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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the Degree of Doctor of Philosophy 
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By 

SOROUSH SOLTANI 

December 2016 

Chairman  : Umer Rashid, PhD 
Institute : Advanced Technology 

The increasing production growth and economic developments have increased not 
only the consumption of energy but also increased the level of pollutants. It is assumed 
that fossil fuels would be eliminated in years to come, which alerted an urgent need to 
switch to the renewable energy sources (RESs). In this research work, high free fatty 
acid feedstock, palm fatty acid distillate (PFAD), has been explored as non-edible 
feedstock for biodiesel production using efficient mesoporous zinc oxide (ZnO) based 
nanocatalysts.  

The main purpose was to develop the mesoporous ZnO based catalysts to enhance the 
conversion rate of biodiesel production for PFAD. An efficient mesoporous ZnO 
based nanocatalysts were hydrothermally fabricated, using the polyethylen glycol 
(PEG) as a surfactant and D-glucose as a template. The effects of different zinc nitrate 
concentration and different calcination temperature were determined on the structural 
and textural properties. Surface functionalization is a beneficial approach which 
improves the adsorption capacity and surface activity of the parent materials. One 
route is the doping of the metal nanoparticles as support into pre-fabricated materials. 
In this project, ZnO has been functionalized with Al and Cu in order to improve its 
textural properties. Zinc aluminate (ZnAl2O4) and zinc-cupper (CuO-ZnO) mixed 
metal oxides possess superior advantages such as high surface area and high thermal 
stability. Post-sulfonation treatment is another approach which was done in order to 
modify the hydrophobicity via attaching of ─SO3H groups on the active sites. 
Furthermore, the effect of sulfonation conditions on catalytic activity was also 
examined. It was observed that sulfonation under severe conditions led to the 
reduction of the textural properties. 

The palm fatty acid distillate (PFAD) was chosen as feedstock for biodiesel 
production, containing high FFA (around 80-90%). In order to improve the 
esterification process for PFAD production, a comparison study was also carried out 
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between two efficient autoclave and microwave heating systems over synthesized 
mesoporous ZnO based nanocatalysts.  

The influences of esterification reaction conditions (methanol to oil molar ratio, 
catalyst concentration, reaction temperature and reaction time) towards the catalytic 
performance of the synthesized nanocatalysts were also investigated to optimize the 
higher biodiesel yield. It was found that the functionalized mesoporous ZnO based 
SO3H-ZnO, SO3H-ZnAl2O4, SO3H-CuO-ZnO nanocatalysts had high catalytic 
activity for esterifying PFAD, giving FAME yield of 91.20%, 94.65%, and 95.76%, 
respectively. The recyclability of the synthesized catalysts was further evaluated. 
According to the recyclability results, the mesoporous ZnO based nanocatalysts were 
able to remain active for at least eight consecutive runs without using further 
treatment.  

Furthermore, the physico-chemical characteristics of the biodiesel produced from 
PFAD were tested with compliance to EN14214 and ASTM D6751 standards. The 
key fuel properties of the produced PFAD biodiesel were all within range of the 
mentioned standards.  

As a conclusion, from all the results, it was found that the synthesized sulfonated 
mesoporous ZnO based nanocatalysts had great potential to catalyze high FFA 
feedstock (PFAD) for biodiesel production with high recyclability. The excellent 
activity and recyclability of the catalyst may be assigned to the combination of unique 
textural properties and polymeric attachment of the ─SO3H functional group to the 
surface of the catalyst. The esterification reaction under solvo-thermal methods 
resulted in high biodiesel yield in shorter reaction rate, especially using microwave 
heating system.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

SULFONATE POLIMER ZINC OKSIDA NANOCATALYSTS 
BERASASKAN UNTUK METIL ESTER PENGELUARAN 

Oleh 

SOROUSH SOLTANI 

Disember 2016 

Pengerusi  : Umer Rashid, PhD 
Institut   : Teknologi Maju 

Pertumbuhan pengeluaran yang semakin meningkat dan perkembangan ekonomi telah 
meningkat bukan sahaja penggunaan tenaga tetapi juga meningkatkan tahap 
pencemaran. Adalah diandaikan bahawa bahan api fosil akan dihapuskan pada tahun-
tahun akan datang, yang memberi amaran keperluan yang mendesak untuk beralih 
kepada sumber tenaga boleh baharu (RESs). Dalam kajian ini, asid lemak bebas 
suapan tinggi, Asid lemak sawit sulingan (PFAD), telah diterokai sebagai suapan 
bukan makanan untuk pengeluaran biodiesel menggunakan pemangkin nano 
berasaskan mesoporous zink oksida (ZnO) berkesan. 

