Atadashi, I. M., Aroua, M. K., Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. *Renewable and Sustainable Energy Reviews*, 14:(7), 1999–2008.
- Atadashi, I. M., Aroua, M. K., Aziz, A. A. (2011). Biodiesel separation and purification: A review. *Renewable Energy*, 36:(2), 437–443.
- Ayoub, M., Irfan, M. F., Yoo, K. S. (2011). Surfactants as additives for NO_x reduction during SNCR process with urea solution as reducing agent. *Energy Conversion and Management*, 52:(10), 3083–3088.
- Azcan, N., Danisman, A. (2007). Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. *Fuel*, 86:(17-18), 2639–2644.

- Azcan, N., Yilmaz, O. (2013). Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. *Fuel*, 104: 614–619.
- Bagheri, S., Chekin, F., Hamid, S. B. A. (2014). Cobalt doped titanium dioxide nanoparticles: synthesis, characterization and electrocatalytic study. *Journal of Chinese Chemical Society*, 61: 702–706.
- Bagheri, S., Hir, Z. A. M., Yousefi, A. T., Hamid, S. B. A. (2015). Progress on mesoporous titanium dioxide: synthesis, modification and applications. *Microporous and Mesoporous Materials*, 218: 206–222.
- Barnard, T. M., Leadbeater, N. E., Boucher, M. B., Stencel, L. M., Wilhite, B. A. (2007). Continuous-flow preparation of biodiesel using microwave heating. *Energy and Fuels*, 21:(3), 1777–1781.
- Barrett, E. P., Joyner, L. G., Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. *Journal of American Chemical Society*, 73: 373–380.
- Borges, M. E., Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. *Renewable and Sustainable Energy Reviews*, 16:(5), 2839–2849.
- Bruno, J. E., Dooley, K. M. (2015). Double-bond isomerization of hexadecenes with solid acid catalysts. *Applied Catalysis A: General*, 497: 176–183.
- Byrappa, K., Yoshimura, M. (2013). Handbook of Hydrothermal Technology, 321-333.
- Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource technology, 98:(1), 183–190.
- Cantrell, D. G., Gillie, L. J., Lee, A. F., Wilson, K. (2005). Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. *Applied Catalysis A: General*, 287:(2), 183–190.
- Cao, W., Han, H., Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. *Fuel*, 84:(4), 347–351.
- Carmo, A. C., de Souza, L. K. C., da Costa, C. E. F., Longo, E., Zamian, J. R., da Rocha Filho, G. N. (2009). Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. *Fuel*, 88:(3), 461–468.
- Casas, A., Fernández, C. M., Ramos, M. J., Pérez, Á., Rodríguez, J. F. (2010). Optimization of the reaction parameters for fast pseudo single-phase transesterification of sunflower oil. *Fuel*, 89:(3), 650–658.

- Cassiers, K., Linssen, T., Mathieu, M., Benjelloun, M., Schrijnemakers, K., Van Der Voort, P., Cool, P., Vansant, E. F. (2002). A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled Mesoporous Silicas. *Chemistry of Materials*, 14:(5), 2317–2324.
- castellanos, I. (2003). Poly(ethylene glycol) as stabilizer and emulsifying agent: A novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. *Journal of Controlled Release*, 88:(1), 135–145.
- Chang, B., Li, Y., Guo, Y., Yin, H., Zhang, S., Yang, B. (2015). SO₃H-functionalized hollow mesoporous carbon sphere prepared by simultaneously achieving sulfonation and hollow structure. *Journal of Porous Materials*, 22:(3), 629– 634.
- Chen, A., Yu, Y., Lv, H., Wang, Y., Shen, S., Hu, Y., Li, B., Zhang, Y., Zhang, J. (2013). Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. *Journal of Materials Chemistry A*, 1:(4), 1045–1047.
- Chen, K.-S., Lin, Y.-C., Hsu, K.-H., Wang, H.-K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. *Energy*, 38:(1), 151–156.
- Chen, X. Y., Ma, C. (2010). Spherical porous ZnAl₂O₄:Eu³⁺ phosphors: PEG-assisted hydrothermal growth and photoluminescence. *Optical Materials*, 32:(3), 415–421.
- Cho, H. J., Kim, J. K., Hong, S. W., Yeo, Y.-K. (2012). Development of a novel process for biodiesel production from palm fatty acid distillate (PFAD). *Fuel Processing Technology*, 104: 271–280.
- Chomaa, J., Jaroniec, M., Burakiewicz-Mortkaa, W. K. (2002). Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. *Applied Surface Science*, 196: 216–223.
- Corma, A. (1997). From microporous to mesoporous molecular sieve materials and their use in catalysis. *Chemical Reviews*, 97: 2373–2419.
- Cui, Y., Huang, J., Fu, X., Wang, X. (2012). Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. *Catalysis Science and Technology*, 2:(7), 1396–1402.
- Datye, A. K., Hansen, P. L., Helveg, S. (2008). Electron microscopy techniques, in handbook of heterogeneous catalysis, 111-132.
- Dawodu, F. A., Ayodele, O., Xin, J., Zhang, S., Yan, D. (2014). Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. *Applied Energy*, 114: 819–826.

- Dehkhoda, A. M., West, A. H., Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General, 382:(2), 197–204.
- Demirbas (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. *Energy Conversion and Management*, (43), 2349–2356.
- Demirbas, A. (2006). Global biofuel strategies. *Energy Education Science and Technology*, 17: 27–63.
- Demirbas, A. (2009a). Progress and recent trends in biodiesel fuels. *Energy Conversion and Management*, 50:(1), 14–34.
- Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. *Progress in Energy and Combustion Science*, 31:(5-6), 466–487.
- Demirbas, A. (2009b). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. *Energy Conversion and Management*, 50:(4), 923–927.
- Demirbas, A. (2007a). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. *Energy Conversion and Management*, 48:(3), 937–941.
- Demirbas, A. (2007b). Importance of biodiesel as transportation fuel. *Energy Policy*, 35:(9), 4661–4670.
- Demirbaş, A. (1998). Fuel properties and calculation of higher heating values of vegetable oils. *Fuel*, 77:(9-10), 1117–1120.
- Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. *Energy Conversion and Management*, 43:(17), 2349–2356.
- Demirbas, A. H., Demirbas, I. (2007). Importance of rural bioenergy for developing countries. *Energy Conversion and Management*, 48:(8), 2386–2398.
- Demirbas, A. H. (2008). Biodiesel: A realistic fuel alternative for diesel engines. Book chapter, 19-25.
- Di Serio, M., Cozzolino, M., Giordano, M., Tesser, R., Patrono, P., Santacesaria, E. (2007). From homogeneous to heterogeneous catalysts in biodiesel production. *Industrial and Engineering Chemistry Research*, 46:(20), 6379–6384.
- Dinkov, R., Hristov, G., Stratiev, D., Boynova Aldayri, V. (2009). Effect of commercially available antioxidants over biodiesel/diesel blends stability. *Fuel*, 88:(4), 732–737.
- Dmytryshyn, S., Dalai, A., Chaudhari, S., Mishra, H., Reaney, M. (2004). Synthesis and characterization of vegetable oil derived esters: Evaluation for their diesel additive properties. *Bioresource Technology*, 92:(1), 55–64.

- do Nascimento, L. A. S., Tito, L. M. Z., Angélica, R. S., da Costa, C. E. F., Zamian, J. R., da Rocha Filho, G. N. (2011). Esterification of oleic acid over solid acid catalysts prepared from Amazon flint kaolin. *Applied Catalysis B: Environmental*, 101:(3-4), 495–503.
- Drelinkiewicz, A., Kalemba-Jaje, Z., Lalik, E., Kosydar, R. (2014). Organo-sulfonic acids doped polyaniline based solid acid catalysts for the formation of bio-esters in transesterification and esterification reactions. *Fuel*, 116: 760–771.
- Dutta, P., Dutta, A. K., Sarma, P., Borah, R. (2013). Dual nature of polyethylene glycol under microwave irradiation for the clean synthesis of oximes. *Monatshefte für Chemie Chemical Monthly*, 145: 505–508.
- Duz, M. Z., Saydut, A., Ozturk, G. (2011). Alkali catalyzed transesterification of safflower seed oil assisted by microwave irradiation. *Fuel Processing Technology*, 92:(3), 308–313.
- El Sherbiny, S. A., Refaat, A. A., El Sheltawy, S. T. (2010b). Production of biodiesel using the microwave technique. *Journal of Advanced Research*, 1:(4), 309–314.
- Enweremadu, C. C., Mbarawa, M. M. (2009). Technical aspects of production and analysis of biodiesel from used cooking oil—A review. *Renewable and Sustainable Energy Reviews*, 13:(9), 2205–2224.
- Feng, Y., He, B., Cao, Y., Li, J., Liu, M., Yan, F., Liang, X. (2010). Biodiesel production using cation-exchange resin as heterogeneous catalyst. *Bioresource* technology, 101:(5), 1518–1521.
- Foletto, E. L., Battiston, S., Simões, J. M., Bassaco, M. M., Pereira, L. S. F., de Moraes Flores, É. M., Müller, E. I. (2012). Synthesis of ZnAl₂O₄ nanoparticles by different routes and the effect of its pore size on the photocatalytic process. *Microporous and Mesoporous Materials*, 163: 29–33.
- Fraile, J. M., García-Bordejé, E., Pires, E., Roldán, L. (2015). Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids: Comparison with sulfonic solids of different nature. *Journal of Catalysis*, 324: 107–118.
- Fujiwara, M., Shiokawa, K., Zhu, Y. (2007). Preparation of mesoporous silica/polymer sulfonate composite materials. *Journal of Molecular Catalysis* A: Chemical, 264:(1-2), 153–161.
- Fukuda, H., Kondo, A., Noda, H. (2001). Biodiesel fuel production by transesterification of oils. *Journal of Bioscience and Bioengineering*, 92:(5), 405–416.
- Galarneau, A., Desplantier-Giscard, D., Di Renzo, F., Fajula, F. (2001). Thermal and mechanical stability of micelle-templated silica supports for catalysis. *Catalysis Today*, 68:(1-3), 191–200.