Objektif utama kajian ini adalah untuk membangunkan pemangkin berasaskan 
mesoporous zink oksida untuk meningkatkan kadar penukaran pengeluaran biodiesel 
untuk PFAD. pemangkin nano berasaskan mesoporous ZnO berkesan direka secara 
hidroterma, menggunakan polietilena glikol (PEG) sebagai surfaktan dan D-glukosa 
sebagai ejen pembentukan liang (templat). Kesan kepekatan zinc nitrat yang berbeza 
dan suhu pengkalsinan yang berbeza ditentukan pada sifat-sifat struktur dan tekstur. 
Pemfungsian permukaan adalah satu pendekatan berfaedah yang meningkatkan 
kapasiti penjerapan dan aktiviti permukaan bahan induk. Satu laluan adalah 
pemendapan nano zarah logam sebagai penyokong ke dalam bahan-bahan pra-
fabrikasi. Dalam kajian ini, ZnO telah difungsikan dengan Al dan Cu dalam usaha 
untuk memperbaiki sifat teksturnya. Zink aluminat (ZnAl2O4) dan zink-tembaga 
(CuO-ZnO) oksida logam campuran memiliki kelebihan yang lebih baik seperti 
kawasan permukaan tinggi dan kestabilan haba tinggi. Rawatan pasca sulfonasi 
merupakan kaedah lain yang telah dilakukan bagi mengubah suai kehidrofobikan 
melalui melekatkan kumpulan ─SO3H pada tapak aktif. Tambahan pula, kesan kondisi 
sulfonasi terhadap aktiviti pemangkin telah dikaji. Diperhatikan bahawa sulfonasi di 
bawah keadaan yang tidak baik membawa kepada pengurangan sifat tekstur. 

Asid lemak sawit sulingan (PFAD) telah dipilih sebagai suapan bagi pengeluaran 
biodiesel, mengandungi FFA tinggi (sekitar 80-90%). Dalam usaha untuk 
meningkatkan proses pengesteran bagi pengeluaran PFAD, satu kajian perbandingan 



© C
OPYRIG

HT U
PM

iv 
 

telah dijalankan antara dua sistem pemanasan autoklaf dan gelombang mikro cekap 
ke atas pemangkin nano berasaskan mesoporous ZnO disintesis. 
 
Pengaruh keadaan tindak balas pengesteran (nisbah molar metanol kepada minyak, 
kepekatan pemangkin, tindak balas suhu dan tindak balas masa) ke atas prestasi 
pemangkin nano disintesis juga telah disiasat untuk mengoptimumkan hasil biodiesel 
lebih tinggi. Ia telah mendapati bahawa pemangkin mesoporous ZnO berasaskan 
SO3H-ZnO, SO3H-ZnAl2O4, SO3H-CuO-ZnO mempunyai aktiviti pemangkin tinggi 
untuk pengesteran PFAD, memberikan hasil FAME iaitu 91.20%, 94.65%, dan 
95.76% masing-masing. Kebolehan kitar semula pemangkin disintesis telah dinilai 
selanjutnya. Menurut hasil kebolehan kitar semula, pemangkin nano berasaskan 
mesoporous ZnO dapat kekal aktif sekurang-kurangnya lapan kali berturut-turut tanpa 
menggunakan rawatan lanjut. 
 
Tambahan pula, ciri-ciri fizikokimia biodiesel dihasilkan daripada PFAD telah diuji 
dengan pematuhan EN14214 dan piawaian ASTM D6751. Sifat-sifat bahan api utama 
yang dihasilkan biodiesel PFAD semuanya adalah dalam julat piawaian yang 
dinyatakan. 
 
Kesimpulan, dari kesemua keputusan yang diperlukan, didapati bahawa pemangkin 
nano berasaskan mesoporous sulfonasi ZnO disintesis mempunyai potensi tinggi 
untuk menjadi pemangkin suapan FFA tinggi (PFAD) bagi pengeluaran biodiesel 
dengan kitar semula yang tinggi. Aktiviti dan kebolehan kitar semula pemangkin yang 
sangat baik mungkin disebabkan kepada gabungan ciri-ciri tekstur yang unik dan 
pelekatan polimer kumpulan kefungsian SO3H dengan permukaan pemangkin. Tindak 
balas pengesteran di bawah kaedah solvothermal menyebabkan hasil biodiesel tinggi 
dalam kadar tindak balas yang lebih pendek, terutama sekali apabila menggunakan 
sistem pemanasan gelombang mikro. 
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CHAPTER 1 