- Ganduglia-Pirovano, M. V., Popa, C., Sauer, J., Abbott, H., Uhl, A., Baron, M., Stacchiola, D., Bondarchuk, O., Shaikhutdinov, S., Freund, H.-J. (2010). Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. *Journal of the American Chemical Society*, 132:(7), 2345–2349.
- Gao, Z., Tang, S., Cui, X., Tian, S., Zhang, M. (2015). Efficient mesoporous carbonbased solid catalyst for the esterification of oleic acid. *Fuel*, 140:669–676.
- Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials. *Ultrasonics Sonochemistry*, 11:(2), 47–55.
- Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J., Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. *Applied Catalysis B: Environmental*, 73:(3-4), 317–326.
- Groisman, Y., Gedanken, A. (2008). Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. *The Journal of Physical Chemistry* C, (112), 8802–8808.
- Gui, M. M., Lee, K. T., Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. *Energy*, 33:(11), 1646–1653.
- Yuan, H., Yang, B. L., Zhu, G. L. (2009). Synthesis of biodiesel using microwave absorption catalysts. *Energy Fuels*, 23:(1), 548–552.
- Haas, M. J. (2005). Improving the economics of biodiesel production through the use of low value lipids as feedstocks: Vegetable oil soapstock. *Fuel Processing Technology*, 86:(10), 1087–1096.
- Haas, M. J., McAloon, A. J., Yee, W. C., Foglia, T. A. (2006). A process model to estimate biodiesel production costs. *Bioresource technology*, 97:(4), 671–678.
- Habibi, M. H., Karimi, B. (2014). Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. *Journal of Industrial and Engineering Chemistry*, 20:(4), 1566–1570.
- Hammoud, D., Gennequin, C., Aboukaïs, A., Aad, E. A. (2015). Steam reforming of methanol over x% Cu/Zn–Al 400 500 based catalysts for production of hydrogen: Preparation by adopting memory effect of hydrotalcite and behavior evaluation. *International Journal of Hydrogen Energy*, 40:(2), 1283–1297.
- Helwani, Z., Othman, M. R., Aziz, N., Kim, J., Fernando, W. J. N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. *Applied Catalysis A: General*, 363:(1-2), 1–10.
- Hernando, J., Leton, P., Matia, M. P., Novella, J. L., Alvarez-Builla, J. (2007). Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes. *Fuel*, 86:(10-11), 1641–1644.

- Hosseini, S., Janaun, J., Choong, T. S. Y. (2015). Feasibility of honeycomb monolith supported sugar catalyst to produce biodiesel from palm fatty acid distillate (PFAD). *Process Safety and Environmental Protection*, 98: 285–295.
- Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F., Stucky, G. D. (1994). Generalized synthesis of periodic surfactant/inorganic composite materials. *Nature*, 368:(6469), 317–321.
- Igarashi, N., Koyano, K. A., Tanaka, Y., Nakata, S., Hashimoto, K., Tatsumi, T. (2003). Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. *Microporous and Mesoporous Materials*, 59:(1), 43–52.
- Istadi, I., Anggoro, D. D., Buchori, L., Rahmawati, D. A., Intaningrum, D. (2015). Active acid catalyst of sulphated zinc oxide for transesterification of soybean oil with methanol to biodiesel. *Procedia Environmental Sciences*, 23: 385– 393.
- Jacobson, K., Gopinath, R., Meher, L., Dalai, A. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. *Applied Catalysis B: Environmental*, 85:(1-2), 86–91.
- Jain, A., Jayaraman, S., Balasubramanian, R., Srinivasan, M. P. (2014). Hydrothermal pre-treatment for mesoporous carbon synthesis: Enhancement of chemical activation. *Journal of Materials Chemistry A*, 2: 520–528.
- Jeroen Geuens, J. M. K. (2008). Microwave-assisted catalyst-free transesterification of triglycerides with 1-Butanol under supercritical conditions. *Energy Fuels*, 22:(1), 643–645.
- Jiang, T., Zhao, Q., Li, M., Yin, H. (2008). Preparation of mesoporous titania solid superacid and its catalytic property. *Journal of Hazardous Materials*, 159:(2-3), 204–209.
- Kang, S., Chang, J., Fan, J. (2014). One step preparation of sulfonated solid catalyst and its effect in esterification reaction. *Chinese Journal of Chemical Engineering*, 22:(4), 392–397.
- Kansedo, J., Lee, K. T., Bhatia, S. (2009). Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. *Fuel*, 88:(6), 1148–1150.
- Kao, H., Tsai, Y., Chao, S. (2005). Functionalized mesoporous silica MCM-41 in poly(ethylene oxide)-based polymer electrolytes: NMR and conductivity studies. *Solid State Ionics*, 176:(13-14), 1261–1270.
- Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. *Angewandte Chemie International Edition*, 43:(46), 6250–6284.

- Karuppiah, C., Velmurugan, M., Chen, S.-M., Tsai, S.-H., Lou, B.-S., Ajmal Ali, M., Al-Hemaid, F. M. A. (2015). A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. *Sensors and Actuators B: Chemical*, 221: 1299–1306.
- Khoee, S., Kavand, A. (2014). A new procedure for preparation of polyethylene glycol-grafted magnetic iron oxide nanoparticles. *Journal of Nanostructure in Chemistry*, 4: 111-120.
- Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. K., Lee, J. S., Lee, K. Y. (2004). Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. *Catalysis Today*, 95: 315–320.
- Kim, S., Park, S.-J. (2007). Preparation and electrochemical behaviors of polymeric composite electrolytes containing mesoporous silicate fillers. *Electrochimica Acta*, 52:(11), 3477–3484.
- Knothe, G. (2006). Analyzing biodiesel: Standards and other methods. *Journal of the American Oil Chemists' Society*, 83:(10), 823–833.
- Komarneni, S. (2003). Nanophase materials by hydrothermal, microwavehydrothermal and microwave-solvothermal methods. *Current Science*, 85:(12), 1730–1734.
- Konwar, L. J., Boro, J., Deka, D. (2014). Review on latest developments in biodiesel production using carbon-based catalysts. *Renewable and Sustainable Energy Reviews*, 29: 546–564.
- Konwar, L. J., Mäki-Arvela, P., Salminen, E., Kumar, N., Thakur, A. J., Mikkola, J.-P., Deka, D. (2015). Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. *Applied Catalysis B: Environmental*, 176: 20–35.
- Kotwal, M., Kumar, A., Darbha, S. (2013). Three-dimensional, mesoporous titanosilicates as catalysts for producing biodiesel and biolubricants. *Journal of Molecular Catalysis A: Chemical*, 377: 65–73.
- Kulkarni, M. G., Dalai, A. K. (2006). Waste cooking oil an economical source for biodiesel: A review. *Industrial and Engineering Chemistry Research*, 45:(9), 2901–2913.
- Langmuir, I. (1916). The constituition and fundamental pproperties of solids and liquids. *Journal of American Chemical Society*, 38(11), 2221–2295.
- Laosiripojana, N., Kiatkittipong, W., Charojrochkul, S., Assabumrungrat, S. (2010). Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts. *Applied Catalysis A: General*, 383:(1-2), 50–57.

- Leng, Y., Wang, J., Zhu, D., Wu, Y., Zhao, P. (2009). Sulfonated organic heteropolyacid salts: Recyclable green solid catalysts for esterifications. *Journal of Molecular Catalysis A: Chemical*, 313:(1-2), 1–6.
- Leung, D. Y. C., Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. *Fuel Processing Technology*, 87:(10), 883–890.
- Leung, D. Y. C., Wu, X., Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. *Applied Energy*, 87:(4), 1083–1095.
- Li, S., Shen, Y., Xiao, M., Liu, D., Fa, L., Wu, K. (2014). Intercalation of 2,4dihydroxybenzophenone-5-sulfonate anion into Zn/Al layered double hydroxides for UV absorption properties. *Journal of Industrial and Engineering Chemistry*, 20:(4), 1280–1284.
- Li, Y., Shi, J., Hua, Z., Chen, H., Ruan, M., Yan, D. (2003a). Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. *Nano Letters*, 3:(211), 609–612.
- Li, Z., Xiong, Y., Xie, Y. (2003b). Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. *Inorganic Chemistry*, 42:(24), 8105–8109.
- Li, Z., Yan, W., Dai, S. (2004). A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach. *Carbon*, 42:(4), 767–770.
- Liang, X., Xiao, H., Qi, C. (2013). Efficient procedure for biodiesel synthesis from waste oils using novel solid acidic ionic liquid polymer as catalysts. *Fuel Processing Technology*, 110: 109–113.
- Liao, C. C., Chung, T. W. (2011). Analysis of parameters and interaction between parameters of the microwave-assisted continuous transesterification process of Jatropha oil using response surface methodology. *Chemical Engineering Research and Design*, 89:(12), 2575–2581.
- Lidström, P., Tierney, J., Wathey, B., Westman, J. (2001). Microwave assisted organic synthesis—A review. *Tetrahedron*, 57:(45), 9225–9283.
- Lin, C. Y., Cheng, H. H. (2012). Application of mesoporous catalysts over palm-oil biodiesel for adjusting fuel properties. *Energy Conversion and Management*, 53:(1), 128–134.
- Lin, C. Y., Chiu, C. C. (2010). Burning characteristics of palm-oil biodiesel under long-term storage conditions. *Energy Conversion and Management*, 51:(7), 1464–1467.
- Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. *Applied Energy*, 88:(4), 1020– 1031.