 

 
1 INTRODUCTION 

 

 

1.1 Green technology and alternative fuels 

 

Human existence fundamentally depends on the energy sources. Currently, the fossil 

fuel reserves are depleting at a rapid rate as a result of both worldwide population 

growth and the global economy growth. This issue should be urgently tackled to 

eliminate the shortage of the energy sources in the future. Another challenge is to 

reduce the risk to the public health by decreasing the level of greenhouse gases 

(GHGs) emission. It is noteworthy that the global energy consumption should be 

green. This scenario is sadly not possible with mineral fuels that are the most dominant 

source of the globe’s energy.  

 

 

1.2 Biodiesel 

 

The renewable energy sources (RESs), such as solar cell, wind turbines, geothermal 

power and biofuel have attracted scientist’s attention which are less harmful to the 

human life. Among all RESs, biodiesel could be the best substitute to replace the fossil 

fuels in the near future. Biodiesel is a sulfur free liquid fuel which generated using a 

verity of feedstocks. It is considered as a non-toxic and environmental friendly source 

of energy which can substantially reduce the disease possibility due to eliminating of 

the carbon dioxide (CO2) footprint by 78% (Cantrell et al., 2005). 

 

 

Biodiesel can be derived from animal fats and vegetable oils via transesterification 

and esterification reactions. Typically, esterification is a chemical reaction by which 

a FFA molecule reacts with an alcohol to produce a methyl ester plus a water molecule. 

The reaction is directly taking place between the alcohol and the FFAs. The following 

equation (Figure 1-1) represents the general chemical reaction for all industrial 

esterification reaction with methanol: 

 

Figure 1.1 : General Esterification Process  
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1.3 Approaches to reduce the cost of biodiesel production 

 

High cost is the main barrier to commercialize the production of biodiesel. It is 

assessed the cost of biodiesel production above 1.5 times more expensive than mineral 

fuels production. There are three important approaches to reduce the cost of biodiesel 

production: (i) selecting an appropriate cheap feedstock, (ii) employing a fast 

solvothermal technique and (iii) selecting a suitable catalyst.  

 

 

 Selecting an appropriate feedstock 

 

Choosing a right feedstock plays a prominent part to achieve the high yield with lower 

cost; because 60-80% of the cost of biodiesel production counts from the price of the 

feedstocks (Gui et al., 2008; Singh and Singh, 2010). Currently, above 95% of 

biodiesel production are being derived from edible vegetable oils (Gui et al., 2008). 

Furthermore, increasing the demand on vegetable oils, subsequently increases the cost 

of both biodiesel and edible oil markets (Kansedo et al., 2009).  

 

 

One approach to reduce the cost of production is to use non-edible oils (Canakci, 2007; 

Murugesan et al., 2009). Non-edible oils are classified into two groups: waste plant 

oils (WPOs) and waste cooking oils (WCOs). Being unfit for human consumption is 

the most important aspect of non-edible oils that ridiculously reduces the price of these 

feedstocks. In the current research, a high FFA content of non-edible byproduct from 

refinery of palm oil known as palm fatty acid distillate (PFAD) was chosen as 

feedstock for the production of fatty acid methyl ester (FAME) which is known as 

biodiesel (Top, 2010; Hosseini et al., 2015). In our investigation, we found that the 

using of PFAD can simultaneously maximize the FAME yield productivity and 

minimize the manufacturing cost.  

 

 

 Employing a fast solvo-thermal technique 

 

Typically, biodiesel operates with the conventional heating systems which consume a 

huge amount of power and time. The major problem to conventional heating is that 

the heat energy can only transmit to the surface of the materials. In contrast, using a 

fast solvo-thermal method such as microwave equipment, conveys the heat power 

directly to the center of the reactants. Recently, the microwave-assisted method has 

been attracted vast interest in biodiesel synthesis because of its desirable properties 

such as shorter synthesis time, energy transferring (instead of heat transferring), 

selectivity in the heating of different materials, and lower manufacturing cost 

(Hernando et al., 2007; Azcan and Danisman, 2007; Groisman and Gedanken, 2008; 

Chen et al., 2012). Autoclave-assisted reactor method is another type of solvo-thermal 

method which provides high yield under high pressure and high temperature (HPHT) 

condition at a short reaction time (Byrappa, 2013). The HPHT condition inside the 

autoclave reactor results in cleavage between hydrogen atoms on the surface of the 

catalyst. The separated hydrogen atoms bond with FFAs, follows with catalyzing into 

methyl ester (ME) (Gao et al., 2015). Autoclave-assisted method is considered as one 

of the most eco-friendly method due to a sealed system condition (Yoshimura and 

Byrappa, 2008). To the best of our knowledge, using solvo-thermal method can highly 
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enhance the biodiesel productivity by enhancing the production yield in a shorter 

reaction rate with a cheaper production cost.  