- Lin, V. S.-Y., Lai, C.-Y., Huang, J., Song, S.-A., Xu, S. (2001). Molecular recognition inside of multifunctionalized mesoporous silicas: Toward selective fluorescence detection of dopamine and glucosamine. *Journal of the American Chemical Society*, 123:(46), 11510–11511.
- Liu, D., Lei, J. H., Guo, L. P., Qu, D., Li, Y., Su, B. L. (2012a). One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. *Carbon*, 50:(2), 476–487.
- Liu, F., Sun, J., Sun, Q., Zhu, L., Wang, L., Meng, X., Qi, C., Xiao, F.-S. (2012b). High-temperature synthesis of magnetically active and SO₃H-functionalized ordered mesoporous carbon with good catalytic performance. *Catalysis Today*, 186:(1), 115–120.
- Liu, F. W., Hsu, C. H., Chen, F. S., Lu, C. H. (2012c). Microwave-assisted solvothermal preparation and photoluminescence properties of Y₂O₃:Eu³⁺ phosphors. *Ceramics International*, 38:(2), 1577–1584.
- Liu, Q., Wang, L., Wang, C., Qu, W., Tian, Z., Ma, H., Wang, D., Wang, B., Xu, Z. (2013). The effect of lanthanum doping on activity of Zn-Al spinel for transesterification. *Applied Catalysis B: Environmental*, 136: 210–217.
- Liu, R., Wang, X., Zhao, X., Feng, P. (2008). Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. *Carbon*, 46:(13), 1664–1669.
- Liu, W.-J., Tian, K., He, Y.-R., Jiang, H., Yu, H.-Q. (2014). High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. *Environmental Science and Technology*, 48:(23), 13951–13959.
- Liufu, S., Xiao, H., Li, Y. (2004). Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. *Powder Technology*, 145:(1), 20–24.
- Lokman, I. M., Rashid, U., Taufiq-Yap, Y. H., Yunus, R. (2015). Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. *Renewable Energy*, 81: 347–354.
- Lotero, E., Goodwin Jr, J. G., Bruce, D. A., Suwannakarn, K., Liu, Y., Lopez, D. E. (2006). The catalysis of biodiesel synthesis. *Catalysis*, 19:(1), 41–83.
- Ma, F., Hanna, M. A. (1999). Biodiesel production: A review. *Bioresource Technology*, 70:(1), 1–15.
- Ma, T. Y., Liu, L., Yuan, Z. Y. (2013). Direct synthesis of ordered mesoporous carbons. *Chemical Society reviews*, 42: 3977–4003.
- Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A., Giuffrè, A. M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. *Applied Catalysis A: General*, 378:(2), 160–168.

- Maia, E. C. R., Borsato, D., Moreira, I., Spacino, K. R., Rodrigues, P. R. P., Gallina, A. L. (2011). Study of the biodiesel B100 oxidative stability in mixture with antioxidants. *Fuel Processing Technology*, 92:(9), 1750–1755.
- Malvade, A. V., Satpute, S. T. (2013). Production of palm fatty acid distillate biodiesel and effects of its blends on performance of single cylinder diesel engine. *Procedia Engineering*, 64: 1485–1494.
- Mandlimath, T. R., Umamahesh, B., Sathiyanarayanan, K. I. (2014). Rapid one pot synthesis of xanthene derivatives by an efficient and reusable nano-ZnAl₂O₄ An insight into a new process. *Journal of Molecular Catalysis A: Chemical*, 391:198–207.
- Marchetti, J. M., Errazu, A. F. (2008). Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. *Biomass and Bioenergy*, 32:(9), 892–895.
- Mason, T. J. (2007). Sonochemistry and the environment providing a "green" link between chemistry, physics and engineering. *Ultrasonics sonochemistry*, 14:(4), 476–483.
- Mbaraka, I., Shanks, B. (2005). Design of multifunctionalized mesoporous silicas for esterification of fatty acid. *Journal of Catalysis*, 229:(2), 365–373.
- Meher, L. C., Dharmagadda, V. S. S., Naik, S. N. (2006a). Optimization of alkalicatalyzed transesterification of pongamia pinnata oil for production of biodiesel. *Bioresource technology*, 97:(12), 1392–1397.
- Meher, L., Vidyasagar, D., Naik, S. (2006b). Technical aspects of biodiesel production by transesterification-A review. *Renewable and Sustainable Energy Reviews*, 10:(3), 248–268.
- Melero, J. A., Bautista, L. F., Morales, G., Iglesias, J., Sánchez-Vázquez, R. (2010). Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. *Chemical Engineering Journal*, 161:(3), 323–331.
- Moser, B. R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. *Energy and Fuels*, 22:(10), 4301–4306.
- Motasemi, F., Ani, F. N. (2012). A review on microwave-assisted production of biodiesel. *Renewable and Sustainable Energy Reviews*, 16:(7), 4719–4733.
- Mudge, S. M., Pereira, G. (1999). Stimulating the biodegradation of crude oil with biodiesel preliminary results. *Spill Science and Technology Bulletin*, 5:(5-6), 353–355.

- Mumtaz, F., Zuber, M., Zia, K. M., Jamil, T., Hussain, R. (2013). Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol. *Korean Journal of Chemical Engineering*, 30:(12), 2259–2263.
- Murugesan, A., Umarani, C., Chinnusamy, T. R., Krishnan, M., Subramanian, R., Neduzchezhain, N. (2009). Production and analysis of bio-diesel from nonedible oils—A review. *Renewable and Sustainable Energy Reviews*, 13:(4), 825–834.
- Ng, E. P., Mohd Subari, S. N., Marie, O., Mukti, R. R., Juan, J. C. (2013). Sulfonic acid functionalized MCM-41 as solid acid catalyst for tert-butylation of hydroquinone enhanced by microwave heating. *Applied Catalysis A: General*, 450: 34–41.
- Nguyen, T. Q., Wu, J., Tolbert, S. H., Schwartz, B. J. (2001). Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. *Advanced Materials*, 13:(8), 609–611.
- Obermayer, D., Damma, M., Kappe, C. O. (2013). Design and evaluation of improved magnetic stir bars for single-mode microwave reactors. *Organic and Biomolecular Chemistry*, 11: 4949–4956.
- Ossai, C. I., Boswell, B., Davies, I. J. (2013). Sustainable asset integrity management: Strategic imperatives for economic renewable energy generation. *Renewable Energy*, 67: 143–152.
- Özdal, T., Taktakoğlu, R., Özdamar, H., Esen, M., Takçı, D. K., Kavak, H. (2015). Crystallinity improvement of ZnO nanorods by optimization of low-cost electrodeposition technique. *Thin Solid Films*, 592: 143–149.
- Pal, N., Bhaumik, A. (2013). Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids. Advances in Colloid and Interface Science, 189: 21–41.
- Patel, A., Brahmkhatri, V. (2013). Kinetic study of oleic acid esterification over 12tungstophosphoric acid catalyst anchored to different mesoporous silica supports. *Fuel Processing Technology*, 113: 141–149.
- Patil, P. D., Deng, S. (2009). Optimization of biodiesel production from edible and non-edible vegetable oils. *Fuel*, 88:(7), 1302–1306.
- Peña, M. L., Dellarocca, V., Rey, F., Corma, A., Coluccia, S., Marchese, L. (2001). Elucidating the local environment of Ti(IV) active sites in Ti-MCM-48: A comparison between silylated and calcined catalysts. *Microporous and Mesoporous Materials*, 44: 345–356.
- Peng, B.-X., Shu, Q., Wang, J.-F., Wang, G.-R., Wang, D.-Z., Han, M.-H. (2008a). Biodiesel production from waste oil feedstocks by solid acid catalysis. *Process Safety and Environmental Protection*, 86:(6), 441–447.