 

 

 Selecting a proper catalyst 

 

Another approach to speed up the process of biodiesel production is applying an 

appropriate catalyst in order to enhance the conversion at a shorter reaction time by 

increasing the number of active sites (Fukuda et al., 2001; Dmytryshyn et al., 2004; 

Vicente et al., 2004). An appropriate catalyst requires high considerations for biodiesel 

production, which consists of a large number of saturated fatty acids (SFAs) and long 

carbon-chains.  

 

 

Generally, catalysts are categorized into three major groups; homogeneous catalyst, 

heterogeneous catalyst and biocatalyst. Conventionally, homogeneous base and acid 

catalysts are using for biodiesel production. Although, the hygroscopic nature, water 

and soap formation, oil losses and difficulty in separation are some undesired 

drawbacks of the homogenous catalysts during catalyzing reaction. Thereby, research 

efforts have been switched onto heterogeneous catalysts (Granados et al., 2007; Xie 

and Li, 2006). A number of heterogeneous solid acid catalysts have been used to 

catalyze the transesterification of triglycerides (TGs) and esterification of FFAs. 

However, the synthesized catalysts have their individual drawbacks such as 

complicated preparation steps, less activity and stability, less surface area and less 

porosity which decline the performance of synthesized heterogeneous catalysts (Jiang 

et al., 2008). 

 

 

In this regard, mesoporous catalyst is considered as a perfect candidate to enhance the 

catalytic activity of biodiesel production due to unique textural properties such as high 

surface area and uniform and flexible pores diameter which lead to absorb long chain 

of FFAs (Kao et al., 2005; Kim and Park, 2007; Liu et al., 2008). Thereby, 

combination of higher surface area and higher porosity facilitates mass transfer or 

multiple scattering of the reactants through the porous framework (Yu, 2003; Zhang 

et al., 2013).  

 

 

1.3.3.1 Surface modification  

 

Surface functionalization is an efficient approach which improves the adsorption 

capacity and increases the surface activity of the parent materials. It is believed that 

doping a proper support element is an efficient route which leads to the breaking of 

the formed phase and increases the surface area of the materials (Carmo et al., 2009; 

Zhao et al., 2011a). 

 

 

Post-sulfonation treatment is another important approach which modify the 

hydrophobicity of the as-prepared samples via attaching of the SO3H to the active 

sites. Through catalytic reaction, hydrophobic surface plays a prominent part which 

firstly, increases the adsorption of long chain of FFAs and secondly, inhibits the 
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existence of molecule of water near the active sites (Liu et al., 2008; Mumtaz et al., 

2013; Anand et al., 2013; Drelinkiewicz et al., 2014; Fraile et al., 2015). Therefore, 

post-sulfonation of the polymeric mesoporous catalyst is expected to provide a strong 

attachment of the SO3H functional group to the active sites which significantly 

prohibits the leaching of sulfonic acid groups through esterification reaction (Shu et 

al., 2009; Wang et al., 2012; Istadi et al., 2015; Fraile et al., 2015).  

 

 

In this study, a number of sulfonated mesoporous mixed metal oxides catalysts were 

fabricated using surfactant assisted method. The main objective was to enhance the 

surface area of the parent materials as high as possible in order to provide a better 

opportunity for the SO3H species to be entrapped into the pores channels of the parent 

materials. Then, the performance and reusability of each catalyst was investigated via 

esterification of PFAD in presence of methanol under different reaction condition and 

different type of reactors. 

 

 

1.4 Problem statement 

 

The energy crisis has become the main concern for the human beings. This concern is 

strongly associated to the availability of natural sources of power (i.e., coal, natural 

gases and fossil fuels) which are depleting at rapid rates. However, the world’s most 

energy needs are met mainly by petrochemical sources; the depletion of these sources 

has warned human communities to discover alternative sources of energy. The 

increasing trend on the number of researches on biodiesel production might be a true 

evidence that biodiesel would be the best substitute for petroleum-based diesel. 

Biodiesel is a sulfur free liquid fuel, which can enhance the world’s energy security. 

Biodiesel is generated from various feedstocks which has comparable physical and 

chemical characteristics to petroleum.  

 

 

However, biodiesel carries a high cost in industry scale due to the expensive edible 

feedstocks. The use of non-edible waste material helps in reducing the cost of biodiesel 

production. In the current research, PFAD oil was used as starting material, which was 

believed to have a significant potential to reduce the cost of production and maximize 

the FAME yield productivity. Indirectly, the waste management from palm oil factory 

could be improved.  

 

 

In the process of biodiesel production, a catalyst plays a prominent part to enhance the 

efficiency of the conversion. Recently, classical homogeneous catalysts lost their place 

in inorganic synthesis due to some drawbacks including the hygroscopic nature, water 

and soap formation, oil losses and difficulty in separation. In this work, heterogeneous 

catalyst was used instead of homogeneous catalyst in order to avoid these obstacles. 

The functionalized mesoporous mixed metal oxide catalysts were fabricated in this 

research, possessed unique textural properties such high surface area and uniform pore 

diameters. The high catalytic activity and excellent recyclability of the synthesized 

catalysts were attributed to the structural and textural characteristics of mesostructured 

catalysts. 
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The extended reaction time by current conventional heating systems reduces the 

efficiency of the process of biodiesel production. Furthermore, a large amount of heat 

energy is required to heat up the reaction mixture. In this work, autoclave and 

microwave-assisted methods were used as solvo-thermal method in order to heat up 

the reaction mixture. It is known that using solvo-thermal method can highly enhance 

the yield of production in a shorter reaction rate. In this regard, a comparison study 

was carried out between two different heating systems in order to find out the efficient 

heating reactors.  

 

 

1.5 Objective 
 

The main aim of this study is to examine the effect of surface functionalization on 

structural, textural, morphological, physico-chemical, and thermal characteristics of 

the prepared mesoporous catalysts, and further examine the catalytic activity and 

stability of the optimized catalysts through esterification of PFAD via fast solvo-

thermal methods. The achieved results from this research work can be used to improve 

the new general mechanism on parallel evaluation of mesostructure and various 

properties of advanced materials in further studies. 

 

 

Here, in this research work, the work-step objectives are elaborated in four distinctive 

parts as follows:   

 

1. To synthesize and functionalize the polymeric mesoporous ZnO based material 

via (i) one-situ metal modification and (ii) post-acid treatment for mesoporous 

acidic catalyst development. 

 

2. To investigate the structural, textural, morphological, physico-chemical, and 

thermal properties of the polymeric ZnO based nanocatalysts. 

 

3. To evaluate the catalytic activity of different reaction conditions through 

esterification of PFAD via polymeric ZnO based nanocatalysts using autoclave 

and microwave system and recyclability of the synthesized catalysts.  

 

4. To determine some key fuel qualities of the produced PFAD methyl ester using 

polymeric ZnO based nanocatalysts and comparsion with EN14214 and 

ASTM D6751 standards. 

 

 

1.6 Scope of the research 

 

The scope of this research was to fabricate a polymeric mesoporous nanomaterials and 

then functionalize it with proper metal oxides in order to enhance the textural 

properties. Furthermore, the post-sulfonation treatment was applied in order to 

improve the acidity of active sites and catalytic activity, simultaneously. Moreover, 

the physico-chemical, structural, textural, morphological, and thermal characteristics 

of the synthesized mesoporous catalysts were investigated. The catalytic activity of 

the synthesized polymeric mesoporous solid acid nanocatalysts have been assessed 

through esterification of the PFAD. A comparison study was carried out between two 
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different heating systems to find out the efficient heating reactors. The key fuel 

properties of the optimized PFAD methyl ester was further assessed with compliance 

to EN14214 and ASTM D6751 standards. 

 

 

1.7 Thesis outline 

 

This chapter briefly describes the general introduction of the current scenario on 

conventional energy and biodiesel, fundamental properties of the mesoporous 

nanocatalyst, surface functionalization process, and the problem statement as well as 

the research objectives. In chapter two, it reports the overview of previous literatures 

about the preformed synthesis methodology, surface optimization and the progress of 

the biodiesel production over functionalized mesoporous catalysts. Chapter three 

presents the methodology of the catalysts and biodiesel preparation and the equipment 

that were used to characterize the occurred changes in the products; such as structural, 

textural, morphological, physico-chemical, and thermal properties under various 

conditions. Chapter four is about the obtained results from the current research work 

and discussion. The summery of the concluded results is presented in chapter five 

which followed by feature research suggested recommendations. Finally, the 

references, appendix and the list of publications are attached, accordingly.  
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