- Peng, B. X., Shu, Q., Wang, J. F., Wang, G. R., Wang, D. Z., Han, M. H. (2008b). Biodiesel production from waste oil feedstocks by solid acid catalysis. *Process Safety and Environmental Protection*, 86:(6), 441–447.
- Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P. A., Sels, B. F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. *Catalysis Today*, 150:(1-2), 140–146.
- Peterson, G. R., Scarrah, W. P. (1984). Rapeseed oil transesterification by heterogeneous catalysis. *Journal of American Oil Chemists Society*, 61:1593– 7.
- Phan, A. N., Phan, T. M. (2008). Biodiesel production from waste cooking oils. *Fuel*, 87:(17-18), 3490–3496.
- Pires, L. H. O., de Oliveira, A. N., Monterio Jr, O. V., Angélica, R. S., da Costa, C. E. F., Zamian, J. R., do Nascimento, L. A. S., Filho, G. N. R. (2014). Esterification of a waste produced from the palm oil industry over 12-tungstophosforic acid supported on kaolin waste and mesoporous materials. *Applied Catalysis B: Environmental*, 160: 122–128.
- Ramachandran, K., Suganya, T., Nagendra Gandhi, N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. *Renewable and Sustainable Energy Reviews*, 22: 410–418.
- Rao, B. V. S. K., Chandra Mouli, K., Rambabu, N., Dalai, A. K., Prasad, R. B. N. (2011). Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. *Catalysis Communications*, 14:(1), 20–26.
- Rashid, U., Anwar, F. (2008). Production of biodiesel through optimized alkalinecatalyzed transesterification of rapeseed oil. *Fuel*, 87:(3), 265–273.
- Rashid, U., Anwar, F., Gerhard, K. (2009). Evaluation of biodiesel obtained from cottonseed oil. *Fuel Processing Technology*, 90:(9), 1157–1163.
- Rong, M. Z., Zhang, M. Q., Ruan, W. H. (2006). Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. *Materials Science and Technology*, 22:(7), 787–796.
- Sahoo, P. K., Das, L. M. (2009). Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. *Fuel*, 88:(9), 1588–1594.
- Sakulkhaemaruethai, S., Sreethawong, T. (2011). Synthesis of mesoporous-assembled TiO₂ nanocrystals by a modified urea-aided sol-gel process and their outstanding photocatalytic H₂ production activity. *International Journal of Hydrogen Energy*, 36:(11), 6553–6559.

- Shahid, E. M., Jamal, Y. (2011). Production of biodiesel: A technical review. *Renewable and Sustainable Energy Reviews*, 15:(9), 4732–4745.
- Shao, G. N., Sheikh, R., Hilonga, A., Lee, J. E., Park, Y.-H., Kim, H. T. (2013). Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. *Chemical Engineering Journal*, 215: 600–607.
- Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D., Wang, J. (2010a). Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. *Applied Energy*, 87:(8), 2589–2596.
- Shu, Q., Nawaz, Z., Gao, J., Liao, Y., Zhang, Q., Wang, D., Wang, J. (2010b). Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation. *Bioresource technology*, 101:(14), 5374–5384.
- Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D., Wang, J. (2009). Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. *Fuel Processing Technology*, 90:(7-8), 1002–1008.
- Silitonga, A. S., Atabani, A. E., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., Mekhilef, S. (2011). A review on prospect of Jatropha curcas for biodiesel in Indonesia. *Renewable and Sustainable Energy Reviews*, 15:(8), 3733–3756.
- Singh, S. P., Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. *Renewable and Sustainable Energy Reviews*, 14:(1), 200–216.
- Singh, S. P., Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. *Renewable and Sustainable Energy Reviews*, 14: 200–16.
- Sinha, S., Agarwal, A. K., Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. *Energy Conversion and Management*, 49:(5), 1248–1257.
- Skoog, D. A., Leary, J. J. (1996). Principles of instrumental analysis. *Springer eBook*, 611–622.
- Soltani, S., Rashid, U., Yunus, R., Taufiq-Yap, Y. H. (2015). Synthesis of biodiesel through catalytic transesterification of various feedstocks using fast solvothermal technology: A critical review. *Catalysis Reviews*, 19: 1–29.
- Spiewak, B. E., Cortright, R. D., Dumesic, J. A. (1997). Handbook of Heterogeneous Catalysis, 40–47.
- Sun, X., Li, Y. (2005). Hollow carbonaceous capsules from glucose solution. *Journal* of Colloid and Interface Science, 291: 7–12.

- Sun, X., Li, Y. (2004). Ga₂O₃ and GaN semiconductor hollow spheres. *Angewandte Chemie International Edition*, 43: 3827–3831.
- Sun, X., Liu, J., Li, Y. (2006). Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. *Chemistry A European Journal*, 12: 2039–2047.
- Sunder, A., Quincy, M. F., Mülhaupt, R., Frey, H. (1999). Hyperbranched polyether polyols with Liquid crystalline properties. *Angewanndte Chemie International Edition*, 38: 2928–2930.
- Suryavanshi, U., Iijima, T., Hayashi, A., Hayashi, Y., Tanemura, M. (2012). Fabrication of ZnO nanoparticles confined in the channels of mesoporous carbon. *Chemical Engineering Journal*, 179: 388–393.
- Taguchi, A., Schüth, F. (2005). Ordered mesoporous materials in catalysis. *Microporous and Mesoporous Materials*, 77:(1), 1–45.
- Tao, Y., Kanoh, H., Abrams, L., Kaneko, K. (2006). Mesopore-modified zeolites: preparation, characterization, and applications. *Chemical Reviews*, 106:(3), 896–910.
- Tanev, P. T., Thomas, J. (1995). A neutral templating route to mesoporous molecular sieves. *Science*, 267: 865–567.
- Tian, B., Liu, X., Tu, B., Yu, C., Fan, J., Wang, L., Xie, S., Stucky, G. D., Zhao, D. (2003). Self-adjusted synthesis of ordered stable mesoporous minerals by acidbase pairs. *Nature Materials*, 2:(3), 159–163.
- Top, A. G. (2010). Production and utilization of palm fatty acid distillate (PFAD). *Lipid Technology*, 22:(1), 11–13.
- Tyagi, V. A. (1996). Changes in the characteristics and composition of oils during deep-fat frying. *Journal of the American Oil Chemists Society*, 73: 499–506.
- U.S energy information administration, Monthly Energy. (2012), (http://www.eia.gov/).
- Upham, P., Thornley, P., Tomei, J., Boucher, P. (2009). Substitutable biodiesel feedstocks for the UK: A review of sustainability issues with reference to the UK RTFO. *Journal of Cleaner Production*, 17: S37–S45.
- Van-Heerden, J. L., Swanepoel, R. (1997). XRD analysis of ZnO thin films prepared by spray pyrolysis. *Thin Solid Films*, 299:(1-2), 72–77.
- Vicente, G., Martínez, M., Aracil, J. (2004). Integrated biodiesel production: A comparison of different homogeneous catalysts systems. *Bioresource technology*, 92:(3), 297–305.

- Vinu, A., Hossian, K. Z., Srinivasu, P., Miyahara, M., Anandan, S., Gokulakrishnan, N., Mori, T., Ariga, K., Balasubramanian, V. V. (2007). Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. *Journal of Materials Chemistry*, 17:(18), 1819–1825.
- Wan, Y., Shi, Y., Zhao, D. (2008). Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. *Chemistry of Materials*, 20:(3), 932–945.
- Wang, R., Song, B., Zhou, W., Zhang, Y., Hu, D., Bhadury, P. S., Yang, S. (2011). A facile and feasible method to evaluate and control the quality of Jatropha curcus L. seed oil for biodiesel feedstock: Gas chromatographic fingerprint. *Applied Energy*, 88:(6), 2064–2070.
- Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. *Journal of Molecular Catalysis A: Chemical*, 252:(1-2), 107–112.
- Wang, Z., Wang, Z., Bai, Y., Fu, B., Liu, H., Song, A., Zhang, Z., Zhang, M. (2012). Sulfonated polyethersulfone directly synthesized through sulfonic monomer as a new stable solid acid catalyst for esterification. *Catalysis Communications*, 27: 164–168.
- Woodford, J. J., Dacquin, J.-P., Wilson, K., Lee, A. F. (2012). Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. *Energy and Environmental Science*, 5:(3), 6145–6150.
- Wu, D., Liang, Y., Yang, X., Li, Z., Zou, C., Zeng, X., Lv, G., Fu, R. (2008). Direct fabrication of bimodal mesoporous carbon by nanocasting. *Microporous and Mesoporous Materials*, 116:(1-3), 91–94.
- Wu, L., Wei, T., Tong, Z., Zou, Y., Lin, Z., Sun, J. (2016). Bentonite-enhanced biodiesel production by NaOH-catalyzed transesterification of soybean oil with methanol. *Fuel Processing Technology*, 144: 334–340.
- Wu, P., Tatsumi, T., Komatsu, T., Yashima, T. (2002). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. *Chemistry of Materials*, 14:(4), 1657–1664.
- Xie, W., Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. *Journal of Molecular Catalysis A: Chemical*, 255:(1-2), 1–9.
- Xie, X.-Y., Li, L.-Y., Zhan, P., Liang, M., Xie, S.-M., Meng, J.-X., Bai, Y., Zheng, W.-J. (2013). Fast one-step synthesis of ZnO sub-microspheres in PEG200. *Journal of Materials Science*, 49: 2355–2361.
- Xin, W., Song, Y. (2015). Mesoporous carbons: recent advances in synthesis and typical applications. *Royal Society of Chemistry Advanced*, 5:(101), 83239–83285.

- Yadav, G. D., Devi, K. M. (2004). Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. *Chemical Engineering Science*, 59:(2), 373–383.
- Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C. (1990). The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. *Bulletin of the Chemical Society of Japan*, 63:(4), 988– 992.
- Yang, C. C., Chen, S. Y., Cheng, S. Y. (2004). Synthesis and physical characteristics of ZnAl₂O₄ nanocrystalline and ZnAl₂O₄/Eu core-shell structure via hydrothermal route. *Powder Technology*, 148:(1), 3–6.
- Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F., Stucky, G. D. (1999). Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. *Chemistry of Materials*, 11:(10), 2813–2826.
- Yee, K. F., Wu, J. C. S., Lee, K. T. (2011). A green catalyst for biodiesel production from jatropha oil: Optimization study. *Biomass and Bioenergy*, 35:(5), 1739– 1746.
- Yoshimura, M., Byrappa, K. (2008). Hydrothermal processing of materials: Past, present and future. *Journal of Materials Science*, 43: 2085–2103.
- Yu, J. (2003). Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. *Journal of Catalysis*, 217:(1), 69–78.
- Yu, J., Wang, G., Cheng, B., Zhou, M. (2007). Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO₂ powders. *Applied Catalysis B*, 69: 171–180.
- Yücel, Y. (2012). Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. *Fuel Processing Technology*, 99: 97–102.
- Yusuf, N. N. A. N., Kamarudin, S. K., Yaakub, Z. (2011). Overview on the current trends in biodiesel production. *Energy Conversion and Management*, 52:(7), 2741–2751.
- Zaman, A. A., Mathur, S. (2004). Influence of dispersing agents and solution conditions on the solubility of crude kaolin. *Journal of Colloid and Interface Science*, 271:(1), 124–130.
- Zawadzki, M. (2006). Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl₂O₄). *Solid State Sciences*, 8:(1), 14–18.

- Zeng, D., Liu, S., Gong, W., Wang, G., Qiu, J., Tian, Y. (2013). Acid properties of solid acid from petroleum coke by chemical activation and sulfonation. *Catalysis Communications*, 40: 5–8.
- Zeng, Y., Zhang, T., Wang, L., Wang, R. (2009). Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly (ethylene glycol) -assisted hydrothermal process. *Journal of Physical Chemistry C*, 12: 3442–3448.
- Zhang, H., Ding, J., Zhao, Z. (2012). Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production. *Bioresource Technology*, 123: 72–77.
- Zhang, L., Yan, J., Zhou, M., Yang, Y., Liu, Y.-N. (2013). Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl₂O₄ composite hollow microspheres. *Applied Surface Science*, 268: 237–245.
- Zhang, L., Yan, J., Zhou, M., Yu, Y., Liu, Y., Liu, Y. (2014). Photocatalytic degradation and inactivation of Escherichia coli by ZnO/ZnAl₂O₄ with heteronanostructures. *Transactions of Nonferrous Metals Society of China*, 24:(3), 743–749.
- Zhang, S., Zu, Y.-G., Fu, Y.-J., Luo, M., Zhang, D.-Y., Efferth, T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. *Bioresource Technology*, 101:(3), 931–936.
- Zhang, Y., Dubé, M., McLean, D., Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. *Bioresource Technology*, 90:(3), 229–240.
- Zhao, L., Qin, H., Wu, R., Zou, H. (2012). Recent advances of mesoporous materials in sample preparation. *Journal of Chromatography A*, 1228: 193–204.
- Zhao, X., Wang, L., Xu, X., Lei, X., Xu, S., Zhang, F. (2011a). Fabrication and photocatalytic properties of novel ZnO/ZnAl₂O₄ nanocomposite with ZnAl₂O₄ dispersed inside ZnO network. *AIChE Journal*, 58:(2), 5773–5821.
- Zhao, Y., Li, Z., Xia, C. (2011b). Alkyl sulfonate functionalized ionic liquids: synthesis, properties, and their application in esterification. *Chinese Journal of Catalysis*, 32:(3-4), 440–445.
- Zheng, J. Y., Pang, J. B., Qiu, K. Y., Wei, Y. (2001). Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template. *Journal of Materials Chemistry*, 11:(12), 3367–3372.
- Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterification of triglycerides and esterification of fatty acids with methanol. *Applied Catalysis A: General*, 383:(1-2), 169–181.

- Zong, B., Meng, X., Mu, X., Zhang, X. (2013). Magnetically stabilized bed reactors. *Chinese Journal of Catalysis*, 34:(1), 61–68.
- Zuo, D., Lane, J., Culy, D., Schultz, M., Pullar, A., Waxman, M. (2013). Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. *Applied Catalysis B: Environmental*, 129: 342–350.

